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The authors thank the referee for their careful reading of the manuscript and for providing helpful recommendations and

pertinent remarks. Please find our response to each of your questions or remarks below.

This manuscript presents a Lyapunov analysis of two models: PUMA (purely atmospheric) and MAOOAM (atmosphere-

ocean coupled). The purpose of this is to investigate the impact of different configurations (resolution, dissipation, and atmosphere-

ocean coupling) on the instabilities of the system. This is an interesting path of research since, ultimately, it will permit to

understand better the goodness of a certain model for forecasting certain processes operating at particular spatio-temporal

scales.

While I consider the topic of this work is worth of being published, and the manuscript reasonably well written, I have one

important criticism on the methodological procedure that prevents me from recommending its publication.

An important part of the manuscript is devoted to the rate function of the finite-time Lyapunov exponent (FTLE) distribution.

As claimed in the abstract

1) For the PUMA model: "The convergence rate of the rate function(al) for the large deviation law of the FTLEs is fast for

all exponents".

2) For the MAOOAM: "[...] it is possible to robustly define large deviation laws describing the statistics of the FTLEs

corresponding to the strongly damped modes, [...]"

My main criticism is the meaningfulness of the rate function analysis considering the data used and their quality. I itemize

next my concerns (a-c):

a) In all cases the claimed convergence is far from apparent with the naked eye. In my view the rate functions vary consis-

tently as parameter tave changes, but I don’t see a true convergence of the data as such. I find very questionable sentences like

"For all LEs the tendency for convergence of the rate function is visible" in page 16, line 3; and "...FTLES accurately obey

large deviation laws ..." in page 27. To judge the convergence from the shift of a whole curve as a parameter changes is really

problematic.
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Indeed, the graphs shown in the manuscript do not unambiguously prove the convergence of the rate functions. We have

therefore moderated these statements as follows. Before, the relevant passage on page 16 read:

“We make the following observations. For all LEs the tendency for convergence of the rate function is visible. Also, the

rate functions’ shape is approximately parabolic and the estimates of the rate functions converge to the asymptotic with a

comparable speed regardless of the value of the corresponding LE. ”

This has been adapted as follows:

“We make the following observations. The graphs suggest a convergence of the rate function for all LEs. Also, the rate

functions’ shape is approximately parabolic and the estimates of the rate functions appear to converge to the asymptotic with

a comparable speed regardless of the value of the corresponding LE. ”

The following sentence on page 25, line 10:

“ Similarly to what was found in a previous analysis performed on a severely truncated version of MAOOAM (Vannitsem and

Lucarini, 2016), we find that the time series of the FTLEs corresponding to the strongly damped mode are weakly correlated

and one can construct the rate functions defining the large deviations laws; compare figures 19a-c) for the 351 st LE.”

has been corrected and now reads:

“Similarly to what was found in a previous analysis performed on a severely truncated version of MAOOAM (Vannitsem and

Lucarini, 2016), we find that the time series of the FTLEs corresponding to the strongly damped modes are weakly correlated.

This would suggest that one can construct the rate functions defining the large deviations laws. The rate functions are

shown in Fig. 20a-c) for the 351st LE. Their convergence properties are investigated in Appendix A2, and indicate that

we have not yet converged to the central limit theorem even for these strongly damped modes.

The sentence on page 27, line 7:

“ [. . . ] one finds that all the FTLEs accurately obey large deviation laws [. . . ]”

has been adapted and now reads:

“ [. . . ] the results suggest that the FTLEs obey large deviation laws [. . . ]”

Furthermore, the paragraph on page 27, lines 24-27:

“The analysis of the FTLEs of MAOOAM reveals some interesting insight into the dynamics. The FTLEs associated to the

strongly dissipative modes obey large deviation laws, while those corresponding to the near-zero LEs do not. This behaviour

is expected, and in agreement with what was found in Vannitsem and Lucarini (2016). Surprisingly, however, it is hard to find

convergence for the FTLEs associated to the positive LEs. This may point to the presence of nontrivial ocean influence on the

(mostly) atmospheric instabilities.”

now reads:

“The analysis of the FTLEs of MAOOAM reveals some interesting insight into the dynamics. Surprisingly, it is hard to

find convergence for the rate functions of the FTLEs, even for those associated to the positive LEs. This may point to the

presence of nontrivial ocean influence on the (mostly) atmospheric instabilities.”

Finally, the sentence from the abstract:
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“In all considered configurations, it is possible to robustly define large deviations laws describing the statistics of the FTLEs

corresponding to the strongly damped modes, while the opposite holds for near-zero LEs and, somewhat unexpectedly, also

for the positive LEs.”

has been adapted and now reads:

“In all considered configurations, we are not yet in the regime in which one can robustly define large deviations laws

describing the statistics of the FTLEs.”

b) The data analysis resorted to a strong smoothing of the data obtained from short time series, cf. the histograms. It is

difficult to evaluate the errors accumulated thereby.

Smoothing or binning the data is an unavoidable step in order to evaluate the PDF. For this we have employed the kernel

density estimation method of Scott (1979; see below) which is optimised to rapidly converge to the true underlying distribution.

c) From a theoretical point of view, I have doubts that the rate function can be detected with the time intervals over which

the FTLEs are computed ("tave"). I’m afraid that the values of "tave" used are simply too small to reach the asymptotic rate

function, even if the time series were infinitely long. From a theoretical perspective the choice of a reference time "T", based

on the time interval in which autocorrelations of the FTLE decay below 1/e, presents certain problems. The rate function is

calculated for times only up to 28*T, what may be too small to detect the rate function (independently of the amount of data).

I say this because in many spatio-temporal chaotic systems the "renewal time" of the Lyapunov vector operates at a time scale

T_x much larger than T.

In such a case, in order to detect the rate function one must take time intervals (tave) larger than T_x (> > T), see Pazo et al

(2013). For instance, in Laffarge et al (2013), with 40 coupled maps the time interval (tave) used to measure the rate function

is 10^4 iterations.

The only way I see to demonstrate something unambiguously with the numerical data at hand is to check the convergence of

a particular quantity (instead of a curve). Following Pazo et al (2013), and as double-check, I suggest to measure the variance

of the FTLE for different "tave" values. Multiplying by tave, it should be possible to verify if the data level off at a certain

value D in the range of tave values considered. (The diffusion coefficient D is the inverse of the second derivative of the rate

function at its minimum, see e.g. (Kuptsov and Politi, 2011)).

As suggested, we have computed σ for a range of different averaging block lengths tave to verify the expected scaling

behaviour. The results are shown in Fig. 1 for the PUMA model. Furthermore, we have compared the value of σ2
· tave to the

diffusion coefficient D. The results for PUMA are shown in Fig. 2, and suggest that the value of σ2
· tave appear to converge.

While the value of D fluctuates, it has the right order of magnitude.

The corresponding graphs for MAOOAM are shown in Figs. 3 and 4. Both the values of D and σ2
· tave vary as a function

of tave, indicating that much longer integration times are required than the 30 years used here to investigate the rate function.

A discrepancy between D and σ2
· tave is apparent for LE 100 in all experiments shown in Fig. 4. This can be explained by the

extremely long decorrelation times for these near-zero LEs, due to the multiscale properties of the system.

These results have been added to the manuscript as an Appendix.
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Figure 1. Standard deviation σ as a function of the block averaging length tave for different Lyapunov exponents of the PUMA model. The

Lyapunov index is shown in the legend. The top panel shows the results for a temperature gradient ∆TEP of 50K, the bottom panel for 60K.

The black dashed line corresponds to t
−

1

2
ave scaling.
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Figure 2. The metric σ2
· tave versus the diffusion coefficient D, derived from the inverse of the second derivative at the minimum of the

rate function, as a function of the block averaging length tave for different Lyapunov exponents of the PUMA model. The Lyapunov index

is shown in the title. The top panels show the results for a temperature gradient of 50K, the bottom panels for 60K.

Minor comments: 1. Eq. (19), please mention that M^* is the adjoint of M. Note also that M has a wrong font type in Eq.

(19).

We have corrected the font and added the following sentence after Eq. (19):

“where M
∗ is the adjoint of M.”

2. Letter M is used for the resolvent matrix and for the integer (tave= T*M). I would avoid this duplicity.

We have replaced the letter M by the lowercase letter m.

3. The concept backward Lyapunov exponent appears in page 10, line 22, without much explanation. Note that Lyapunov

exponents obtained from Eq. (19) are actually "forward Lyapunov exponents". The mirror definition of Osedelets theorem with

M M^*, instead of M^* M, yields backward LEs. I point to table 1 in Pazo et al (2010) and to (Ershov & Potapov, 1998. On

the concept of stationary Lyapunov basis. Physica D 118(3-4), 167–198.) for the formal link between Osedelets theorem and

Bennetin’s algorithm.

Indeed, the algorithm we have used produces the backward Lyapunov exponents. The order of the matrices in Eq. (19) has

been corrected and now reads MM
∗. We have also adapted the sentence:

“The Lyapunov exponents are then defined as the natural logarithm of the eigenvalues of Λx0
.”

This sentence now reads:

“The backward Lyapunov exponents (Ershov and Potapov, 1998; Pazó et al., 2010) are then defined as the natural loga-

rithm of the eigenvalues of Λx0
.”
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Figure 3. Standard deviation σ as a function of the block averaging length tave for different Lyapunov exponents of the 9x9 configuration

of the MAOOAM model. The Lyapunov index is shown in the legend. The top left panel shows the results for the experiment without

scale-dependent dissipation, the top right panel corresponds to the reference value for dissipation and the lower panel shows the enhanced

dissipation results. The black dashed line corresponds to t
−

1

2
ave scaling.

4. Page 11. The relationship of the KY dimension with the fractal dimension was confusing for me as written now (probably

due to the intention of making it simple for the unfamiliar reader). The KY dimension is an estimation of the information

dimension, usually denoted D_1. D_1 is known to be (equal or) smaller than the capacity or box-counting dimension (D_0),

which I guess is what the authors refer to by "fractal dimension", following the paper by Frederickson et al (1983). My taste

is that nowadays one can talk of D_KY as estimation of D_1, and perhaps to mention the information dimension bounds the

capacity/fractal dimension (for the unfamiliar reader on these questions).

Thank you for pointing out this ambiguity. The original version read:

“[. . . ] DKY , which provides (a lower bound on) the fractal dimension of the attractor, and is defined as (Frederickson et al.,

1983): [. . . ]”

We have adapted this following your suggestion:
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Figure 4. The metric σ2
· tave versus the diffusion coefficient D, derived from the inverse of the second derivative at the minimum of the

rate function, as a function of the block averaging length tave for different Lyapunov exponents of the 9x9 configuration of the MAOOAM

model. The Lyapunov index is shown in the title. The top panels show the results for the experiment without scale-dependent dissipation, the

centre panels correspond to the reference value for dissipation and the lower panels show the results for an enhanced dissipation coefficient.
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“[. . . ] DKY , which is an estimation of the information dimension D1. D1 is known to be less than or equal to the

capacity or box-counting dimension D0 , also referred to as the fractal dimension (Frederickson et al., 1983). DKY is

defined as (Kaplan and Yorke, 1979): [. . . ]”

5. Page 11, when introducing the FTLEs the authors refer to Haller (2000). I have nothing against, but I think it is more

appropriate H. Fujisaka, Prog. Theor. Phys. 70, 1264 (1983)

Indeed. We have replaced the reference to Haller by the references suggested by you and the other referee:

– H. Fujisaka, Progress of Theoretical Physics 70, 1264 (1983)

– H.D. Abarbanel et al., Journal of Nonlinear Science 1, 175–199 (1991)

6. Page 15, line 1, I think the use of "much smaller" is exaggerating the difference between the spectra. Using "smaller" is

enough.

Indeed, we have corrected the wording accordingly.

7. Page 15, line 4, when mentioning the Tibaldi-Molteni index, why is not the paper of Tibaldi and Molteni (1990) cited

instead?

Thank you for pointing this out. The reference has been adapted accordingly.

8. It should be said somewhere that Fig. 1 shows (only) the 200 largest LEs.

We have adapted the sentence by adding the text in boldface:

“Figure 1 shows the 200 largest LEs of the two different Lyapunov spectra obtained in our experiments with PUMA.”

The caption of Fig. 1 has been adapted accordingly:

“The 200 largest LEs of the Lyapunov spectra of PUMA for the two different setups with ∆TEP = 50K and 60K.”

9. In Fig. 1, it looks like the Lyapunov index starts at 0, instead of 1. I guess the lines have to be displaced 1 unit rightwards.

We have recreated the graph with the index starting at 1 instead of 0.

10. Page 15, line 9, "faster" -> "fast" (?)

Indeed, “faster decaying LE 150” is now replaced by “fast-decaying LE 150”.

11. In Fig. 2 it is not said which kernel function is used, or how the bandwidth was optimized.

The kernel function used was the one by Scott, D., "On optimal and data-based histograms", Biometrika 66 (3): 605–610,

doi:10.1093/biomet/66.3.605 (1979). We have added this reference and adapted the sentence:

“The top panels of these figures show the approximation of the respective distributions obtained via kernel smoothing of the

distribution of the block-averaged LEs. ”

It now reads:

“The top panels of these figures show the approximation of the respective distributions obtained via kernel density estima-

tion (Scott, 1979) of the distribution of the block-averaged LEs. ”

12. Figs. 4,5 the x-tic labels overlap.

Thank you for pointing this out, this has been corrected.
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Figure 5. Lyapunov spectra for the different MAOOAM experiments as a function of the rescaled Lyapunov index i/N .

