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Abstract. Results of examination of experimental data onlinear elasticity of rocks using experimental ptess
10 dependences of P- and S-wave velocities from variiberature sources are presented. Overall, oOer8k samples are
considered. Interpretation of the data is performsidg an effective-medium description in whichoksare considered as
compliant defects (cracks) with independent shadrreormal compliances without specifying a paracurack model with
ana priori given ratio of the compliances. Comparison with ¢élxperimental data indicated abundance of cracR8%?)
with the normal-to-shear compliance ratios sigaifity exceeding the values typical of conventionaked crack models
15 (such as penny-shape cuts or thin ellipsoidal &ackorrespondingly, rocks with such cracks demateststrongly
decreased Poisson's ratio including a significasttign of rocks (~45%) exhibiting negative Poissoratios at lower
pressures, for which the concentration of not yesed cracks is maximal. The obtained results atdiche necessity of
further development of crack models to accountrévealed numerous examples of cracks with stromgrgtion of normal
compliance. Discovering such a significant numbfemaiurally auxetic rocks is in contrast with thengentional viewpoint

20 that occurrence of negative Poisson's ratio isxatiefact that is mostly associated with specialigineered structures.

1 Introduction

It is widely appreciated that most rocks exhibitosgly increased tensosensitivity, that is giamsgt nonlinearity as
compared with atomic nonlinearity of homogeneougisand liquids. A bright manifestation of thismimearity is a very
pronounced dependence of rocks' elastic modulipplied pressure. The main reasons for this giamtimearity is the
25 presence of highly compliant cracks and contactherrelatively hard matrix.
Important features of this "soft-hard paradigm'g@nt nonlinearity in microstructured solids [1¢2jn be explained by very
instructive and simple 1D rheological models in ethihighly-compliant cracks/contacts correspond oft €lastic
elements/springs contained in a relatively hardrimd8,4,5]. Such models can be very useful to elate as to why the
relationship between concentration of the softusidns and the resultant nonlinearity level camdx@monotonic Also they
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can provide some understanding of the origin ofjdency dependence of such microstructure-inducedinearity as an
influence of relaxation localised at the same defects. Furthermore, those rheological modelslyieimonstrate that the
relaxation properties of the soft defects in additio the elastic nonlinearity (i.e. tensosengiivof elastic moduli)
inevitably lead to pronounced tensosensitivity dfsghbation in microstructured solids [6,7] that meyhibit itself as
dissipative nonlinearity.

Despite usefulness of the above-mentioned 1D mddelanderstanding basic features of the influeottligh-compliant
inclusions on reduction of the elastic modulus #r origin of its giant stress-sensitivity, closamparison with seismo-
acoustic properties of real rocks require the ¢éffeemedium models that more adequately corresporad3D character of
real rocks. Even in the simplest isotropic appration, rocks are characterised by two independistie moduli. The
most widely used are the bulk modulus, shear maddéiermining the velocity of shear S-waves, Yoomuglulus, as well
as the modulus corresponding to the velocity ofjibinal P-waves. Among those moduli any two adependent and the
other are expressed via the chosen pair of thepémtient ones.

Since cracks are the simplest and most importa@ 6f compliant defects in consolidated rocks, m®rable attention was
paid to developing models that describe crack-iedueariations in elastic moduli. Although such diggions differ in the
way of accounting for eventual interaction of cra¢ke. small-perturbation or approximation of lovack concentrations,
without accounting for mutual crack interaction,[8]e so-called self-consistent approach [9] died#ntial approach [10]),
the representations of cracks in such models wasedon simpe geometries, for which exact expressi@re available;
these describe the stored elastic energy in theepoe of shear stress or stress normally directetet crack plane. In
particular, the so-called penny-shape cracks ordliiptical voids with small aspect ratios haveiavidely used.