13. Figs. 11-14. I’m curious how the Lyapunov spectra look like when the x-coordinate (the Lyapunov index) is rescaled by

the number of degrees of freedom. Is there some overlapping of the data for the most negative LEs?

The Lyapunov spectra for MAOOAM are plotted as a function of the rescaled Lyapunov index λi/N in Fig. 5. The different

regions do seem to overlap. The values of the most negative LEs only overlap in the experiments with scale-independent

dissipation (“nodissip”).
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The authors thank S.G. Penny for the thorough reading of the manuscript, the supportive comments and the constructive

remarks. The manuscript has benefited a lot from your helpful input.

Below is a point-by-point list of modifications that have been applied, based on your report.

General points:

In general, this is a very nicely written paper. The introduction is accessible and informative. The results are interesting and

I believe will inspire a number of new research directions.

I’d suggest that the authors perform a forced atmosphere-only and a forced ocean-only experiment with the MAOOAM

system to compare how typical forced atmosphere or ocean models compare to coupled systems in terms of the Lyapunov

spectrum. Or if it already exists, point to a previous work by the authors that has done this comparison. This would be helpful

for guidance to the operational centres currently making decisions about what is gained from transitioning from separate

component forecast systems to a fully coupled forecast system.

As a general comment, the authors should strive to cite the original works for various concepts rather than a reference text

or review paper.

To the editor: Regarding the journal’s typesetting decisions, please place the figures closer to where they are mentioned in

the text.

Technical points:

Page 2

L 9-10:

“but also the errors that are present either in the model parametrizations, known as model errors,”

It would be more accurate to say this is known as ’model parameterization error’, since ’model error’ includes systematic

misrepresentation of the system dynamics.
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Indeed, the term model error is too general here. We have removed the inaccurate part of the sentence, which now reads:

“This sensitivity property affects not only the dynamics of errors in the initial conditions but also the errors that are present

either in the model parametrizations or in the boundary conditions [...].”

L 11:

Missing period at the end of the line.

Corrected.

L 30:

This paragraph should start with a “However,”

We agree; this has been added to the paragraph.

L 32:

“ for atmospheric instabilities, and most notably convective”

Remove the word ’and’

The superfluous ’and’ has been removed.

L 34:

“The oceanic circulation, by contrast, is mostly mechanically driven by atmospheric winds”

This is true on shorter timescales, but you should also acknowledge buoyancy forcing and their effects on the thermohaline

circulation. This is also an important aspect of the ocean circulation and occurs over much longer timescales.

Indeed, at longer timescales, buoyancy forcing is an important aspect on the ocean circulation that must be mentioned. The

mechanisms of forcing of the deep oceanic circulation are also related to the winds, that favour the mixing. Other important

factors are tides and wave breaking. There are various views on this by oceanographers.

The sentence has been adapted from the original version:

“The oceanic circulation, by contrast, is mostly mechanically driven by atmospheric winds [...].”

and now reads:

“The surface oceanic circulation, by contrast, is mostly mechanically driven by atmospheric winds [...]. On even longer

timescales, buoyancy fluxes are an important driver for the deep ocean’s thermohaline circulation.”

Page 3:

L 26:

“corresponding to positive [and neutral] Lyapunov exponents”

The sentence has been adapted as suggested. Indeed, the null exponents also form a part of the unstable subspace as used by

Trevisan et al. (2010).

Page 4:

L 27 -28

In general, I don’t like the use of the term ’this paper’ in technical writing. First, it is incorrect - this is an online journal

so this work will primarily be consumed as an electronic file. Second, it feels as if it is organized for the benefit of the writer,

rather than the reader. Perhaps instead you could give the reader more context as to what they are about to read.

xi



Instead of:

“1.3 This paper In this paper we wish. . . ”

try,

“1.3 Programmatic Goals

We wish to provide some first steps. . . ”

Thank you for pointing this out. We have implemented the changes you have suggested.

Page 5:

L 1-2:

“In the present manuscript, we explore for the first time the Lyapunov spectra of a primitive-equation model, PUMA, and of

the intermediate-order coupled ocean- atmosphere system, MAOOAM.”

I believe the Lyapunov spectra of MAOOAM was already studied to some degree in Vannitsem and Lucarini (2016), the

wording here makes it sound like the authors are claiming it is explored here for the first time. Perhaps reword, for example:

“In the present manuscript, we explore the Lyapunov spectra of the intermediate-order coupled ocean-atmosphere system

MAOOAM, and for the first time, of the primitive-equation model PUMA.”

The Lyapunov spectra of MAOOAM (more precisely of its predecessor, VDDG; see Vannitsem et al. 2015) have indeed

been studied before, but only for the low-order model configuration of 36 variables. It is, however, the first Lyapunov analysis

of MAOOAM model configurations with hundreds of variables. We have changed the sentence as follows to clarify this:

“In the present manuscript, we explore for the first time the Lyapunov spectra of the primitive-equation model PUMA, and

of intermediate-order configurations of the coupled ocean-atmosphere system, MAOOAM.”

Page 6:

L 1:

For consistency, I suggest to change the order of the listed prognostic variables to match the order presented in the equations

1,2,3,4 below.

The sentence has been adapted to match the order of the equations: “The prognostic equations as written in PUMA’s code

have four prognostic fields, the relative vorticity η, the divergence D, the logarithm of the surface pressure lnps and the

temperature T .”

Page 8:

Table 1: Typo: “surface pressure pressure”

This has been corrected.

Page 10:

L 1:

“in a synthetic form”

What is synthetic about this? Perhaps you could just say,

“as a dynamical system”

The sentence has been adapted as suggested.
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L 25:

“2. Every time step, the model propagator is computed from the tangent linear model. This is the matrix that quantifies the

transition from one model state into that one time step later.”

This could be worded more clearly. Please clarify the definitions of the resolvent matrix, model propagator, and tangent

linear model, and make sure to use the terms consistently for the remainder of the text.

Indeed, this was worded ambiguously. We have adapted the text as follows. On P 10 L 13, have added the words in bold:

“[...] the matrix M is referred to as the resolvent matrix or propagator.”

Furthermore, we have clarified step 2 of the algorithm as follows:

“2. At every time step ti, a matrix Pi that represents the linear propagator from ti−1 to ti is computed using the tangent

linear model along the model state trajectory. Pi is the equivalent of the matrix M for a finite time difference ti − ti−1. We

take into account the numerical integration scheme when computing Pi, by evaluating the model Jacobian at all intermediate

points of the scheme. We have implemented the second- and fourth-order Runge-Kutta schemes, which require two and four

evaluations of the Jacobian per time step, respectively.”

“3. The model is integrated forward in time, and the propagators are accumulated (multiplied) into a matrix P”

It seems the more general procedure would be to integrate the linear propagator (e.g. using a geometric integrator / Magnus

Expansion), but that this ’accumulation’ via multiplication serves as an approximation. Perhaps you could be more precise

about this statement.

We have changed the description of step 3 as follows:

“3. As the model is integrated forward from time ti to ti+b, the corresponding linear propagator Pi,i+b is approximated by

multiplying the b matrices, Pi,i+b =Pi+b . . .Pi+1. In the experiments that follow, we have chosen b= 1.”

Page 11:

L 5-6:

It seems odd to me that you cite a different author than Kaplan and Yorke for the Kaplan-Yorke dimension.

Kaplan, J. L. and Yorke, J. A. In Functional Differential Equations and Approximations of Fixed Points: Proceedings, Bonn,

July 1978 (Ed. H.-O. Peitgen and H.-O. Walther). Berlin: Springer-Verlag, p. 204, 1979.

Thank you for pointing this out. This reference has been corrected.

L 18: “Finite-time Lyapunov exponents (FTLEs)” You have already used this acronym before defining it here.

We have moved the definition to the first occurrence of the acronym.

“ (e.g. Haller, 2000)” Perhaps you should instead cite one of the originators of the idea of FTLEs, e.g. Abarbanel, H. D.

I., R. Brown, and M. B. Kennel, “Variation of Lyapunov Exponents on a Strange Attractor,”Journal of Nonlinear Science,1,

175–199 (1991).

Indeed. We have replaced the reference to Haller by the references suggested by you and the other referee:

– H. Fujisaka, Progress of Theoretical Physics 70, 1264 (1983)

– H.D. Abarbanel et al., Journal of Nonlinear Science 1, 175–199 (1991)
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L 22:

“If a dynamical system is an Axiom A system or –invoking the chaotic hypothesis – one of a certain type of non Axiom

A systems, these fluctuations for a finite, but large M may be described (based on (Schalge et al., 2013; Pazó et al., 2013;

Laffargue et al., 2013)) by a large deviation law (Kifer, 1990; Touchette, 2009).” This sentence is a bit clumsy. Perhaps you

could reword or break into two sentences to make it easier to read.

Indeed, this sentence is hard to read. We have rewritten it as follows:

“As discussed in (Schalge et al., 2013; Pazó et al., 2013; Laffargue et al., 2013), some dynamical systems have the property

that for a finite, but large M , the fluctuations of their FTLEs can be described by a large deviation law (Kifer, 1990; Touchette,

2009). This is the case for Axiom A systems, and invoking the chaotic hypothesis, extends to certain types of non Axiom A

systems.”

L 29: Make the definition of I() on its own line and given an equation number.

We have changed this as suggested.

Page 13: I’m not sure that I understand the table caption: “Common parameter values for the different model configurations

of MAOOAM.” There is only one value given for each parameter. Do you mean, “Model parameter values that are identical

across all MAOOAM configurations used in this study”?

Indeed, this is what we meant. We have changed the table caption accordingly.

Page 16:

L 6: “consequence of the non-existing clear-cut time-scale separation” Please find another way to say this.

We have adapted the original sentence:

“We interpret these results as another consequence of the non-existing clear-cut time-scale separation in a purely atmospheric

model like PUMA.”

as follows:

“We interpret these results to stem from the lack of a clear-cut time-scale separation in a purely atmospheric model like

PUMA.”

It would be nice if you could elaborate somewhere how you define the ’timescale’ and units of the Lyapunov exponents,

how you expect that to influence the prediction range, and explicitly how you expect these scales to map to different spatial

scale instabilities. It seems to be mentioned in passing in a few places, but it would be helpful to summarize in one place before

going into the results.

Thank you for this remark. We have added the following paragraph, just after the definition of the Lyapunov exponents:

“If one or more LEs are positive, small errors on the initial conditions of the system grow exponentially and the system

is chaotic. In that case, the time horizon of the system’s predictability is proportional to the inverse of the largest Lyapunov

exponent, 1

λ1

. As this predictability horizon is expressed in days for operational forecasting, we also express the exponents λi

in units day−1. To translate the spectrum of LEs into spatial scales of the instabilities in an unambiguous way, the CLVs must

also be determined. However, if there is scale-dependent dissipation, the largest negative LEs are likely to be associated with

the smallest, most dissipative scales.”

xiv
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Figure 1. Lyapunov spectra of MAOOAM without ocean dynamics or in “slab ocean” mode, for model configurations from atm. 2x4, oc.

2x4 (red full line) up to atm. 8x8, oc. 8x8 (brown dashed line). Lyapunov exponents are ranked in decreasing order, and the index of the

smallest positive Lyapunov exponent is indicated with a downward-pointing arrow for each model configuration.

Page 18:

“The highly populated central manifold of MAOOAM is in stark contrast with the few near-zero LEs in PUMA. Being a

purely atmospheric model, PUMA’s Lyapunov spectrum does not exhibit the large time-scale separation present in MAOOAM.

Indeed, the spectrum of PUMA bears more resemblance to that of the QG two-layer model of Schubert (2015).”

I’m curious if the authors have run their MAOOAM model in a forced-atmosphere and forced-ocean mode and computed

LEs in order to demonstrate that the central manifold is largely eliminated without active coupling?

The Lyapunov spectra of forced-atmosphere models such as those of Charney and Straus (1970) and Marshall and Molteni

(1993) have been computed, for example, in: Vannitsem, “Predictability of large-scale atmospheric motions: Lyapunov expo-

nents and error dynamics”, Chaos 27, 032101 (2017). In this case, the spectrum does not display the large set of near-zero

exponents.

We have performed some additional simulations without ocean dynamics, the results of which are shown in Fig. 1. The

structure of the spectrum is similar to the one presented in the manuscript, and is associated with the exchange of energy

between the ocean (a thermal bath) and the atmosphere.

No ocean-only experiments have been done with MAOOAM because it would imply that (i) temperature will no longer

play a role in the dynamics (since it is just a passive scalar) and (ii) one must impose some specific wind stress forcing. This

question was investigated using the low-order coupled ocean-atmosphere model OA-QG-WS v2, a predecessor of MAOOAM,

in Vannitsem, “Stochastic modelling and predictability: analysis of a low-order coupled ocean–atmosphere model”, Phil. Trans.

R. Soc. A 372.2018, 20130282 (2014). There, the ocean system was found to converge towards a constant value when a constant

surface forcing, consistent with the fully coupled dynamics, is applied.

xv



L 9:

“The additional positive and near-zero exponents that are introduced at these scales nevertheless indicate that the added

resolution still resolves some scales that are important for the description of the dynamics. ”

This implies that the number of positive LEs should asymptote as the resolution reaches a level to capture all relevant scales.

Is this the expectation?

Yes, this is expected when the resolution suffices to capture all relevant dynamics.

Page 19:

L 4:

“for the models [that] do not include”

Fixed.

Page 20:

L 8:

“The experiments [that] take this”

Fixed.

Page 25:

L 3-8:

I think this is an incredibly important passage, and should be investigated further to guide the development of coupled

atmos/ocean systems.

This is indeed an important and counterintuitive result, especially since forced-ocean models appear to be quite stable under

a constant forcing. We have added Fig. 2 to the manuscript, and have added the sentence:

“Indeed, the quantity DKY /N , which approximates the relative fraction of the attractor’s dimension, increases for increasing

ocean resolution, but decreases for increasing atmosphere resolution, as illustrated in Fig. [2]. ”

Page 28:

“The source code to compute the Lyapunov exponents is available upon request to the corresponding author.”

Please either include it as part of the supplemental material or make is available, for example, as part of the package:

http://github.com/Climdyn/MAOOAM

We have created a branch in the MAOOAM git repository and tagged the version v1.3.1-lyapunov that was used to perform

the simulations in this manuscript. This version is archived on Zenodo (https://doi.org/10.5281/zenodo.1198650).

The code availability section concerning MAOOAM has been adjusted to:

“The source code for the latest version of MAOOAM is available at http://github.com/Climdyn/MAOOAM. The version of

MAOOAM that was used to compute the Lyapunov exponents is archived at https://doi.org/10.5281/zenodo.1198650.”

xvi
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Abstract. The stability properties of intermediate-order climate models are investigated by computing their Lyapunov expo-

nents (LEs). The two models considered are PUMA (Portable University Model of the Atmosphere), a primitive-equation

simple general circulation model, and MAOOAM (Modular Arbitrary-Order Ocean-Atmosphere Model), a quasi-geostrophic

coupled ocean-atmosphere model on a β-plane. We wish to investigate the effect of the different levels of filtering on the

instabilities and dynamics of the atmospheric flows. Moreover, we assess the impact of the oceanic coupling, the dissipation5

scheme and the resolution on the spectra of LEs.

The PUMA Lyapunov spectrum is computed for two different values of the meridional temperature gradient defining the

Newtonian forcing to the temperature field. The increase of the gradient gives rise to a higher baroclinicity and stronger

instabilities, corresponding to a larger dimension of the unstable manifold and a larger first LE. The Kaplan-Yorke dimension

of the attractor increases as well. The convergence rate of the rate functional
✿✿✿✿✿✿✿

function for the large deviation law of the finite-10

time Lyapunov exponents (FTLEs) is fast for all exponents, which can be interpreted as resulting from the absence of a clear-cut

atmospheric time-scale separation in such a model.

The MAOOAM spectra show that the dominant atmospheric instability is correctly represented even at low resolutions. How-

ever, the dynamics of the central manifold, which is mostly associated to the ocean dynamics, is not fully resolved because of

its associated long time scales, even at intermediate orders. As expected, increasing the mechanical atmosphere-ocean coupling15

coefficient or introducing a turbulent diffusion parametrization reduces the Kaplan-Yorke dimension and Kolmogorov-Sinai

entropy. In all considered configurations, it is possible to
✿✿✿

we
✿✿✿

are
✿✿✿

not
✿✿✿

yet
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

regime
✿✿

in
✿✿✿✿✿✿

which
✿✿✿

one
✿✿✿✿

can robustly define large

deviations laws describing the statistics of the FTLEscorresponding to the strongly damped modes, while the opposite holds

for near-zero LEs and, somewhat unexpectedly, also for the positive LEs.

This paper highlights the need to investigate the natural variability of the atmosphere-ocean coupled dynamics by associating20

rate of growth and decay of perturbations to the physical modes described using the formalism of the covariant Lyapunov

vectors and to consider long integrations in order to disentangle the dynamical processes occurring at all time scales.
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1 Introduction

The dynamics of the atmosphere and the climate system is characterised by the property of sensitivity to initial states (Kalnay,

2003). This feature implies that any small errors in the initial conditions will progressively amplify until the forecast becomes

useless, or in other words cannot be distinguished from any random state taken from the climatology of the system. This

property was already recognised in the early developments of weather forecasts (Thompson, 1957) and was associated with5

the nonlinear nature of deterministic dynamical systems by Lorenz (1963). These pioneering works sowed the seeds for the

development of predictability theories for the atmosphere and climate, and for important progress in the context of dynamical

systems, in particular the development of chaos theory (Eckmann and Ruelle, 1985). This sensitivity property affects not only

the dynamics of errors in the initial conditions but also the errors that are present either in the model parametrizations , known

as model errors, or in the boundary conditions (Nicolis, 2007; Nicolis et al., 2009). Clarifying the nature of this sensitivity is10

therefore crucial in the perspective of improving forecasts at short, medium and long term (Vannitsem, 2017)
✿

.

The property of sensitivity to initial conditions in deterministic dynamical systems is often evaluated by computing the

Lyapunov exponents that correspond to the asymptotic rates of amplification or decay of infinitesimally small perturbations,

e.g. Eckmann and Ruelle (1985); Ott (2002) and Cencini et al. (2010). A system is chaotic if it possesses at least one positive

Lyapunov exponent. Since the eighties many dynamical systems in various domains of science have been analysed from15

this perspective. This has revealed the presence of chaos in systems ranging from the fields of chemistry and biology to

turbulence, e.g. Yamada and Ohkitani (1988); Gallez and Babloyantz (1991); Manneville (1995) and Sprott (2010). In the

early days the investigations essentially dealt with low-order systems, but later the scope was broadened to include spatially

distributed systems with a large number of degrees of freedom, in coupled maps, e.g. Nicolis et al. (1992); Vannitsem and

Nicolis (1996); Cencini et al. (2010) and Yang and Radons (2013), and in partial differential equations, e.g. Manneville (1985,20

1995); Vannitsem and Nicolis (1994) and Yang and Radons (2013). Recently, Lyapunov analysis was the subject of a special

issue edited by Cencini and Ginelli (2013).

In parallel to these investigations in the context of basic sciences, several attempts to compute Lyapunov exponents in

the context of meteorological and climate models have been made, see Vannitsem (2017), in particular in intermediate-order

atmospheric quasi-geostrophic models (with O(1000) variables) (Legras and Ghil, 1985; Vannitsem and Nicolis, 1997; Lucarini25

et al., 2007; Schubert and Lucarini, 2015, 2016). These analyses indicate that if realistic boundary conditions and forcings are

imposed on the model under investigation, the number of positive exponents is high, which implies that the solution for the

atmosphere lives on a high-dimensional attractor. This suggests at first sight that the number of degrees of freedom needed to

describe the dynamics is high and cannot be reduced to a low-order system.

The
✿✿✿✿✿✿✿

However,
✿✿✿✿

the atmosphere cannot be treated as an autonomous system, as it interacts with other components of the30

climate system. These other components are characterised by longer time scales of motions. They are typically less intensely

affected by some of the physical processes responsible for atmospheric instabilities, and most notably convective and baroclinic

instability. Moreover, the energetics of the atmosphere is mainly driven by thermodynamic processes that are dominated by

the inhomogeneous absorption of solar radiation. The
✿✿✿✿✿✿

surface oceanic circulation, by contrast, is mostly mechanically driven
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by atmospheric winds (Lucarini et al., 2014).
✿✿

On
✿✿✿✿

even
✿✿✿✿✿✿

longer
✿✿✿✿✿✿✿✿✿

timescales,
✿✿✿✿✿✿✿✿

buoyancy
✿✿✿✿✿✿

fluxes
✿✿✿

are
✿✿

an
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿

driver
✿✿

for
✿✿✿

the
✿✿✿✿✿

deep

✿✿✿✿✿✿

ocean’s
✿✿✿✿✿✿✿✿✿✿✿

thermohaline
✿✿✿✿✿✿✿✿✿✿

circulation.

This raises the question as to the impact of the coupling to other sub-domains of the climate system: are the other sub-

domains of the climate system stabilising the atmosphere or not? Vannitsem et al. (2015) partly addressed this question in the

context of coupled low-order ocean-atmosphere systems. They found that the presence of the ocean and its exchanges (heat5

and momentum) with the atmosphere can drastically reduce the instability properties of the flow, confirming earlier results of

Nese and Dutton (1993). As discussed below, the role of the ocean in modulating and impacting atmospheric instabilities is far

from trivial.

Yet the problem of the predictability (in terms of Lyapunov instability) of the full-scale climate system including the dif-

ferent sub-domains is still open. Recently a new coupled ocean-atmosphere model was developed that could help answer key10

questions on the predictability properties of this type of system (De Cruz et al., 2016). The model was coined MAOOAM for

Modular Arbitrary-Order Ocean-Atmosphere Model. The modular design of MAOOAM allows one to easily explore different

model parameters and resolutions. In particular, the coupling strength between the ocean and the atmosphere should modify the

predictability properties of the flow as illustrated in (Vannitsem et al., 2015). Moreover, the model resolution is also expected

to play an important role in the instability properties of the flow as discussed in (Lucarini et al., 2007) in the context of an15

atmospheric model.

1.1 The properties of the tangent space

As originally envisioned by Ruelle (1979), it is possible to associate to each Lyapunov exponent a corresponding infinitesimal

perturbation that co-varies with the orbit that grows or decays asymptotically with the rate given by the corresponding exponent.

These physical modes are usually referred to as covariant Lyapunov vectors (CLVs). The application of such a formalism to20

explore the properties of the tangent space was pioneered by Legras and Vautard (1995) and Trevisan and Pancotti (1998),

before Ginelli et al. (2007) and Wolfe and Samelson (2007) provided efficient algorithms to compute them for high-dimensional

systems. The CLVs have been used to study e.g. spatio-temporal chaos (Pazó et al., 2008, 2010), Rayleigh-Bénard convection

(Xu and Paul, 2016), and the dynamics of the mid-latitudes atmosphere in the quasi-geostrophic (QG) approximation (Schubert

and Lucarini, 2015, 2016). Schubert and Lucarini (2015, 2016) have also underlined that CLVs allow for generalising the25

classic normal mode instability of fixed stationary states to the case of chaotic background state (e.g. Charney, 1947; Eady,

1949; Pedlosky, 1964). Trevisan et al. (2010) and Carrassi et al. (2008) also showed that performing data assimilation on

the unstable manifold spanned by the CLVs corresponding to positive
✿✿✿

and
✿✿✿✿✿✿

neutral
✿

Lyapunov exponents is extremely efficient

because it allows one to focus on the portion of the tangent space supporting the growth of errors.

Additionally, CLVs allow for understanding the properties of the tangent space and assess the hyperbolicity of the system,30

through the analysis of the statistics of the angles between the stable and unstable tangent manifolds across the attractor.

These angles should always be bounded away from 0 or π in the ideal case of uniform hyperbolicity. This point of view

complements the investigation of the statistical properties of FTLEs
✿✿✿✿✿✿✿✿

finite-time
✿✿✿✿✿✿✿✿✿

Lyapunov
✿✿✿✿✿✿✿✿

exponents
✿✿✿✿✿✿✿✿

(FTLEs): the probability

density functions of the FTLEs whose long term averages correspond to positive exponents do not cross zero in the case of
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uniform hyperbolicity. Note that the uniform hyperbolicity is key to defining the structural stability of a chaotic dynamical

system and provides, through the chaotic hypothesis by Gallavotti and Cohen (1995), an important working hypothesis for

constructing the statistical mechanics of high-dimensional chaotic systems, even in the case that such a system is not uniformly

hyperbolic. Note that uniform hyperbolicity also allows for establishing a rigorous response theory for chaotic dynamical

systems (Ruelle, 2009), which has also been shown to apply well in complex systems where there is no reason to believe that5

such stringent condition on the tangent space is obeyed; see, e.g., Lucarini et al. (2017).

1.2 Multiscale Properties
✿✿✿✿✿✿✿✿

properties

As well known, geophysical fluid dynamical (GFD) systems are characterised by relevant processes on multiple spatial and

temporal scales of motion (Schneider, 2006; Vallis, 2006). These scales of motion can be isolated by assuming dominant

dynamical balances and performing corresponding asymptotic expansions of the dynamical equations (Klein, 2010). A possible10

way to look at the signature of such a diverse range of dynamical processes in a nonlinear, chaotic setting can be found by

considering the general idea proposed by Gallavotti and Lucarini (2014) according to which one can expect to find that LEs

corresponding to smaller time scales are associated to CLVs characterised by small spatial scales. By looking at the properties

of the structure of each CLV, one should ideally be able to understand what kind of dynamical processes (e.g. QG vs. mesoscale)

are mainly responsible for such a physical mode.15

The problem becomes particularly interesting when considering the coupling of two sub-domains with vastly different

time scales as done in the case of a low-order coupled ocean-atmosphere system in Vannitsem and Lucarini (2016). Three

different manifolds were isolated in the model, the usual (highly) unstable manifold mainly associated with the dynamics of

the atmosphere, a highly dissipative manifold also mainly associated with the dynamics of the atmosphere, and an extremely

weakly (un-) stable manifold, that will be here referred to as the central manifold, essentially dominated by the dynamics and20

thermodynamics of the ocean but coupled to the atmosphere as well. The presence of a nontrivial central manifold is typical

of the so-called partially hyperbolic systems (Pesin, 2004). The CLVs corresponding to the central manifold are geometrically

quasi-degenerate, so that errors propagate easily between the various modes and impact both the atmosphere and the ocean.