Despite the differences in the methods accountmgniteraction of cracks at larger concentratianghe limiting case of
small crack concentrations all of such models mteidientical complementary variations for the chroselependent elastic
moduli. For example, the chosen crack geometrydptermines a given very specific proportion betweariations in the
S- and P-wave velocities under hydrostatic pressOfeservations for real rocks, however, often destrate different
proportions between crack-induced variations in Fheand S-wave velocities variations, such thayipta with crack
concentrations in the above-mentioned models incgie cannot help to reach better agreement betwlee predictions
and observations.

The fact that variations of moduli inferred frometmeasured wave velocities require different creafcentrations for
different moduli (e.g., different concentrationsdbtain the values dt andG inferred from the wave velocities), implies
that real cracks could be characterised by sigmifiy different proportions between their shear andmal compliances.
Such variability of crack properties in principlanmot be accounted for in conventional effectivedime models based on
cracks modelled as straight cuts of any geometry,(penny-shape) or thin ellipsoidal voids witlsraall aspect ratio. In
such conventionally used models the ratio betwémset compliances is pre-determined and cannot iexdignificant

variations.
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This circumstance motivated the development ofridtive effective-medium models in which cracks eomsidered as
highly compliant defects with independent normatl aear compliances not restricted by a predetexdnproportion
between them. Such an idea was realized in [11] eapdvalent expressions (that differ only by a nalimation) were
derived in [12] based on results of [13]. Usinguies[11], the ratios between normal and shear diamges were extracted
in [14] from the analysis of pressure dependentésm®elastic-wave velocities in three samples. éioe of the samples, the
inferred crack characteristics did not differ sggynfrom the ones obtained using the conventioreiny-shape crack
models, whereas the other two demonstrated 2-4stist®nger dominance of normal compliance of the defects.
Furthermore, one of the samples (Weber sandstodéedtin [15]) with the highest normal-to-shear @iiance ratio of the
cracks was found to possess negative Poissortsataldwer confining pressures (up to 20 MPa). Wikitreasing pressure
(that caused gradual closing of the cracks) thed®ois ratio gradually increased towards to themiat' positive values.
Results [14] demonstrated that properties of remtls may significantly differ from those implied the popular model of
penny-shape cracks. This agrees with some recens\ib6,17] where some other facts indicating ifisighcy of models
based on penny-shape cracks are discussed. Howleedairly small number of rocks discussed in ¢hpapers did not yet
allow one to estimate how exotic are samples whereressure dependence of the moduli is incomsistith the models
based on conventional cracks. In what follows, wesent results of the examination of pressure digeres for ~90 rocks
[18,19,20] demonstrating that the "unusual" prapsrbf real cracks are quite common. Furthermore,show that in
contrast to the common belief the relevance ofcthreventional crack concept can be considered @&xegption, while the
rocks with negative Poisson's ratio are not raReliable reconstruction of compliance propertiescdcks (that are
conventionally used in models of linear elasticgamies of rocks) requires consideration of nordimieehaviour of rocks —
the pressure-induced variation of their elasticpprtes — in a sufficiently wide pressure range.tha course of this
consideration we will also point out some aspedtsock's nonlinearity (tensosensitivity) that hawet been explicitly

discussed earlier.

2 Nonlinear variation of rock's elasticity under vaying pressure: 1D modelling

In geophysics elastic nonlinearity of rocks is wagbpreciated, however when considering nonlineapggation of elastic
waves the modelling is often simplified by using &Pproximation starting from 1D constitutive noelan stress-strain
relationship in which quadratic in strain nonlingaris often considered. For the present consid@radf nonlinear
variations of elastic moduli under isotropic hydedie compression that affects the state high-c@npldefects, the 1D
description can also be used, for example, in trenfwith small (quadratic in strain) nonlinear @mtion to the linear

stress-stress relationship:

o(€)=eM {l+eFP}=eM +yP M &2, 1)
Here M is the effective modulus of the medium apé is a dimensionless nonlinearity parameter chariaate

variability of the elastic modulus with variatioms strain acting in the medium. Strictly speakisgain is defined with

3
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respect to some initial state of the medium, sottialocal slope of the dependence around a dudeggree of deformation

becomes dependent on strain (and thus stress)aanecconsidered as an incremental elastic modulus:

M(e)=00/de )
It is clear that the dimensionless parameter ofjtiedratic nonlinearity can be expressed as
1 1dm
@ =——M(e)/de==—— 3
Ve = 5oy M (@)0e =" ©)

taking into account that the stress (pressuregment is related to the strain incrementas= M 4 [de .