The corresponding FTLEs are strongly correlated and each have a rather slow decay of correlations, so that large deviation

laws cannot be effectively estimated (Kifer, 1990; Touchette, 2009; Pazó et al., 2013; Laffargue et al., 2013). A particular25

consequence of this feature is that errors affecting the central manifold display a complex super-exponential behaviour. The

question is therefore what should be the resolution of the coupled atmosphere-ocean model and what should be the time of

observation such that a better separation emerges between such modes.

1.3 This paper
✿✿✿✿✿✿✿✿✿✿✿✿

Programmatic
✿✿✿✿✿

goals

In this paper we
✿✿

We
✿

wish to provide some first steps of a wider research programme aimed at performing a systematic inves-30

tigation of the properties of the tangent space of GFD systems in a turbulent regime of motion. A first objective is to gain a

better understanding of the multiscale properties of the dynamics and of the energy exchanges occurring across such scales.

Furthermore, this programme aims at understanding the relevance of violations to the uniform hyperbolicity conditions in terms

4



of predictability on different time scales, including the response – in a statistical mechanical sense – of the system to static and

time-dependent perturbations.

In the present manuscript, we explore for the first time the Lyapunov spectra of a
✿✿

the primitive-equation model , PUMA, and

of the intermediate-order
✿✿✿✿✿✿✿✿✿✿✿✿

configurations
✿✿

of
✿✿✿

the coupled ocean-atmosphere system, MAOOAM. The first model is characterised

by the presence of multiple scales of motions resulting from the fact that ageostrophic motions are not filtered, as opposed to5

the QG case (Klein, 2010). Instead, in the second model the multiscale properties come from the fact that the represented two

geophysical fluids have largely different internal time scales.

For PUMA, we consider the first 200 Lyapunov exponents for two different meridional temperature gradients. We study

the properties of the Lyapunov spectrum and on the estimates of the Kaplan-Yorke dimension and Kolmogorov-Sinai entropy

(Eckmann and Ruelle, 1985). In the case of MAOOAM, we investigate the role of dissipation introduced in the model (linear10

friction and effective diffusion) and the impact of the resolution of the models. For both models, the existence of large deviation

laws of the FTLEs is tested.

In Section 2, the two models are described and Section 3 is devoted to a brief description of the Lyapunov instability

analysis and the experimental setups. Section 4 summarises the results obtained so far and in Section 5 we present our future

programme, which aims to clarify the instabilities of high-resolution systems.15

2 Model description

2.1 PUMA

The Portable University Model of the Atmosphere (PUMA) was introduced by Fraedrich et al. (1998). The intent of its devel-

opers was to design a model that gets close to state-of-the-art circulation models and at the same time is still easy to use in

teaching and research by single scientists. PUMA is the dynamical core of the Planet Simulator (PLASIM) which is a fully20

coupled climate model of intermediate complexity. PLASIM has been frequently used to study storm tracks (Fraedrich and

Kirk, 2005), explore the sensitivity of the sea ice albedo bifurcation (Boschi et al., 2013) or create large ensembles for cli-

mate change experiments allowing for interesting applications in economic modelling (Holden et al., 2013) or to assess the

feasibility of linear response theory (Ragone et al., 2015).

Let us briefly summarise the equations of motion of PUMA and how the model is integrated in time. For further details25

we refer the reader to the PUMA User’s Guide (Fraedrich et al., 1998). PUMA solves the primitive equations, which are

derived from the Navier-Stokes equation on a rotating sphere by assuming approximate hydrostatic balance. This means that

(convective) motions which are characterised by a vertical acceleration with a size comparable to gravity are filtered out

(Holton, 2004). The prognostic equations as written in PUMA’s code have four prognostic fields, the relative vorticity η, the
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divergence D, the temperature T and the logarithm of the surface pressure lnps
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

T . These equations are

∂ (η+ f)

∂t
=

1

1−µ2

∂Fv

∂λ
−
∂Fu

∂µ
+Pη (1)

∂D

∂t
=

1

1−µ2

∂Fu

∂λ
−
∂Fv

∂µ
−

(

U2 +V 2

2(1−µ2)
+Φ+T0 lnps

)

+PD (2)5

∂ps
∂t

=−

1
∫

0

Adσ (3)

∂T ′

∂t
=−

1

1−µ2

∂(UT ′)

∂λ
−
∂(V T ′)

∂µ
+DT ′ − σ̇

∂T

∂σ
+κ

T

p
ω+

J

cp
+PT (4)

where the vorticity is defined as η = ∂xv− ∂yu and the divergence is defined as D = ∂xu+ ∂yv. Additionally, one takes into10

account the hydrostatic relation

∂Φ

∂ lnσ
=−T (5)

and T ′ is defined as T ′ = T −T0 with T0 = 250K. Some abbreviations have been used:

Fu = V (η+ f)− σ̇
∂U

∂σ
−T ′

∂ lnps
∂λ

Fv =−U (η+ f)− σ̇
∂V

∂σ
−T ′

(

1−µ2
) ∂ lnps

∂µ
15

A=D+V · ∇ lnps

with U = ucosφ and V = v cosφ. The variables used in this equation can be found in Table 1.

PUMA is forced by Newtonian cooling which accounts in a crude yet effective way for the emission and the absorption

of long and short wave radiation and for the heat convergence associated to convective processes (following Held and Suarez

(1994)). This process is described by the equations20

J

cp
+PT =

TR (φ,σ)−T

τR
+HT (6)

TR (φ,σ) = T vert
R (σ)+ f(σ)Thor

R (φ), (7)

where TR is the temperature restoration field that depends on the fixed meridional pole-to-equator temperature gradient ∆TEP

and the pole-to-pole gradient ∆TNS . The latter gradient is zero in our experiments, so that we have equatorial symmetry in

our boundary conditions and each solution we find is accompanied by a mirrored solution at the equator. For completeness, we25
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also add the full equations of the restoration field, and we refer the reader to Fraedrich et al. (1998) for a more detailed account:

Thor
R (φ) = ∆TNS

sin(φ)

2
−∆TEP

(

sin2φ−
1

3

)

(8)

T vert
R (σ) = ∆Ttrop +

√

L

2
(ztp − z(σ))

2
+S2 +

L

2
(ztp − z(σ)) (9)

f(σ) =











sin
(

π
2

(

σ−σtp

1−σtp

))

, if σ ≥ σtp

0 , if σ < σtp.
(10)

Here, σtp is the height of the tropopause, whereas ztp is the global constant height of the tropopause. S is a technical smoothing5

parameter. Finally, the hyperdiffusion HT in Eq. (6) is defined as HT =∇8T and parametrizes small scale interactions.

PUMA uses spherical harmonics and grid point fields of the prognostic variables. Utilising the Fourier transform along the

zonal direction and a Legendre transformation, PUMA computes the linear terms in spectral space and the nonlinear terms in

grid point space. The time-stepping scheme is a combination of a leap-frog scheme with Robert-Asselin filter.

The PUMA User’s Guide includes more details and a complete description of the exact implementation and form of the10

various forcings (Fraedrich et al., 1998).

2.2 MAOOAM

Although the atmospheric dynamics of both models are largely governed by the same processes, MAOOAM differs in many

respects from the stand-alone PUMA model. Most importantly, the atmosphere of MAOOAM features both a mechanical and a

thermal coupling with a shallow-water ocean layer, which is absent in PUMA. Furthermore, MAOOAM is a mid-latitude model15

which uses the quasi-geostrophic approximation (Charney and Straus, 1980) on a β-plane (Vallis, 2006), whereas PUMA is a

global primitive-equation model, in which the filtering is applied at a much smaller scale. The representation of the dynamical

fields differs accordingly, with MAOOAM adopting a Fourier basis, using products of sine and cosine functions that respect

the boundary conditions of a zonally periodic atmosphere over a rectangular ocean basin (De Cruz et al., 2016).

The dynamics of MAOOAM’s two-layer atmosphere is described by the quasi-geostrophic vorticity equations, expressed in20

terms of the streamfunction fields ψ1
a at 250 hPa and ψ3

a at 750 hPa as in Charney and Straus (1980),

∂

∂t

(

∇2ψ1
a

)

+ J(ψ1
a ,∇

2ψ1
a )+β

∂ψ1
a

∂x
=−k′d∇

2(ψ1
a −ψ3

a )+
f0
∆p

ω, (11)

∂

∂t

(

∇2ψ3
a

)

+ J(ψ3
a ,∇

2ψ3
a )+β

∂ψ3
a

∂x
=+k′d∇

2(ψ1
a −ψ3

a )−
f0
∆p

ω− kd∇
2(ψ3

a −ψo), (12)

in which the vertical velocity ω can be eliminated by applying the hydrostatic relation and the ideal gas law, as detailed in

(De Cruz et al., 2016).25

Following Pierini (2011), the equation of motion for the ocean layer is described by

∂

∂t

(

∇2ψo −
ψo

L2
R

)

+ J(ψo,∇
2ψo)+β

∂ψo

∂x
=−r∇2ψo +

C

ρh
∇2(ψ3

a −ψo). (13)
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Table 1. Symbols and variables in the PUMA equations.

Symbol Description

T temperature

T0 reference temperature

T ′ = T −T0 temperature deviation from T0

η relative vorticity

D divergence

ps surface pressurepressure

Φ geopotential

t time

λ,φ longitude, latitude

µ= sinφ

σ = p

ps
sigma vertical coordinate

σ̇ = dσ
dt

vertical velocity in σ-system

ṗ= dp

dt
vertical velocity in p-system

u,v zonal, meridional component of horizontal velocity

V horizontal velocity with components U , V

f Coriolis parameter

J diabatic heating rate

cp specific heat of dry air at constant pressure

κ adiabatic coefficient

The prognostic equations for the atmospheric and oceanic temperature fields, using an energy balance scheme as in Barsugli

and Battisti (1998), are

γa

(

∂Ta

∂t
+ J(ψa,Ta)−σω

p

R

)

=−λ(Ta −To)+ ǫaσBT
4
o − 2ǫaσBT

4
a +Ra, (14)

γo

(

∂To

∂t
+ J(ψo,To)

)

=−λ(To −Ta)−σBT
4
o + ǫaσBT

4
a +Ro. (15)

The quartic terms in these equations are linearised by decomposing the temperature fields around a spatially and temporally5

constant equilibrium temperature, Ta = T 0
a + δTa and To = T 0

o + δTo, and solving the quartic equation for the equilibrium

temperature (Vannitsem et al., 2015).

The thermal wind relation allows one to link the atmospheric temperature anomaly δTa to the baroclinic streamfunction

θa ≡ (ψ1
a −ψ3

a )/2, more specifically δTa = 2f0θa/R. Hence, the remaining independent dynamical fields are the barotropic

atmospheric streamfunction field ψa, defined as ψa ≡ (ψ1
a +ψ3

a )/2, the oceanic streamfunction field ψo, and the temperature10

anomalies δTa and δTo of the atmosphere and the ocean. The other parameters and variables that feature in the MAOOAM

model equations are explained in Table 2.

8



Table 2. Variables and parameters in the MAOOAM equations

Variable (units) Description

ψo, ψa (m2 s−1) streamfunction of the ocean, atmosphere

ω = dp/dt (Pa s−1) vertical velocity in pressure coordinates

To, Ta (K) temperature of the ocean, atmosphere; Tx = T 0

x + δTx

δTo, δTa (K) temperature anomaly of the ocean, atmosphere

Parameter (units) Description

n= 2Ly/Lx meridional to zonal aspect ratio

Ly = πL (km) meridional extent of the domain

f0 (s−1) Coriolis parameter at 45◦ latitude

λ (W m−2 K−1) heat transfer coefficient at the ocean-atmosphere interface

r (s−1) friction coefficient at the bottom of the ocean layer

Co, Ca (W m−2) insolation coefficient of the ocean, atmosphere

kd (s−1) friction coefficient at ocean-atmosphere interface

k′d (s−1) friction coefficient between the atmospheric layers

h (m) depth of the ocean layer

d= C/(ρh) (s−1) mechanical ocean-atmosphere coupling coefficient

R (J kg−1 K−1) gas constant of dry air

LR (km) reduced Rossby deformation radius of the ocean

ρ (kg m−3) density of the ocean

σB (W m2 K−4) Stefan-Boltzmann constant

σ (m2 s−2 Pa−2) static stability of the atmosphere

β (m−1 s−1) Rossby parameter df

dy

γo, γa (J m−2 K−1) Specific heat capacity of the ocean layer, atmosphere

T 0

o , T 0

a (K) constant solution for the temperature of the ocean, atmosphere

ǫa grey-body atmosphere emissivity

The model equations are nondimensionalized, and the dynamical fields are expanded in a configurable set of Fourier modes.

The MAOOAM code computes the coefficients for the resulting set of ordinary differential equations (ODEs) as algebraic

formulae of the wavenumbers. These ODEs are then integrated using a fourth-order Runge-Kutta integration scheme. We refer

the reader to De Cruz et al. (2016) for more details on the expansion of the dynamical fields in terms of Fourier modes, the

computation of the coefficients, and the tensorial implementation of the ODEs.5

In what follows, we will use a shorthand notation that uses the maximum wavenumbers Nx and Ny to specify the model

resolution. If the resolution of the ocean and the atmosphere are the same, the model resolution is referred to as NxxNy;

otherwise, it is denoted as atm. Nx,axNy,a, oc. Nx,oxNy,o.