In contrast to homogeneous materials with weak &tamnlinearity and the nonlinearity parameter adeo of unity
[21,1,2], in heterogeneous media their nonlinearéty be strongly increased due to the presenciglofyrcompliant defects
with strongly locally decreased elastic moduluseDRa this fact the strain becomes strongly locailyreased at the soft
defects, which results in a considerable enhancenfeheir local nonlinear deviation from the limestress-strain law and,
correspondingly, leads to enhancement of averager@acopic) nonlinearity of the material.

Important features of the microstructure-relatedlimearity can be revealed in the framework of #h@ve-mentioned 1D
description [3,4]. The simplest for understandiaghe case of identical compliant defects: if taafive volume content
(concentration) of such highly compliant defectsvisand the defects are of the same type, the eftedjwadratic

nonlinearity parameter gets strongly increased
yP 1y = @rulc?) arulc)? )
where the small parameteg,<<1, characterizes the relative compliance of the d@np defects with respect to the

homogeneous matrix material; parame;tfé%) ~1 characterizes the own weak nonlinearity of theemiat of the defects. A
clear example is a liquid with gas bubbles: takepasately the liquid and gas both are weakly nealinbut the nonlinearity

of the mixture may become giant. For sufficientiyasl compliance parameter<<1 (that may bel02-10"* for gas-
water mixture), the nonlinearity parameter can leithjiant increaseyéfzf)/y(z) >>1, even for small concentrations,
because the combinatiaw ¢2 in Eq. (4) may become large. Simultaneously withincrease in the nonlinearity parameter,
the elastic modulu# due to the presence of high compliant defectshétshgradual decrease in comparison with modulus
M, of the homogeneous matrix:

M IMy=11+uvlc), (%)
Comparing Egs. (3) and (4) one can easily notie¢ @ven if the decrease in the elastic modulusniallsu/¢ <<1, the
increase in the nonlinearity parameter, Eq. (4) tegome significantxg)/y(z) >>1), since the combination/¢? may

become large even i/ ¢ <<1. Furthermore, the nonlinearity parameter reacteemaximum value 1/ ¢ for rather small
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concentration of the defects= ¢, for which the elastic modulus decreases twicethednterplay between the local strain
enhancement and the concentration of the defeostiimal [3,4].

In contrast to the above-mentioned bubbly liquifts, which the bubbles have the same contg@ash compressibility
relative to the liquid where the existence of cleaximum of the nonlinear parameter in its dependeon bubble
concentration is a known fact [22,23], for crackedks, the presence of maximum nonlinearity at mterinediate
concentration of cracks is not typical. Bearingrimd that for the bulk moduluk of rocks under hydrostatic compression,
the 1D description is applicable as far as the mboompliance of cracks is concerned (see belownfore details), we note

that pressure dependenceskofP) usually demonstrate ever increasing slapey /dP (i.e., the nonlinearity parameter)

with reducing confining pressurdd at which the concentration of cracks that areatesed gradually increases. Typical

examples ofK i R )recalculated from experimentally measured P- amh®e velocities are shown in Fig. 1a for several

sandstone samples that are often discussed iatliter[15,19].
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Fig. 1. Non-linearity exhibited by dry Navajo, Nuggt and Weber sandstones [15,19]: (a) typical depeedcesK (P)
recovered from the experimentally measured pressurdependences of P- and S-wave velocities; (b) thense data

represented as the pressure dependences for inverbalk modulus K (P) shown in the plot with logarithmic

pressure-axis; (c) derivativesd(1/K)/dP = —(dK /dP)/K? calculated using the approximating curves (in thdorm of

3rd order polynomials). Numbers 1, 2 and 3 denoteht data for Navajo, Nugget and Weber sandstones, gectively

[15,19,20]. The slopes of the approximating straighlines corresponding to normalized Eq. (8) charadrize the
differences in the density of cracks ¢{” = 013 for Navajo, v{" = 021 for Nugget and v{®) =17 for Weber). The
dashed line in panel (c) shows thd/P dependence corresponding to the normalized Eq. (L0The deviation
downwards of curve 3 for Weber in panel (c) is relied to pronounced saturation ofK(P) and K™(P) at higher

pressures clearly visible in panels (a) and (b).
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This gradual increase in slop /dP with decreasing pressure is quite naturally atted to a broad distribution of the

compliant defects over their compliance paramétefeed, it is widely accepted that with increastogfining pressure the
compliant crack-like defects gradually become figltlosed (starting from the most compliant) and it contribute
anymore to the rock nonlinearity. This agrees W known properties of narrow cracks with smatiexs ratioa <<1, for
which their aspect ratio determines the relativengliancea ~ ¢ . Such thin cracks are known to get closed under th
average strairg, ~ a ; the proportionality coefficient is of order ofiity and its value may somewhat differ as demotestra
by the solutions for elliptical cracks [24], tapgreon-elliptical cracks [25], etc. Since the stsaand applied pressuié
can be considered roughly proportional,=PF./K , all these quantities can be considered as beppyoaimately
proportional to each othet ~a ~ £, ~ P,/ K ; this will be taken into account in the considenatelow.

For not-identical defects with a distribution iretbompliance parameter, Eqgs. (3) and (4) shouludmified to comprise the

contributions of defects with different compliarg&rameterq [5]:
K/Kq :1/(1+j Y9 4y (6)
Iy

The equation for the nonlinear parameter can beittew as

K u(¢§
A =1+ 7(2) d¢ )

It is clear that, by analogy with Egs. (4) and f@&)identical defects, the modulus reduction arelititrease in nonlinearity
are determined by the distributiar{¢) of defect concentration over the compliance patamg.

If one consider ranges of pressiRg, < P < P, relevant to experiments, quite often this rangé&asn several MPa to
about10® MPa, i.e. with relative variatiomP,,, /Py, ~15-30 times, as the examples in Fig. 1 show, the gréagual

closed/opened cracks should be distributed over tmmpliance parameter with a similar relative range

Cmax ! €min ~ Pmax / Pmin - Since this range in practically relevant casesoishuge (not many orders of magnitude), one can
assume that in the first approximation the functif¢) may be approximated by a uniform distribution,

v(¢)= V((f) =const. for ¢, < ¢ < ¢nax - Then one obtains:

Cmax

Ko/K =1+ J' @dalwgd NG/ € ) =1+ V) IN(Pyae/ P) ®)
<
Cmax
Ko @/, u(g) . U uf
B0 @@ <14 d¢=1- +0 9)
K? 0 -[ 2 Crax €

Smin
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Practically more useful than Eg.(9) can be a mmttion in the form of the direct derivative ofy.E(8),
d(@/K)/dP=~(dK /dP)/K?, that does not involve unknown initial value ofetmonlinearity parameter. In view of
relationship (8) it should be expected in the form

Ko dK _ 4
K2dP P

This dependence can be compared with experimeatal &igure 1b shows the pressure dependencesefdautk modulus

(10)

of the same samples as in Fig. 1la using logarittsoéte of the pressure axis, for which proportiiyab log(P) should
look as a straight line. It is clear that in Fig. duch straight lines approximate the experimatggendence& '1(P) fairly
well. The trends to saturation closer to maximald aminimal strains are expectable (since the distigin

u(¢) =U((f) = const. cannot be ideally flat). The slopes of the stralgies in Fig. 1b are determined hvg‘) and give clear

representation on the differences in the charatieiconcentrations of the defects for the examsadples. Finally, Fig. 1c
presents, in log-log scale, the derivatives ofd@pproximating curves shown in Fig.1b with a depecdd/P as a guide.
Thus Figs. 1b and 1c demonstrate that the simplegtoximation of the distribution of the defects dyconstant value

reasonably agrees with the experimental obsenatiofairly wide range of pressureB(,, / Pnin ~10-20 times).