9



3 Methodology

3.1 Computation of the Lyapunov exponents

Let us write the evolution laws of the autonomous system presented in Section 2 in a synthetic form
✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿

dynamical
✿✿✿✿✿✿✿

system:

dx

dt
= f(x,α) (16)

where x is a vector containing the entire set of relevant variables x = (x1, ...,xN ) such as temperature or wind velocity,5

projected on a relevant set of modes as described in Section 2. The function f is a nonlinear function of the variables x and α

represents a set of parameters.

Let us consider a small perturbation along the trajectory, x(t), generated by model (16), denoted δx(t). Provided that this

perturbation is sufficiently small (ideally infinitely small), its dynamics can be described by the linearised equation,

dδx

dt
=
∂f

∂x

∣

∣

∣

∣

x(t)

δx (17)10

and a formal solution can be written as

δx(t) =M(t, t0)δx(t0) (18)

where the matrix M is referred to as the resolvent matrix
✿✿

or
✿✿✿✿✿✿✿✿✿

propagator. This matrix M is responsible for the amplification or

contraction of the errors during the time period t−t0. In order to get information independent of the initial or final time, a limit

(t− t0)→∞ should be taken. Oseledets (1968, 2008) demonstrates that provided that the system is ergodic, the following15

limit exists for almost all initial conditions x(t0) = x0,

lim
t→∞

(M∗MMM
✿✿✿✿

∗)1/2(t−t0) = Λx0
, (19)

✿✿✿✿✿

where
✿✿✿✿

M
∗

✿✿

is
✿✿✿

the
✿✿✿✿✿✿

adjoint
✿✿✿

of
✿✿✿

M.
✿

The
✿✿✿✿✿✿✿✿

backward
✿

Lyapunov exponents
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ershov and Potapov, 1998; Pazó et al., 2010) are then

defined as the natural logarithm of the eigenvalues of Λx0
. These are usually represented in decreasing order and the full set of

exponents is called the Lyapunov spectrum. Other definitions are available but will not be discussed here since we do not use20

them in this study. These can be found in (Eckmann and Ruelle, 1985; Legras and Vautard, 1995), and in a recent work in the

context of the coupled ocean-atmosphere (Vannitsem and Lucarini, 2016).

✿

If
✿✿✿✿

one
✿✿

or
✿✿✿✿✿

more
✿✿✿✿

LEs
✿✿✿

are
✿✿✿✿✿✿✿✿

positive,
✿✿✿✿✿

small
✿✿✿✿✿

errors
✿✿✿

on
✿✿✿

the
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿

conditions
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿

grow
✿✿✿✿✿✿✿✿✿✿✿✿

exponentially
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

system

✿

is
✿✿✿✿✿✿✿

chaotic.
✿✿✿

In
✿✿✿

that
✿✿✿✿✿

case,
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿

horizon
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

system’s
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿

is
✿✿✿✿✿✿✿✿✿✿

proportional
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿✿✿

Lyapunov

✿✿✿✿✿✿✿✿

exponent,
✿✿✿

1
λ1

.
✿✿✿

As
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿✿

predictability
✿✿✿✿✿✿✿

horizon
✿✿

is
✿✿✿✿✿✿✿✿

expressed
✿✿

in
✿✿✿✿

days
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

operational
✿✿✿✿✿✿✿✿✿✿

forecasting,
✿✿✿

we
✿✿✿

also
✿✿✿✿✿✿✿

express
✿✿✿

the
✿✿✿✿✿✿✿✿

exponents
✿✿✿

λi25

✿✿

in
✿✿✿✿

units
✿✿✿✿✿✿

day−1.
✿✿✿

To
✿✿✿✿✿✿✿

translate
✿✿✿

the
✿✿✿✿✿✿✿✿

spectrum
✿✿

of
✿✿✿✿

LEs
✿✿✿

into
✿✿✿✿✿✿

spatial
✿✿✿✿✿

scales
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

instabilities
✿✿

in
✿✿✿

an
✿✿✿✿✿✿✿✿✿✿✿

unambiguous
✿✿✿✿

way,
✿✿✿

the
✿✿✿✿✿

CLVs
✿✿✿✿✿

must

✿✿✿

also
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿

determined.
✿✿✿✿✿✿✿✿

However,
✿✿

if
✿✿✿✿

there
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿

scale-dependent
✿✿✿✿✿✿✿✿✿✿

dissipation,
✿✿✿

the
✿✿✿✿✿✿

largest
✿✿✿✿✿✿✿

negative
✿✿✿✿

LEs
✿✿✿

are
✿✿✿✿

most
✿✿✿✿✿

likely
✿✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿

associated

✿✿✿✿

with
✿✿

the
✿✿✿✿✿✿✿✿

smallest,
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿

dissipative
✿✿✿✿✿✿

scales.
✿

The computation of the backward Lyapunov exponents follows the standard algorithm of (Shimada and Nagashima, 1979;

Benettin et al., 1980) based on the Gram-Schmidt orthogonalisation.30
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1. An ensemble E
✿✿

E of N perturbation vectors is randomly initialised.

2. Every time step , the model propagator is computed
✿✿

At
✿✿✿✿✿

every
✿✿✿✿

time
✿✿✿

step
✿✿

ti,
✿✿

a
✿✿✿✿✿

matrix
✿✿✿

Pi
✿✿✿

that
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿

propagator

from
✿✿✿✿

ti−1
✿✿

to
✿

ti
✿✿

is
✿✿✿✿✿✿✿✿

computed
✿✿✿✿✿

using the tangent linear model . This is the matrix that quantifies the transition from one model

state into that one time steplater
✿✿✿✿

along
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

state
✿✿✿✿✿✿✿✿✿

trajectory.
✿✿✿

Pi
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

equivalent
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

matrix
✿✿

M
✿✿✿

for
✿✿

a
✿✿✿✿✿

finite
✿✿✿✿

time

✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿✿

ti − ti−1
✿✿✿

and
✿✿✿

for
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

non-infinitesimal
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿

δx.
✿✿✿

We
✿✿✿✿

take
✿✿✿✿

into
✿✿✿✿✿✿✿

account
✿✿✿

the
✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿✿✿

integration
✿✿✿✿✿✿✿

scheme5

✿✿✿✿

when
✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿

Pi,
✿✿

by
✿✿✿✿✿✿✿✿✿

evaluating
✿✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

Jacobian
✿✿

at
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿

intermediate
✿✿✿✿✿✿

points
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

scheme.
✿✿✿

We
✿✿✿✿✿

have
✿✿✿✿✿✿✿✿✿✿✿

implemented

✿✿

the
✿✿✿✿✿✿✿

second-
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

fourth-order
✿✿✿✿✿✿✿✿✿✿✿

Runge-Kutta
✿✿✿✿✿✿✿✿

schemes,
✿✿✿✿✿✿

which
✿✿✿✿✿✿

require
✿✿✿✿

two
✿✿✿

and
✿✿✿✿

four
✿✿✿✿✿✿✿✿✿✿

evaluations
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿

Jacobian
✿✿✿

per
✿✿✿✿✿

time

✿✿✿✿

step,
✿✿✿✿✿✿✿✿✿✿

respectively.

3. The
✿✿

As
✿✿✿✿

the model is integrated forward in time , and the propagators are accumulated (multiplied) into a matrix

P
✿✿✿

from
✿✿✿✿✿

time
✿✿

ti
✿✿

to
✿✿✿✿✿

ti+b,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿

propagator
✿✿✿✿✿✿

Pi,i+b
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿

approximated
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿

multiplying
✿✿✿

the
✿✿

b
✿✿✿✿✿✿✿✿

matrices,10

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Pi,i+b =Pi+b . . .Pi+1.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿

that
✿✿✿✿✿✿

follow,
✿✿✿

we
✿✿✿✿

have
✿✿✿✿✿✿

chosen
✿✿✿✿✿

b= 1.

4. Every b time steps, E
✿

E
✿

is evolved with P
✿✿✿✿✿

Pi,i+b, and Gram-Schmidt orthogonalised (using a QR-decomposition). The

local Lyapunov spectrum is computed from the diagonal of R
✿✿

R.

5. Mean and variance of the local Lyapunov exponents are calculated.

The full Lyapunov spectrum of a model allows us to compute some additional interesting properties of its attractor. One15

of these is the Kaplan-Yorke or Lyapunov dimension DKY , which provides (a lower bound on) the fractal dimension of

the attractor, and
✿✿

is
✿✿

an
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

information
✿✿✿✿✿✿✿✿

dimension
✿✿✿✿

D1.
✿✿✿

D1
✿✿

is
✿✿✿✿✿✿

known
✿✿

to
✿✿✿

be
✿✿✿✿

less
✿✿✿✿

than
✿✿

or
✿✿✿✿✿

equal
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

capacity
✿✿✿

or

✿✿✿✿✿✿✿✿✿✿✿

box-counting
✿✿✿✿✿✿✿✿

dimension
✿✿✿✿

D0,
✿✿✿

also
✿✿✿✿✿✿✿

referred
✿✿

to
✿✿

as
✿✿✿

the
✿✿✿✿✿

fractal
✿✿✿✿✿✿✿✿✿

dimension
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Frederickson et al., 1983).
✿✿✿✿✿

DKY is defined as (Frederickson et al., 1983)

DKY = k+
λ1 +λ2 + . . .+λk

|λk+1|
, (20)

where k is the highest index for which the sum of the largest k Lyapunov exponents is still strictly positive.20

The second important property of the attractor is the Kolmogorov-Sinai or metric entropy hKS , a quantity that describes the

rate of growth of the Shannon entropy (Eckmann and Ruelle, 1985; Boffetta et al., 2002), which characterises the quantity of

information necessary to locate the solution on its attractor. Its upper bound is the sum of the positive Lyapunov exponents:

hKS ≤
∑

λi>0

λi. (21)

with the equality proven for a very particular class of systems, known as Axiom A systems. Here the KS entropy will be25

assumed to be close to the sum of positive exponents, and hence this sum will be referred to as the KS entropy.

3.2 Large deviation laws

Since the Lyapunov exponents are obtained by considering limiting conditions where the initial perturbations are very small and

the time span over which the growth or decay rate is very long, they cannot reasonably be used to study predictability outside
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such conditions. Finite-time Lyapunov exponents (FTLEs ) (e.g. Haller, 2000)
✿✿✿✿✿✿

FTLEs
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Fujisaka, 1983; Abarbanel et al., 1991) have

been proposed to address such shortcomings, with the caveat that they do not enjoy the extremely beneficial mathematical prop-

erties (especially, norm-independence) that characterise the Lyapunov exponents.

In this paper, we focus on the FTLEs and their relation to the asymptotic mean LEs. Hence, we are interested in averages

σj
M ✿✿

σj
m✿

over a time M
✿

m
✿

of one backward Lyapunov exponent λj and its statistics. If a dynamical system is an Axiom A5

system or – invoking the chaotic hypothesis – one of a certain type of non Axiom A systems , these fluctuations
✿✿✿

As
✿✿✿✿✿✿✿✿

discussed

✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Schalge et al., 2013; Pazó et al., 2013; Laffargue et al., 2013),
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿✿

dynamical
✿✿✿✿✿✿✿

systems
✿✿✿✿

have
✿✿✿

the
✿✿✿✿✿✿✿✿

property
✿✿✿

that
✿

for a finite,

but large M may be described (based on (Schalge et al., 2013; Pazó et al., 2013; Laffargue et al., 2013))
✿✿

m,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

fluctuations
✿✿

of

✿✿✿✿

their
✿✿✿✿✿✿

FTLEs
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

described by a large deviation law (Kifer, 1990; Touchette, 2009).
✿✿✿

This
✿✿

is
✿✿✿

the
✿✿✿✿

case
✿✿✿

for
✿✿✿✿✿✿

Axiom
✿✿

A
✿✿✿✿✿✿✿✿

systems,

✿✿✿

and
✿✿✿✿✿✿✿

invoking
✿✿✿

the
✿✿✿✿✿✿✿

chaotic
✿✿✿✿✿✿✿✿✿

hypothesis,
✿✿✿✿✿✿✿

extends
✿✿

to
✿✿✿✿✿✿

certain
✿✿✿✿✿

types
✿✿

of
✿✿✿✿

non
✿✿✿✿✿✿

Axiom
✿✿

A
✿✿✿✿✿✿✿

systems.
✿

For the finite-time backward LEs and10

for a large M
✿✿

m, we will verify the following relation for the distribution P of the averages:

P

(

σj
Mm

✿

= x

)

∝ exp

(

−M−m
✿✿✿

Ij(x)

)

. (22)

Ij(x) is the rate function, which is independent of M
✿

m. The rate function can be computed directly from this relation as

Ij(x) = limM→∞− 1
M log

(

P
(

σj
M = x

))

.

Ij(x) = lim
m→∞

−
1

m
log

(

P
(

σj
m = x

))

.
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(23)15

If x represents a time series, we have to take the autocorrelation into account. The FTLEs for the models under consideration

have a non-zero autocorrelation. To account for this, the time series are decomposed into blocks that are decorrelated. For each

LE, we find the smallest block size, called the decorrelation time Tdecorr. The time Tdecorr is chosen to be the time lag when the

autocorrelation drops below 1/e.

3.3 Experimental design: PUMA20

We choose a simple setup of PUMA. In this spirit, we also switch off orography. The system is forced via a constant temperature

gradient between the equator and the respective poles, as detailed in Section 2.1. We conduct simulations at a horizontal

resolution of T42, which amounts to roughly 250 km. In grid-point space this corresponds to a Gaussian grid with 64 latitudes

and 128 longitudes. In the vertical direction we restrict the resolution to 10 sigma levels. The integration scheme uses a time

step of one hour.25

The objective of our experiments with PUMA is to compute the backward Lyapunov exponents. For this we perform spin-up

simulations for 30 years from random initial conditions. We then obtain the first 200 Lyapunov exponents using the Benettin

algorithm described in Section 3.1. We allow the algorithm to converge for 5 years and finally obtain a time series of 25 years

for all LEs. In order to explore two different chaotic regimes with many positive LEs, we perform two experiments with an

equator-to-pole temperature gradient TEP of 50 K and 60 K, respectively (with ∆TNS = 0).30

Note that in order to compute the Lyapunov exponents, it is necessary to construct the tangent linear of PUMA. We generated

parts of the code using the program TAF by FastOpt (Giering and Kaminski, 2003).
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Table 3. Common
✿✿✿✿✿

Model parameter values for the different model configurations of
✿✿

that
✿✿✿

are
✿✿✿✿✿✿✿

identical
✿✿✿✿✿

across
✿✿

all
✿

MAOOAM
✿✿✿✿✿✿✿✿✿✿✿

configurations

✿✿✿

used
✿✿

in
✿✿✿

this
✿✿✿✿✿

study.

Parameter (unit) Value Parameter (unit) Value

n= 2Ly/Lx 1.5 LR (km) 19.93

Ly = πL (km) 5.0× 103 ρ (kg m−3) 1000

f0 (s−1) 1.032× 10−3 σB (W m2 K−4) 5.6× 5.610−8

λ (W m−2 K−1) 15.06 σ (m2 s−2 Pa−2) 2.16× 10−6

r (s−1) 1.0× 10−7 β (m−1 s−1) 1.62× 10−11

Co (W m−2) 310 γo (J m−2 K−1) 5.46× 108

Ca (W m−2) Co/3 γa (J m−2 K−1) 1.0× 107

kd (s−1) 3.0× 10−6 T 0

a (K) 289.30

k′d (s−1) 3.0× 10−6 T 0

o (K) 301.46

h (m) 136.5 ǫa 0.7

R (J kg−1 K−1) 287

3.4 Experimental design: MAOOAM

Table 3 lists the values of the physical parameters that are used in the present study. These are selected to lie within the realistic

ranges previously derived by Vannitsem and De Cruz (2014), and correspond to the setup used by De Cruz et al. (2016).

In addition, we explore different values of the mechanical ocean-atmosphere coupling coefficient d and the eddy viscosity

coefficients νa and νo, as well as a range of model resolutions.5

All experiments are performed with the same integration parameters. The time step of 0.2 nondimensional time units corre-

sponds to 32.3 minutes in dimensional units. Before calculating the Lyapunov spectrum, a transient run of 108 nondimensional

time units is performed, corresponding to 30726 years. Using the tangent linear model of MAOOAM, the backward Lya-

punov exponents are then computed using the algorithm described in Section 3.1. In our simulations, the orthogonalisation is

performed every time step, i.e. b= 1. The Lyapunov spectrum is computed from simulations of 614 years.10

The experiments are performed for different resolutions as discussed in Section 2 and for different dissipation schemes as

described below.

– nodissip

This experiment corresponds to the setup of De Cruz et al. (2016). In addition to the variables listed in Table 3, the

mechanical ocean-atmosphere coupling parameter d is set to 1.1× 10−7 s−1.15

– nodissip-reducedstress

For this “reduced-stress” experiment, the coupling parameter d is reduced to 4× 10−8 s−1.

– dissipation

13



One of the physical processes that was not included in MAOOAM v1.0 (De Cruz et al., 2016) is the kinematic dissipa-

tion of energy due to turbulent diffusion, which becomes increasingly important at smaller spatial scales. This process is

parametrized as a dissipation term in the prognostic equations for the atmospheric (barotropic) and oceanic streamfunc-

tion, that is proportional to the squared Laplacian of the respective streamfunction:

Do = νo∇
4ψo, (24)5

Da = νa∇
4ψa. (25)

We adopt the values for the parameters νo and νa from Van der Avoird et al. (2002), where they are estimated to be

νo = 1.76× 104 m2 s−1, (26)

νa = 1× 105 m2 s−1. (27)

Furthermore, d is set to 1.1× 10−7 s−1.10

– dissipationx10

In this experiment, d= 1.1× 10−7 s−1, but the parameters νo and νa are set to a higher value:

νo = 1.76× 105 m2 s−1, (28)

νa = 1× 106 m2 s−1. (29)

– dissipation-reducedstress15

This experiment has the same parameters as the “dissipation” experiment, except for the coupling parameter d which is

reduced to 4× 10−8 s−1.

Note that these idealised experiments do not take into account any dependence of the eddy (or turbulent) viscosity on the

truncation scale as usually done in turbulence (e.g. Lesieur, 1990). However, even in the higher resolutions explored so far,

we are still far from the scaling regimes for which these dependences may apply. In addition, the values of the eddy viscosity20

coefficients used are typically valid for a model configuration running at a spatial scale of the order of 100 km (Van der Avoird

et al., 2002), which is smaller than the typical truncation used here. For this reason, we have performed a second experiment

with a higher eddy viscosity coefficient. The problem of truncation and representation of subgrid-scale processes is an important

open problem in climate modelling that needs careful attention. This matter falls beyond the scope of the present investigation,

but forms the subject of a different study in context of the MAOOAM model (Demaeyer and Vannitsem, 2016). Note that in25

principle the dissipated kinetic energy should become an input to the thermodynamic equations of the system as positive heat

source. As discussed in Lucarini and Fraedrich (2009), neglecting this process can have serious dynamical implications on

long temporal scales. Additionally, an imperfect representation of this feedback between dynamics and thermodynamics is one

of the sources of serious imperfections on the closure of the energy budget in climate models (Lucarini and Ragone, 2011;

Lucarini et al., 2014). This issue will be analysed in future investigations.30
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4 Results

4.1 PUMA

Here we present the results for the two different experiments with PUMA, described in Section 3.3, and discuss our findings.

Figure 1 shows the
✿✿✿

200
✿✿✿✿✿✿

largest
✿✿✿✿

LEs
✿✿

of
✿✿✿

the
✿

two different Lyapunov spectra obtained in our experiments with PUMA. The

averages were computed from a time series of 25 years of daily finite-time LEs. We can estimate the size of the attractor5

and by that estimate the degrees of freedom inherent to the attractor with the Kaplan-Yorke dimension DKY , as described in

Section 3.1. The number of positive exponents and DKY are shown in the legend of Fig. 1. Our findings confirm earlier results

using two-layer QG models that suggested an increase of DKY and the number of positive Lyapunov exponents for a higher

meridional temperature gradient (Lucarini et al., 2007; Schubert and Lucarini, 2015).

There are two very small exponents since the model setup is zonally symmetric which creates an additional zero mode (see10

Schubert and Lucarini (2015) for details). Otherwise, there are not many near-zero LEs in PUMA. There is continuity between

the time scales that characterise the QG dynamics on the one hand, and faster, smaller-scale motions on the other hand. This

shows that the usual assumption of a clear time-scale separation adopted when applying the filtering to derive the QG equations

is, in fact, rather stretched with respect to reality.

Nevertheless, the 50 K spectrum in comparison to the 60 K spectrum has a much smaller slope where the LE are near zero15

and negative. This may suggest the presence a longer term regime switching behaviour. One potential source for such a regime

change is the switching between blocked and non-blocked states of the mid-latitudes atmosphere.

We have computed the blocking rate employing the well established Tibaldi-Molteni Index (Molteni et al., 1988)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Tibaldi and Molteni, 1990)

We indeed find a higher blocking rate for 50 K (≈ 0.5%) than for 60 K (≈ 0.25%). We would like to explore this connection fur-

ther in future studies, especially in the direction of studying the location of the CLVs during blocking (Schubert and Lucarini,20

2015).

Next, the existence of a large deviation law for the FTLEs is verified, as described in Section 3.2. The decorrelation time

Tdecorr is usually between 1 or 3 days. Therefore the rate function is computed for averages of length tave=M · 3
✿✿✿✿✿✿✿✿✿✿

tave=m · 3

days.

In Figs. 2 to 9 the results for the rate functions are shown for the fastest growing LE 1 (Figs. 2 and 3), faster decaying25

✿✿✿✿✿✿✿✿✿✿✿

fast-decaying LE 150 (Figs. 4 and 5), the positive and negative near-zero LEs 59 and 64 for ∆TEP = 50K (Figs. 6 and 7) and

near-zero LEs 66 and 71 for ∆TEP = 60K (Figs. 8 and 9). Since Eq. (22) is needed to compute the rate function, a long time

series is necessary to estimate the distribution P reliably.

Our intent is to make at least a qualitative assessment of the convergence rate for M → ∞
✿✿✿✿✿✿✿

m→ ∞. The top panels of these

figures show the approximation of the respective distributions obtained via kernel smoothing
✿✿✿✿✿✿

density
✿✿✿✿✿✿✿✿✿

estimation
✿✿✿✿✿✿✿✿✿✿✿

(Scott, 1979) of30

the distribution of the block-averaged LEs. The bottom panels show the rate function for different tave derived from Eq. (22).

✿

A
✿✿✿✿✿✿✿

detailed
✿✿✿✿✿✿✿✿✿✿✿

investigation
✿✿

of
✿✿✿✿✿

other
✿✿✿✿✿✿✿

metrics,
✿✿✿✿

such
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

variance,
✿✿

is
✿✿✿✿✿✿✿✿

provided
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

A.
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Figure 1. The
✿✿

200
✿✿✿✿✿

largest
✿✿✿✿

LEs
✿✿

of
✿✿

the
✿

Lyapunov spectra of PUMA for the two different setups with ∆TEP = 50K and 60K.

We make the following observations. For all LEs the tendency for
✿✿✿✿

The
✿✿✿✿✿

graphs
✿✿✿✿✿✿✿

suggest
✿

a
✿

convergence of the rate function is

visible
✿✿✿

for
✿✿

all
✿✿✿✿

LEs. Also, the rate functions’ shape is approximately parabolic and the estimates of the rate functions
✿✿✿✿✿✿

appear
✿✿

to

converge to the asymptotic with a comparable speed regardless of the value of the corresponding LE.

We interpret these results as another consequence of the non-existing
✿

to
✿✿✿✿✿

stem
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

lack
✿✿

of
✿

a
✿

clear-cut time-scale separa-

tion in a purely atmospheric model like PUMA. This is in opposition to what was speculated in Schubert and Lucarini (2015),5

where a primitive-equation model was expected to feature a time-scale separation visible in the Lyapunov spectrum. Such a

time-scale separation would have been an a posteriori justification of the filtering by the QG approximation.

We have shown that in a primitive-equation model with a high-dimensional phase space of ≈ 60000 the size of the attractor is

small (≈ 180) in comparison. Nevertheless, the unstable subspace can still be regarded as a high-dimensional subspace. We also
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Figure 2. Distributions and rate functions of λ1, the fastest-growing

instability in PUMA, for ∆TEP = 50K. The top panel shows the

different distributions and their kernel-smoothing approximation of

σ1

M
✿✿✿

σ1

m
✿

where tave is the respective 3M
✿✿✿

3m. The bottom panel

shows a comparison of the rate functions, with the minimum moved

to zero.
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Figure 3. Distributions and rate functions of λ1, the fastest-growing

instability in PUMA, for ∆TEP = 60K. Panels as in Fig. 2.

found sound results regarding the existence of a large deviation law independent of the growth rate of the linear perturbations.

In hindsight with respect to the findings in MAOOAM this can be explained with the absence of a clear time-scale separation.

4.2 MAOOAM

The Lyapunov analysis is performed on the set of model configurations described in Section 3.4. Let us first evaluate the impact

of the resolution on the amplitude of the dominant Lyapunov exponent. The largest Lyapunov exponent λ1, which largely5

determines the limit of predictability, is plotted as a function of the model resolution for each experiment in Fig. 10. The

dominant exponent λ1 does not display a clear upward or downward trend versus model resolution and seems to stabilise for
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Figure 4. Distributions and rate functions of λ150, a strongly decay-

ing direction in PUMA, for ∆TEP = 50K. Panels as in Fig. 2.

Figure 5. Distributions and rate functions of λ150, a strongly decay-

ing direction in PUMA, for ∆TEP = 60K. Panels as in Fig. 2.

higher resolutions. This interesting feature suggests that the lower-order systems explored here already display a qualitatively

correct amplitude for the dominant instability.

Furthermore, as we could expect, the predictability is enhanced for models where the scale-dependent dissipation term is

present. The decrease in λ1 also appears to suggest an enhanced predictability for models which have a larger ocean-atmosphere

coupling parameter d, but this feature is not so clear for higher resolution versions. Vannitsem (2017) studied the dependence5

of the predictability on this coupling parameter in the low-order 36-variable model that lies at the basis of MAOOAM. Two

distinct mechanisms were identified to drive the increase in predictability with increasing d. To a first approximation, the

mechanical coupling of the fast atmosphere to the slow ocean corresponds to an effective friction term which reduces error

growth in the atmosphere. Moreover, increasing the ocean-atmosphere coupling above a critical value induces a sudden jump in

predictability, associated with the development of a slow coupled ocean-atmosphere mode (Vannitsem et al., 2015; Vannitsem,10

2017).
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Figure 6. Distributions and rate functions of λ59, a near-zero, grow-

ing instability in PUMA, for ∆TEP = 50K. Panels as in Fig. 2.
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Figure 7. Distributions and rate functions of λ64, a near-zero, de-

caying instability in PUMA, for ∆TEP = 50K. Panels as in Fig. 2.