3 Inferences from nonlinear variations in elastic roduli of rocks in 3D description

In the previous section we considered only 1D dpson that can be quite well applied to the redaein the bulk modulus
under hydrostatic compression of real rock samplesvever, in real 3D rocks even under isotropicrbgthtic compression
and fairly isotropically oriented cracks, therestxiwo independent elastic moduli of which the boikdulus and shear
modulus are often considered. The crack-like defesith isotropic orientations can also be chardamter by two

independent compliances with respect to normalsiedr loading. Using such a representation of srik& planar defects
with two compliances that are natpriori predetermined by a particular crack model oneretate the values of different
elastic moduli with the crack effective densitiesdacompliances by analogy with the above considdf@dcase. Such

expressions were obtained in [11] in the form

_ K

PR AP S— (11)
K 1+IN,/a-2v)

-~ G

G=e - ! (12)
G 1+E&N /@+v)+ZNg

where by analogy with the above-considered 1D c&s_e,:_[u(c)c’ldc is the effective concentration of the normal
compliance andN, =Iu({)f’1df is a similar quantity for the shear compliance] &nis the Poisson's ratio of the matrix

7
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rock. For the other moduli, one obtains similarresgions [11]. In these equations the shear congdiégs normalized by
the shear modulus of the rock matrix and the nowroatpliance is normalized by the Young modulus esponding to the
rock deformability under uniaxial stress. Insteéd single dimensionless compliance parameter instte previous section
(in fact corresponding to the normal compliancedsth expressions contain two compliance paramedpresenting the
normal and shear loading characterize the defEatstors 1/3, 2/5, etc. in Egs. (11) and (12) alated to spatial averaging
of isotropically oriented defects.

Similar equations were derived in [12] using basiations obtained in [13]:

- K
R=—eto_ 1 (13)
1+KoZ,

K
G
et 1 (14)

G 4 2
G 1+1GyZ, +£GoZg

In these equations quantitigg and Z, characterizing total normal and shear compliamegzsrted to the rock by cracks

are dimensional (with dimension of inverse modul$)e shear compliance of the defects in both aapres (i.e., Eqs(12)
and (14)) is similarly compared with the shear tefasiodulus of the matrix material. However, themal compliance in
Eq. 12) is normalized differently: in [11], the normal cpliance of the defects is compared with the Yourgglutus (i.e.

the modulus that corresponds to uniaxial stresshabthe compliance parametérof the defects with respect to normal
uniaxial stress can be expressed¢asE, . / Ey, the latter can be substituted in the expressionN, =J.|/(c)¢‘1d¢).
Then taking into account conventional relationsmp=%E/(1—2v) between moduliE and K [26], the combination
%Nn/(l—ZV) in Eq. (11) can be transformed into the foré‘Nn/(l— 2y) =KyZ, (whereZ, =Iv(c)c'ldc/E0). As a
result, Eq. (11) assumes the form of Eq. (13) enrbtations of paper [12], where the normal conmgkaof the defects is
normalized using the bulk modulds, of the matrix. This comparison justifies that E(fsl) and (13) for the effective bulk
modulus have the same form as the one-dimensiangbEdiscussed in the previous section.

Note further that the total shear complian(gd‘slS and %GOZS in Eq. (12) and (14) have exactly the same meaftioigcide
quantitatively). Then it can readily be verifiedathEgs. (12) and (14) have exactly the same prigpartbetween total
normal and shear compliances: quantitigd, /(1+y) and 2Ny in Eq.(12) and quantities;tGyZ, and 2GyZ; in
Eq.(14)). Thus representations (11), (12) and ({i3})) are equivalent and differ only by notations.