Figures 11 to 13 show the full sets of Lyapunov exponents, or Lyapunov spectra, for the different experiments. These figures

reveal the presence of three ranges in the spectrum of Lyapunov exponents: the positive, negative near-zero and large amplitude

negative Lyapunov exponents, associated to the unstable, central and stable manifolds, respectively, in qualitative agreement

with what was found in Vannitsem and Lucarini (2016). We expect that the stable and unstable manifolds mainly characterise

the dissipative and unstable motions of the atmosphere, while the central manifold also projects considerably on the variables5

of the ocean.

The highly populated central manifold of MAOOAM is in stark contrast with the few near-zero LEs in PUMA. Being a

purely atmospheric model, PUMA’s Lyapunov spectrum does not exhibit the large time-scale separation present in MAOOAM.

Indeed, the spectrum of PUMA bears more resemblance to that of the QG two-layer model of Schubert (2015).
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Figure 8. Distributions and rate functions of λ66, a near-zero, grow-

ing instability in PUMA, for ∆TEP = 60K. Panels as in Fig. 2.
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Figure 9. Distributions and rate functions of λ71 a near-zero, de-

caying instability in PUMA, for ∆TEP = 60K. Panels as in Fig. 2.

Upon increasing the number of modes in the ocean and the atmosphere, the number of positive Lyapunov exponents (indi-

cated with a vertical arrow) consistently increases, but not as much as the number of strongly negative exponents. This suggests

that most of the additional spatial scales that are resolved by the higher-resolution models are highly dissipative, hence increas-

ing the number of strongly negative Lyapunov exponents. The additional positive and near-zero exponents that are introduced

at these scales nevertheless indicate that the added resolution still resolves some scales that are important for the description of5

the dynamics. This is in agreement with the conclusion in De Cruz et al. (2016), where it was shown that in order to describe

the ocean dynamics, one needs to be able to resolve the Rhines scale LRh =
√

U
β , requiring oceanic wavenumbers as high as

of 40–50.

Figure 15 plots the Kaplan-Yorke dimension DKY as a function of the model resolution. This shows that DKY is the

highest for the models which
✿✿✿

that do not include the scale-dependent dissipation process (nodissip). A reduction in the ocean-10
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Figure 14. Lyapunov spectra of MAOOAM for the “dissipationx10” experiment. Colours and arrows as in Fig. 11.

atmosphere coupling d appears to slightly increase DKY for most model resolutions, both in the case with and without scale-

dependent dissipation. The tenfold increase in the dissipation parameters νo and νa (dissipationx10) results in the lowest values

for DKY , as can be expected from a more dissipative but still chaotic system.

As the number of dimensions increases quadratically and not linearly for the consecutive model resolutions, it is instructive

to rescaleDKY by the number of dimensionsN , as shown in Fig. 16. This shows that whileDKY increases with resolution, the5

attractor dimension’s fraction of the full phase space dimension decreases (even if slowly) with increasing resolution from the

atm. 6x6, oc. 6x6 models onward, for all experiments, suggesting that one is adding in higher proportion highly stable modes

that do not necessarily play an important role in the dynamics. In other words, we are not in the regime where the system is

extensive, as, in fact, the geometry of the domain is fixed and we are capturing a larger and larger (yet insufficient) fraction of

the active dynamical processes as the resolution is increased. Had we reached the optimal resolution, Fig. 15 would be flat, and10

Fig. 16 would approach zero.

Figure 17 shows the Kolmogorov-Sinai entropy hKS versus model resolution, for the different experiments. The trends

for the “nodissip” and “nodissip-reducedstress” experiments appear to suggest that hKS would increase unboundedly for

increasing model resolution if a parametrization for the scale-dependent dissipation is absent. The experiments which
✿✿✿

that take

this process into account, paint a more realistic picture, with hKS levelling off at the highest model resolutions.15

An additional experiment is performed by increasing the resolution of the ocean and of the atmosphere separately starting

from a specific symmetric configuration “6x6”. Figure 18 displays the Lyapunov spectra for the model configuration “dis-

sipation”. Two important features stand out: (i) when the resolution of the atmosphere is increased, the majority of the new
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exponents populate the stable manifold; (ii) on the contrary when the resolution of the ocean is increased, the number of slightly

positive and slightly negative exponents increases considerably. This also suggests that the increase of Lyapunov dimension

and the number of positive exponents after a resolution of atm. 6x6 - oc. 6x6 should be attributed to the presence of the ocean.

In this sense the ocean plays an active role in the development of the coupled dynamics.
✿✿✿✿✿✿

Indeed,
✿✿✿

the
✿✿✿✿✿✿✿

quantity
✿✿✿✿✿✿✿✿

DKY /N ,
✿✿✿✿✿✿

which

✿✿✿✿✿✿✿✿✿✿✿

approximates
✿✿✿

the
✿✿✿✿✿✿✿

relative
✿✿✿✿✿✿✿

fraction
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

attractor’s
✿✿✿✿✿✿✿✿✿

dimension,
✿✿✿✿✿✿✿✿

increases
✿✿✿

for
✿✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿

ocean
✿✿✿✿✿✿✿✿✿

resolution,
✿✿✿

but
✿✿✿✿✿✿✿✿✿

decreases
✿✿✿

for5

✿✿✿✿✿✿✿✿

increasing
✿✿✿✿✿✿✿✿✿✿

atmosphere
✿✿✿✿✿✿✿✿✿

resolution,
✿✿✿

as
✿✿✿✿✿✿✿✿

illustrated
✿✿✿

in
✿✿✿

Fig.
✿✿✿✿

19. This result deserves an extensive investigation by looking at the

properties of the CLVs.

As a final analysis, we have given a preliminary look at whether large deviation laws can be established for the long-term

statistics of the FTLEs. In what follows, we consider the “9x9” simulations. Similarly to what was found in a previous analysis

performed on a severely truncated version of MAOOAM (Vannitsem and Lucarini, 2016), we find that the time series of10

the FTLEs corresponding to the strongly damped mode
✿✿✿✿✿

modes
✿

are weakly correlatedand
✿

.
✿✿✿✿

This
✿✿✿✿✿

would
✿✿✿✿✿✿✿

suggest
✿✿✿✿

that one can

construct the rate functions defining the large deviations laws; compare figures
✿

.
✿✿✿✿

The
✿✿✿

rate
✿✿✿✿✿✿✿✿

functions
✿✿✿

are
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Fig.
✿

20a-c)

for the 351st LE.
✿✿✿✿✿

Their
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿✿✿✿✿✿✿

properties
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

investigated
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿✿

A2,
✿✿✿

and
✿✿✿✿✿✿✿

indicate
✿✿✿✿

that
✿✿✿

we
✿✿✿✿

have
✿✿✿

not
✿✿✿

yet
✿✿✿✿✿✿✿✿✿

converged

✿✿

to
✿✿✿

the
✿✿✿✿✿✿

central
✿✿✿✿

limit
✿✿✿✿✿✿✿

theorem
✿✿✿✿

even
✿✿✿

for
✿✿✿✿✿

these
✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

damped
✿✿✿✿✿✿

modes.
✿

Additionally, the lagged time correlation of the near-zero

LEs are very strong and it makes no sense to look for large deviation laws in this case.15

In contrast to what was presented in Vannitsem and Lucarini (2016), establishing large deviation laws for the FTLEs as-

sociated with positive LEs is not trivial, even when one considers the first FTLE. Lagged-time correlations are such that the

available time series are not sufficiently long to reach the asymptotic limit, except for
✿

.
✿✿✿✿

This
✿✿

is
✿✿✿✿

even
✿✿✿

the
✿✿✿✿

case
✿✿

in
✿

the nodissip
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Figure 18.
✿✿✿✿✿✿✿

Lyapunov
✿✿✿✿✿✿

spectra
✿✿

of
✿✿✿✿✿✿✿✿✿

MAOOAM
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

“dissipation”
✿✿✿✿✿✿✿✿✿

experiment,
✿✿✿

for
✿✿✿✿✿✿✿

different
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

configurations
✿✿✿✿✿✿

starting
✿✿✿✿

from
✿✿✿✿

atm.
✿✿✿✿

6x6,

✿✿

oc.
✿✿✿✿

6x6
✿✿✿✿✿

(black
✿✿✿

full
✿✿✿✿

line).
✿✿✿✿

The
✿✿✿✿✿✿✿✿

resolutions
✿✿✿

of
✿✿✿

the
✿✿✿✿

ocean
✿✿✿✿✿

(dark
✿✿

to
✿✿✿✿

light
✿✿✿✿

blue
✿✿✿✿✿

lines)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

atmosphere
✿✿✿

(red
✿✿

to
✿✿✿✿✿✿

orange
✿✿✿✿✿

lines)
✿✿✿

are
✿✿✿✿✿✿✿

modified

✿✿✿✿✿✿✿✿

separately.
✿✿✿✿✿✿✿

Lyapunov
✿✿✿✿✿✿✿✿

exponents
✿✿✿

are
✿✿✿✿✿

ranked
✿✿

in
✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿

order,
✿✿✿✿

and
✿✿

the
✿✿✿✿✿

index
✿✿

of
✿✿

the
✿✿✿✿✿✿

smallest
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿✿

Lyapunov
✿✿✿✿✿✿✿

exponent
✿✿

is
✿✿✿✿✿✿✿

indicated
✿✿✿

with
✿✿

a

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

downward-pointing
✿✿✿✿✿

arrow
✿✿

for
✿✿✿✿

each
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿

configuration.
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Figure 19.
✿✿✿✿✿✿✿✿✿✿

Kaplan-Yorke
✿✿✿

or
✿✿✿✿✿✿✿

Lyapunov
✿✿✿✿✿✿✿✿

dimension
✿✿✿✿✿

DKY
✿✿

of
✿✿✿✿✿✿✿✿✿

MAOOAM
✿✿✿✿✿✿

divided
✿✿

by
✿✿✿

the
✿✿✿✿

total
✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

dimensions
✿✿✿

N ,
✿✿

as
✿

a
✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿

the

✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿

configuration.
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simulation scenario, which allows for the presence of a
✿✿✿✿✿

despite
✿✿✿

the
✿

larger value of the 1st LE and faster decay of correlations;

compare Figs. 21a)-c). This suggests that when many unstable modes are present, disentangling their long-term properties

requires very long integrations, possibly as a result of geometrical quasi-degeneracies among such modes. This is an issue

that should be further explored, given its practical and theoretical relevance. One can conjecture that the damped modes do

not feature such properties as their dynamics is mostly driven by linear dissipative processes. Therefore, we propose that an5

accurate analysis of the tangent space with the formalism of CLVs is required to advance our understanding of predictability

at medium and long time scales.

In brief, these results indicate that the dominant instabilities of the coupled ocean-atmosphere system are well captured

by MAOOAM, even at low resolutions. However, the increase of the Lyapunov dimension with the resolution implies that

the relevant dynamics of the system are not yet fully resolved, in agreement with De Cruz et al. (2016). The main role of10

the ocean in this matter is confirmed by varying the ocean and atmosphere resolutions independently. Conversely, increasing

the resolution of the atmosphere only adds highly dissipative modes. Finally, in contrast with what was found for a low-order

version of MAOOAM (Vannitsem and Lucarini, 2016), large deviation laws cannot be established for the near-zero and positive

FTLEs in the “9x9” configuration.

Lyapunov spectra of MAOOAM for the “dissipation” experiment, for different model configurations starting from atm. 6x6,15

oc. 6x6 (black full line). The resolutions of the ocean (dark to light blue lines) and the atmosphere (red to orange lines) are

modified separately. Lyapunov exponents are ranked in decreasing order, and the index of the smallest positive Lyapunov

exponent is indicated with a downward-pointing arrow for each model configuration.

5 Toward a new programme

The chaotic nature of the atmosphere and of the climate system has been investigated in the present work in the context of a20

primitive-equation atmospheric model and a coupled ocean-atmosphere model. Both systems suggest that high-dimensional

dynamical processes are at play with very interesting distinct specificities.

The Lyapunov spectra of the two models considered here have rather different qualitative features, as a result of their

structural differences, which have profound impacts on the type of possible instability mechanisms. Following Gallavotti and

Lucarini (2014), one expects that if a clear time-scale separation between distinct dynamical regimes is present, one should25

find that the Lyapunov exponents can be divided into separate groups, corresponding to distinct clusters in their values. This is

the analogue in full nonlinear terms of what is envisioned by the usual scale analysis of GFD equations.

MAOOAM is a coupled quasi-geostrophic atmosphere-ocean model, which, by definition, features a large time-scale sep-

aration between ocean and atmosphere, and lacks a satisfactory representation of mesoscale and sub-mesoscale processes.

PUMA is an atmospheric-only primitive-equation model, which can represent the faster, smaller-scale instabilities associated30

with processes occurring well below the Rossby deformation radius. On the other side, the lack of an active ocean component

removes the presence of very slow scales and does not allow for a built-in scale separation in the dynamics.

We summarise here some findings:
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– In PUMA the spectrum of Lyapunov exponents changes in accordance with the paradigm that stronger baroclinic forcing

leads to a more unstable atmosphere, as already observed in Schubert and Lucarini (2015) for a quasi-geostrophic model.