Assuming that both normal and shear complianceslaualized at the same defects (like at penny-shapeks in
conventional models), the ratip= N,/ N, then characterizes the ratio between normal aedrstompliances of the crack-
like defects. Taking into account the difference the normal-compliance normalization, one obtairsat t

4=2,/2, :%(NllNz)/(l+ V). Comparing Egs. (11)-(14) with expressions foisetamoduli reduction based on penny-
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shape crack model [9,10], one concludes that pshape cracks correspond to the ratio of normalsiwedr compliances
g=(2-y)@+v)~2 orequivalentlyg = (1-v /2)~1 [12,13].

Since different effective elastic moduli are diffatly related to normal and shear compliances efdbmpliant defects,
gradual variation of crack density with pressurewti correspond to different trajectories of thénpdK (P),G(P)) on the
(K,G)-plane. They are readily expressed via the vekitp andV; of the longitudinal compressional wave (P-wave) an
shear-wave velocity (S-wave), which are routinelgasured in experiments. (Certainly a different pdiindependent
moduli can be in principle used.) Comparing theezipentally obtained trajectory with the one théicedly predicted by
Egs. (11)-(14) one can determine tipeatio for real rocks as illustrated in Fig. 3. 8ue representation (for example, in
(K,G) plane), allows one to exclude intermediate depecekeon pressure that in turn dependent om fvéori unknown
distributions of the cracks over their aspect mtithe so-plotted single trajectory makes it pdedib reduce the freedom in

fitting the two initial experimental curves withditlonal possibility of scaling pressure axis.

a8 oo»-';”°"° o 1.0 l o] O
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Fig. 2. Schematic of determining theg-ratio of crack compliances via re-plotting the P-and S-wave velocities into
trajectory of the point characterizing the rock properties on the (K,G)-plane. (a) - initial pressuredependences of
P- and S-wave velocities. (b) - pressure dependescef the normalized bulk and shear moduli derived rom the
wave velocities. (c) - the (K,G) plane representinghe normalized moduli plotted one against anotherand
superposed theoretical lines with correctly choseg-ratio (curve 1), about 1.5 times overestimated gatio (curve 2)
and 1.5 times underestimated)-ratio. We emphasize that unknown distributions ofcracks over their compliance

parameters do affect pressure dependencies, but dot affect the so-estimated-ratio.

This approach was discussed in detail in [14] t@kis instructive examples experimental data orspres dependences (in
the range 2-100 MPa) of P- and S-wave velocitiesNavajo, Nugget and Weber sandstones used as teampFig. 1
[15,19]. The performed examination showed that dotydry Navajo sandstone the g-ratio (appeareukte2.35) was more
or less consistent with the expectatigr (2-v)(1-v ) ~2.1 for the model of penny-shape cracks with free Jagéhereas

for Nugget sandstone it was about twice greatpr~@.3) and even grater for Weber sandstone~( -8). The latter

9
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sample even demonstrated negative Poisson's mtipréssures below 20 MPa. For rocks containingptiamt inclusions
with dominating normal compliance\g >15 + 2(1+Vv)N,), the presence of negative Poisson's ratio isaqirising [11],
see also [27]:

_ v-EN, + 2 1+HV)Ng
1+ N, +E(@+V)Ng

Ve (15)

However, the Weber sandstone containing cracks sigthificantly increased normal compliance and héghcentration of

cracks sufficient for making the Poisson's ratigatee looked as a rather exotic example. Similamctusions on the

possibility of negative Poisson's ratio are known dranular materials, in which inter-grain consaate characterized by
normal compliance significantly dominating over thkear one. However, traditionally, negative Poissoatios are

considered as rather exotic cases mostly for varutificial microstructured solids [28,29].