The model does not feature any separation of scale, as the Lyapunov spectrum is quite smooth. As a result, one cannot

clearly distinguish the modes corresponding to baroclinic instability, Kelvin-Helmholtz instability, etc. Despite this, we

find that for the lower meridional temperature gradient (∆TEP = 50K) the spectrum features more negative closer to5

zero exponents. Interestingly, this might be related to the presence of blocking, but specific studies with more robust

dynamics between blocking and non-blocking situations are necessary to clarify that. Additionally, one finds that all the

FTLEs accurately
✿✿

the
✿✿✿✿✿✿

results
✿✿✿✿✿✿✿

suggest
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿

FTLEs obey large deviation laws defining the predictability properties at

long time scales, including the near-zero exponents. The model can be categorised as being nonuniformly hyperbolic

with a trivial central manifold (the direction of the flow).10

– For MAOOAM the Lyapunov spectrum is shaped considerably by the presence of the ocean, with a large portion of

exponents close to zero. The subspace associated with these exponents corresponds to the central manifold as in the

theory of partially hyperbolic systems, and presents features analogous to what was observed in Vannitsem and Lucarini

(2016). Furthermore, raising the ocean resolution in MAOOAM clearly increases the number of both positive and neg-

ative near-zero Lyapunov exponents, which implies a considerable increase of the Lyapunov dimension of the attractor.15

Reducing the intensity of the dissipative processes leads, as expected, to an increase in the instability of the model.

One can also conjecture that the set of physical modes, as defined by Yang and Radons (2013), are not yet fully populated

since one would expect that the isolated modes are strongly dissipative. This might imply that the resolution necessary to

correctly describe the dynamics of the system is much higher in the ocean. This aspect is well known in ocean dynamics

since the unstable baroclinic modes, that play an important role in the ocean variability, can only be resolved with20

scales smaller than 50 km. Yet the question of defining an appropriate resolution (or more exactly an appropriate set

of dynamical modes) for which the dynamics is well captured is still open and the analysis of the CLVs in the spirit of

(Yang and Radons, 2013; Vannitsem and Lucarini, 2016) can help answer this very important question.

The analysis of the FTLEs of MAOOAM reveals some interesting insight into the dynamics. The FTLEs associated to

the strongly dissipative modes obey large deviation laws, while those corresponding to the near-zero LEs do not. This25

behaviour is expected, and in agreement with what was found in Vannitsem and Lucarini (2016). Surprisingly, however,

✿✿✿✿✿✿✿✿✿✿

Surprisingly,
✿

it is hard to find convergence for the FTLEs
✿✿✿

rate
✿✿✿✿✿✿✿✿

functions
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

FTLEs,
✿✿✿✿

even
✿✿✿

for
✿✿✿✿✿

those associated to the

positive LEs. This may point to the presence of nontrivial ocean influence on the (mostly) atmospheric instabilities.

In the programme we want to develop starting from this investigation, we will employ CLVs in high-dimensional models to

tackle various open problems. CLVs allow to associate growth and decay rates to time-dependent physical modes, and provide30

a geographical portrait of where instability or damping develops.

First, what is the minimal but sufficient resolution? This is a crucial question, in particular in view of the current computer

power needed to perform long-term numerical integrations. A possible way to quantify where this threshold might be, is by

means of the different modes identified by Yang and Radons (2013) using CLVs. The CLVs provide information on the optimal
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splitting of physical modes that effectively describe the dynamics of the system and the highly damped modes. The latter can be

considered as noisy, purely dissipative terms whose resolution is not necessarily relevant, and are also called isolated modes.

Yang and Radons (2013) interpreted them as the result of having a larger number of degrees of freedom in the model than

required to resolve all meaningful physical processes. The central feature that allows for the splitting is the angle between

the CLVs. If two CLVs display angles around 90 degrees and bounded away from zero degrees, these directions in phase5

space can be naturally split. Being able to describe the physical modes is deemed essential to satisfactorily reproduce the

so-called inertial manifold. The inertial manifold contains the effective finite-dimensional dynamics of the system, which, we

remind, is originally infinite-dimensional if we represent a continuum system described by (S)PDEs. In particular, it would be

interesting to determine how the threshold for resolving the inertial manifold varies in a purely atmospheric model compared

to a coupled model atmosphere-ocean model. Additionally, the analysis of geometry of the tangent space can clarify to what10

extent a system can be treated - effectively, not rigorously - as hyperbolic vs partially hyperbolic. As explained in Vannitsem

and Lucarini (2016), this has profound implications for the predictability.

Second, we want to understand multiscale instabilities better and find out what are the driving processes behind their growth.

Here, the covariance of the CLVs with the tangent linear equation is the key for understanding instabilities and their properties

far away from an equilibrium. Traditionally, even in a chaotic setting such an analysis relied on classic normal mode instability15

of fixed stationary states (e.g. Charney, 1947; Eady, 1949; Pedlosky, 1964) to explain phenomena like the baroclinic and

barotropic instability. This approach has been very beneficial but has many known shortcomings for the understanding of

highly nonlinear phenomena such as wave-wave interactions (Speranza and Malguzzi, 1988) or regime switching like blocking

(Pelly and Hoskins, 2003). Additionally, CLVs will allow us to better understand coupled ocean-atmospheric modes. We wish

to develop our future programme in line with Schubert and Lucarini (2015, 2016) who demonstrated that CLVs give a picture20

of what types of instabilities exist in an atmospheric quasi-geostrophic (QG) two-layer model and of the energetics behind

them. For example, the fastest modes can be almost exclusively barotropically unstable even though traditional normal mode

analysis suggests the most unstable modes are driven by baroclinic energy conversion. Given these findings, we expect an even

more diverse mixture of different types of instabilities in multiscale systems such as PUMA or MAOOAM. This approach is a

promising alternative to restricting the analysis to either studying idealised life cycles of instabilities (Plougonven and Zhang,25

2014) or studying yet again normal modes (Molemaker et al., 2005).

Code availability. The PUMA model is a part of PLASIM, for which the source code can be downloaded at https://www.mi.uni-hamburg.de/

en/arbeitsgruppen/theoretische-meteorologie/modelle/sources/plasim.tgz. The source code for the latest version of MAOOAM is available

at http://github.com/Climdyn/MAOOAM. The version of MAOOAM that was used to compute the Lyapunov exponents is archived at https:

//doi.org/10.5281/zenodo.1198650.30
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Data availability. The Lyapunov spectra of the different PUMA and MAOOAM model configurations, that were computed using the Benet-

tin algorithm, are available as supplementary material.

Appendix A:
✿✿✿✿✿

Study
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

of
✿✿✿

the
✿✿✿✿

rate
✿✿✿✿✿✿✿✿

function

✿✿✿

We
✿✿✿✿

have
✿✿✿✿✿✿✿✿✿

performed
✿✿✿

an
✿✿✿✿✿✿✿✿✿

additional
✿✿✿✿✿✿✿

analysis,
✿✿✿✿

that
✿✿✿✿✿✿✿

focuses
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

variance
✿✿

σ
✿✿

of
✿✿✿✿

the
✿✿✿✿✿

FTLE
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿

function

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

length
✿✿✿✿

tave
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿

block
✿✿✿✿✿✿✿✿

averages.
✿✿✿✿✿✿✿

Indeed,
✿✿

σ
✿✿

is
✿✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿

scale
✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿✿✿

t
−

1

2

ave.
✿✿✿✿✿✿✿✿✿✿✿

Furthermore,
✿✿✿✿

one5

✿✿✿✿✿✿

expects
✿✿✿

the
✿✿✿✿✿

value
✿✿✿

of
✿✿✿✿✿✿✿

σ2 · tave
✿✿

to
✿✿✿✿✿

level
✿✿✿

off
✿✿

at
✿✿✿

the
✿✿✿✿✿

value
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿✿✿✿

coefficient
✿✿

D
✿✿

if
✿✿✿✿✿

there
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

to
✿✿✿✿

the
✿✿✿✿✿✿

central

✿✿✿✿

limit
✿✿✿✿✿✿✿

theorem.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

diffusion
✿✿✿✿✿✿✿✿✿

coefficient
✿✿

D
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

inverse
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿✿

derivative
✿✿

of
✿✿✿

the
✿✿✿✿

rate
✿✿✿✿✿✿✿

function
✿✿

at
✿✿

its
✿✿✿✿✿✿✿✿✿

minimum,
✿✿✿

see
✿✿✿✿

e.g.

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Kuptsov and Politi, 2011).

A1
✿✿✿✿✿✿

PUMA

✿✿✿

The
✿✿✿✿✿✿

scaling
✿✿✿

of
✿✿

σ
✿✿✿✿✿

versus
✿✿✿✿

tave
✿✿✿

has
✿✿✿✿

the
✿✿✿✿✿✿✿

expected
✿✿✿✿✿✿✿✿✿

behaviour
✿✿✿

for
✿✿✿✿

both
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿✿✿✿✿

conducted
✿✿✿✿

with
✿✿✿✿✿✿✿

PUMA,
✿✿✿

as
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿

Fig. A1.10

✿✿✿✿

This
✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿

apparent
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

convergence
✿✿✿

of
✿✿✿✿✿✿✿

σ2 · tave,
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿

Fig. A2.
✿✿✿✿✿✿

While
✿✿✿

the
✿✿✿✿✿

value
✿✿

of
✿✿

D
✿✿✿✿✿✿✿✿✿

fluctuates,
✿

it
✿✿✿✿

has
✿✿✿

the
✿✿✿✿

right
✿✿✿✿✿

order

✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude.
✿

A2
✿✿✿✿✿✿✿✿✿✿

MAOOAM

✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

decorrelation
✿✿✿✿

time
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

near-zero
✿✿✿✿✿✿

FTLEs
✿✿

in
✿✿✿✿✿✿✿✿✿✿

MAOOAM
✿

is
✿✿✿✿✿✿✿✿✿

extremely
✿✿✿✿✿

long.
✿✿✿✿✿✿✿✿✿✿✿

Accordingly,
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿

intervals
✿✿✿✿

tave,
✿✿✿✿✿

used
✿✿

to

✿✿✿✿✿✿✿✿

determine
✿✿✿

the
✿✿✿✿

rate
✿✿✿✿✿✿✿✿

functions
✿✿✿✿✿✿✿✿✿

associated
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

FTLE,
✿✿✿

are
✿✿✿✿✿✿✿✿

expected
✿✿

to
✿✿

be
✿✿✿✿✿✿✿✿✿✿

insufficient
✿✿

to
✿✿✿✿✿✿✿

robustly
✿✿✿✿✿✿

define
✿✿✿✿✿

large
✿✿✿✿✿✿✿✿

deviations
✿✿✿✿✿

laws15

✿✿✿✿✿✿✿✿

describing
✿✿✿

the
✿✿✿✿✿✿✿✿

statistics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

FTLEs.
✿✿✿✿✿

This
✿

is
✿✿✿✿✿✿✿✿✿

confirmed
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

behaviour
✿✿

of
✿✿

σ
✿✿✿✿✿✿

versus
✿✿✿

tave
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

“9x9”
✿✿✿✿✿

model
✿✿✿✿✿✿✿✿✿✿✿✿

configuration,

✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿

Fig. A3.
✿✿

A
✿✿✿✿✿✿✿✿✿✿

discrepancy
✿✿✿✿✿✿✿

between
✿✿

D
✿✿✿✿

and
✿✿✿✿✿✿✿

σ2 · tave
✿✿

is
✿✿✿✿✿✿✿

apparent
✿✿✿

for
✿✿✿

LE
✿✿✿

100
✿✿

in
✿✿✿

all
✿✿✿✿✿✿✿✿✿✿

experiments
✿✿✿✿✿

shown
✿✿

in
✿✿✿✿

Fig.
✿✿✿

A4.
✿✿✿✿✿

Even
✿✿✿

for

✿✿✿✿✿✿

positive
✿✿

or
✿✿✿✿✿✿✿✿

strongly
✿✿✿✿✿✿✿

negative
✿✿✿✿

LEs,
✿✿✿

we
✿✿✿

are
✿✿✿

not
✿✿✿

yet
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

regime
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

convergence
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

central
✿✿✿✿

limit
✿✿✿✿✿✿✿✿

theorem.
✿✿✿✿

Note
✿✿✿✿✿✿✿

however
✿✿✿✿

that

✿✿

an
✿✿✿✿✿✿✿✿✿

integration
✿✿✿✿

time
✿✿

of
✿✿✿✿

614
✿✿✿✿

years
✿✿✿✿

was
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿✿✿✿✿

Lyapunov
✿✿✿✿✿✿✿

spectra,
✿✿✿✿✿

longer
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿

used
✿✿

in
✿✿✿

this
✿✿✿✿✿✿✿

analysis.
✿
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a)

b)

c)

Figure 20. Estimate of the rate function describing the large deviation law of the 351st FTLE for the MAOOAM model with no dissipation

(a), reference value for the dissipation (b), and enhanced dissipation by a factor of 10 (c).Convergence is apparent only in a).
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a)

b)

c)

Figure 21. Estimate of the rate function describing the large deviation law of the first FTLE for the MAOOAM model with no dissipation

(a), reference value for the dissipation (b), and enhanced dissipation by a factor of 10 (c). Convergence is apparent only in a).
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panels
✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

reference
✿✿✿✿✿

value
✿✿

for
✿✿✿✿✿✿✿✿✿

dissipation
✿✿✿

and
✿✿✿

the

✿✿✿✿

lower
✿✿✿✿✿

panels
✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿

results
✿✿✿

for
✿✿

an
✿✿✿✿✿✿✿

enhanced
✿✿✿✿✿✿✿✿

dissipation
✿✿✿✿✿✿✿✿✿

coefficient.
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