In what follows we present results of examinatidroeer 90 rock samples, for which data on pressieendences of P-
and S-wave velocities were taken from [15,18,18jufe 3 shows the histogram for the Poisson's i@loulated from the

P- and S-wave velocities at the lowest pressungio@jly, the available low-pressure data were reggbfor pressures of
several MPa, so that evidently for even lower press crack concentrations were even greaterhisneamination we did

not try to specially find some specific examplesyertheless, about 45% of cracked rocks exhibjpiramnounced pressure
dependences of the elastic-wave velocities dematestmegative Poisson's ratio in a few (or at leasf lower-pressure
points, where the crack concentration was maximydically the lowest pressures were several MParaaximal pressures
were in the range 50-120 MPa.

204

Count

-0.2

Poisson’s ratio

Figure 3. Histogram for the Poisson's ratios calcalted using P- and S-wave velocities for over 90 rk& [15,18,19].
Data for minimal pressures (mostly about 8MPa for lhe available data sets) were used in these calcudats.
Increasing pressures led to decrease in crack comteation, so that for all rocks the Poisson's ratie gradually

became positive.

10
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For those samples, the initial pressure dependesicése P- and S-wave velocities were re-plottedh@ plane of the
normalized moduli(ﬁ,é) and the resultant curves were fitted by Eq. (I éL2) in order to determine the ratio of the
compliances of the cracks assuming that the t@jgatan be described by a constgatatio, = N;/N, =const. This
approximation is no& priory evident at all, but looks fairly reasonable sitice conventional penny-shape cracks indeed
have theg-ratio independent of the aspect ratio and, theeefadependent of the pressure of opening/closfragich cracks.
For a significant portion of the considered rockptes, the pressure-induced variations for thetielasoduli in the(lz,é)
appeared to be surprisingly well described usiegatproximation of constaggtratio.

It was also found that for two tens of samples, tthgectories could be fairly well fitted by a ctenst-q curve at higher
pressures, but noticeably deviated at lower presswsually exhibiting trendharacteristic for increasing-ratio. Such
deviations occurred for samples with both negadive positive Poisson's ratios at low pressurestefte, for the moment,
in the histograms shown below to characterize ¢wealedy-ratios we excluded those samples and retaine@mples with
fairly constang-ratio.

Figure 4 shows the histogram for distribution ogeatio among those 71 samples wih: const. A striking feature of this
histogram is that only the leftmost column (only092 of total number of samples) correspondgjte2 in notations [11]
(or g ~1 in notations [12,13]) that is typical of penny-pbacracks and similar conventionally used crack efdAmong

the 71 samples presented in Fig. 4 almost onefhdB%) exhibits negative Poisson's ratio for maxiorack densities at

low pressures.

Count

6 ..

g-ratio
Fig. 4. Distribution over g-ratio for 71 samples wih fairly constant g within the entire pressure ranges including
rocks with always positive Poisson's ratio togethewith samples demonstrating negative Poisson's ratiat lower

pressures. The last column includes all samples Witg = 10.
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Figure 5 shows histograms similar to Fig. 4, bysasately for 34 samples demonstrating negativesBols ratio at low

pressures and 37 samples with positive Poissotisinathe entire pressure range. As expected fiteenabove-presented
arguments (see discussion of Eq. (15)), daatios for samples with always positive Poissaao demonstrate the
distribution shifted towards smatfratios (Fig. 5b), whereas for samples with negaffoisson's ratio this distribution is

clearly shifted towards highpratios, significantly higher thag= (2-y)(@+y)~2 (or g ~1) typical of penny-shape cracks

(Fig. 5a).
164 14
144 (a) 2] < (b)
124 N
€ 1o Samples < i Samples
3 demonstrating 3 8 P .
o 8 v<0 0 . demonstrating
O O & v>0
44 44
24 24
. 2 4 6 . 8 10
g-ratio g-ratio

Fig. 5. Distributions over g-ratio plotted separatdy for samples from Fig. 4 exhibiting positive anchegative Poisson's
ratios: (a) the histogram for 37 samples with negate Poisson's ratios at lower pressures; (b) casé 8 samples with
always positive Poisson's ratio. The last column iboth panels includes all samples withlg=10.

It should be mentioned that increaspdhtio was also found in the case of samples witlags-positive Poisson's ratio (as
can be seen in Fig. 5b). However, by applying pdaces shown in Fig. 2 we verified that for thesmlkes, the crack

density is significantly smaller than for the roogshibiting negative Poisson's ratio. Namely, focks with negative
Poisson's ratio and ~5-10 or even greater, typically the crack densitwg@ ~1-2, whereas for rocks with similar
increasedg-factor, but positive Poisson's ratio even at ldwpsessures, the crack density is significantly dow

v ~01-02.

4 Conclusions

In the described analysis of pressure-dependent rionlinear) elastic rocks' properties we usedaaghes [11,14] and
[12,13] in which the effective-medium model is bdis generalized phenomenological representatiararfks as highly
compliant defects whose compliance properties ateamriori predetermined, so that the proportion betweemtrenal

and shear compliances and their integral amountsbeafound from the comparison with experimentabd# should be
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emphasized that such comparison is essentiallydb@s¢he usage of numerous data points obtainéairly wide range of
pressures. This consideration of the large dat describing nonlinear behaviour of rocks ensurashnbetter reliability
and accuracy than comparison of a pair of points fer two pressure levels).

The performed examination has indicated that ptaseof compliant cracks in many rocks reasonal#yl agree with the

assumption about uniform distributia}é‘) = const. of the cracks over their compliance parameter gictually their aspect

ratio), which gives a simple way (actually a singlerametetv{,‘)) for comparison of crack concentrations in différe

samples.
The usage of the theoretical description [11,124Bwith explicitly introduced normal and shear gdimnces of the defects

made it possible to determine this ratio for realcks from the trajectory ofk (P),G(P)) in the (K,G) plane. Using the

literature data on pressure dependences of P- avalv8 velocities [15,18,19], about 90 rock samplese examined. For a
significant portion (~80%) of the samples tpeatio between the normal and shear compliancesapd to be significantly
different from what would be predicted by the camv@nal crack models. These observations agree swithe other results
based on smaller volumes of data [14,16], whicb &islicates that quite often the conventionallyduseack models (like

the penny-shape one) cannot adequately descrilpenies of real rocks. In fact for the considerdds@mples that can be

well described in the approximation of const@ptratio, it appears that only ~20% of rocks dematstg ~2 typical of the

penny-shape cracks.

Furthermore, the performed examination of pressiegendences for ~90 samples (found in literatutbout any special
selection) revealed that a significant portion aples (about 45%) demonstrated negative Poissaiidsat low pressures,
for which concentrations of open cracks were makif8ach a significant number of naturally auxeticks is in contrast
with the conventional viewpoint that occurrencenefjative Poisson's ratio for rocks is an exoti¢ {fa8,30]. Previously
mainly artificial materials with the microstructuengineered to exhibit negative Poisson’s ratiokgsia materials) were
discussed in the literature (see e.g., review29j, [31]).

The performed comparison gfratios has shown that for samples exhibiting riggalPoisson's ratio, the distribution of
determined compliance ratios for cracks shows cléigtortion towards largeg-ratios (strongly dominating normal
compliance of cracks over their shear complianddjis finding perfectly agrees with theoretical misdéor crack-
containing solids and granular materials, accordmgvhich negative Poisson's ratio can be obtainedearly isotropic
material only if the cracks or contacts have domimganormal compliances [11,27]. In contrast, famples with positive
Poisson's ratio, the determined distributiong-cétios demonstrated a clear distortion towardslsraéues.

Overall, the obtained results indicate the necgssifurther development of crack models to accdhatrevealed numerous
examples of rocks with defects demonstratipgatios significantly greater than for penny-shapacks and similar

conventionally used crack models.
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