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Abstract. An observing system simulation experiment (OSSE) is presented in the Marmara Sea. A high resolution ocean

circulation model (FESOM) and an ensemble data assimilation tool (DART) are coupled. The OSSE methodology is used to

assess the possible impact of a ferrybox network in the eastern Marmara Sea. A reference experiment without assimilation is

performed. Then, synthetic temperature and salinity observations are assimilated along the track of the ferries in the second

experiment. The results suggest that a ferrybox network in the Marmara Sea has potential to improve the forecasts signifi-5

cantly. The salinity and temperature errors get smaller in the upper layer of the water column. The impact of the assimilation

is negligible in the lower layer due to the strong stratification. The circulation in the Marmara Sea, particularly the Bosphorus

outflow, helps to propagate the error reduction towards the western basin where no assimilation is performed. Overall, the

proposed ferrybox network can be a good start to design an optimal sustained marine observing network in the Marmara Sea

for assimilation purposes.10

1 Introduction

The Marmara Sea is one of the compartments of a water passage known as the Turkish Straits System (hereafter TSS). The

TSS connects the Black Sea and the Mediterranean by two narrow straits, namely the Bosphorus and the Dardanelles, along

with the Marmara Sea.15

Salty and dense Mediterranean waters and brackish Black Sea waters form a two-layer exchange flow through the TSS. In

combination with the complex topography, flow structures in different scales generate a challenging environment for oceano-

graphic studies.
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Until recently, building a model solving for the hydrodynamics of the complete TSS was not considered a feasible un-

dertaking due to high computational costs of the required horizontal and vertical resolution enabling to represent the sharp

stratification and the extremely complex topography of the straits and shelf regions, largely differing from those of the larger

neighboring basins. However, models of the whole system have emerged with increasing computational capacity in recent

years (Sannino et al., 2017; Gürses et al., 2016; Stanev et al., 2017).5

In this study, to the best of our knowledge, we present the first data assimilation experiments performed in the Marmara

Sea. In the region, in-situ observations are generally scarce and collected by dedicated projects (Ünlüata et al., 1990; Özsoy

et al., 2001; Beşiktepe et al., 1994; Tuğrul et al., 2002; Chiggiato et al., 2012) for a limited area and time. Moreover, the spatial

resolution and frequency of satellite observations are still not sufficient to monitor the system continuously. For these reasons,

a sustainable marine monitoring network is required in the Marmara Sea. We propose a ferrybox network mounted on existing10

public transportation infrastructure.

We follow the Observing System Simulation Experiments (OSSE) methodology to achieve our goal. OSSE has been used

widely in the atmospheric community for four decades to design new observation tools, for error assessment in large models

and parameter estimation (Arnold Jr and Dey, 1986; Masutani et al., 2010). Atlas (1997) summarizes the criteria established

by the atmospheric community to perform credible OSSE. Halliwell Jr et al. (2014, 2015) gave an example of an ocean OSSE15

in the Gulf of Mexico by following those criteria. Aydoğdu et al. (2016) studied a fishery observing system in the Adriatic Sea

taking the same criteria into account.

This paper is organized as follows: In the next section, the main characteristics of the TSS relevant to this study are sum-

marized. In section 3, the model and data assimilation scheme that we used are documented. Section 4 is devoted to the OSSE

design. The nature run and forward model are introduced. Ferrybox network design is also detailed and the methodology for20

impact assessment is outlined. The results are discussed in section 5. The summary and conclusions are presented in the last

section.

2 Overview of the Turkish Straits System

The Marmara Sea with the Bosphorus and the Dardanelles Straits constitute the Turkish Straits System (TSS) which connects

the Black Sea and the Mediterranean. The exchange of contrasting water masses forms a highly stratified water column structure25

throughout the system with a pycnocline around 20 m. depth. The brackish surface water of the Black Sea flows towards the

Mediterranean in the upper layer and the salty and dense Mediterranean Sea water occupies the lower layer of the water column

(Ünlüata et al., 1990). In addition to the strong stratification, the complex topography of the two narrow straits and an internal

sea with shallow shelves and deep depressions presents a unique and challenging environment for oceanographic studies.

The Bosphorus is an elongated narrow strait connecting the Black Sea and the Marmara Sea. The upper layer flow is30

dominated by the Black Sea water with salinity about 18 psu. The lower layer water originates from the Mediterranean and

reaches the Black Sea with a salinity of about 37 psu. The interface depth between the two layers is mainly determined by the

salinity gradient. In summer, a three layer temperature structure appears. A warm upper layer due to the atmospheric heat flux
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overlays a cold intermediate layer that propagates from the Black Sea. Warmer Mediterranean water constitutes the bottom

layer (Altıok et al., 2012). The constriction in the mid-section and the sill in the southern section of the strait apply a hydraulic

control on the flow and produce a surface jet at the Marmara Sea exit (Sözer and Özsoy, 2017). The velocity of the Bosphorus

jet can exceed 2 m/s (Jarosz et al., 2011). Therefore, the jet is one of the key factors influencing the dynamics of the Marmara

Sea. It enhances the mixing by entraining lower layer water (Ünlüata et al., 1990), energizes the Marmara Sea circulation in5

the eastern basin (Beşiktepe et al., 1994) and produces mesoscale eddies due to the potential vorticity balance (Sannino et al.,

2017).

The wind is another important factor influencing the dynamics of the Marmara Sea. Many strong cyclones pass over the

Marmara Sea especially in winter (Book et al., 2014). Northeasterly winds dominate the atmospheric circulation throughout

the year.10

The third important dynamical constituent is the density-driven baroclinic flow in the lower layer (Hüsrevoğlu, 1998). The

velocity of the flow in the lower layer can reach 1 m/s (Jarosz et al., 2012).

The high complexity of the system requires models that simultaneously solve the whole system in its smallest resolved

details and optimally representing multiple scales of interest.

3 Ensemble modelling and data assimilation in the TSS15

The ocean model used in this study is the Finite Element Sea-ice Ocean Model (FESOM). FESOM is an unstructured mesh

ocean model using finite element methods to solve the hydrostatic primitive equations with the Boussinesq approximation

(Danilov et al., 2004; Wang et al., 2008). Gürses et al. (2016) applied FESOM to the TSS and performed realistic simulations of

the complete system using atmospheric forcing. The TSS model domain extends zonally from 22.5◦E to 33◦E and meridionally

from 38.7◦N to 43◦N. The mesh resolution is as fine as 65 m in the Bosphorus and 150 m in the Dardanelles. In the Marmara20

Sea, the resolution is always finer than 1.6 km and is not coarser than 5 km in the Black Sea and the Aegean Sea. The water

column is discretized by 110 vertical z-levels. Vertical resolution is 1 m in the first 50 m depth and increases to 65 m at the

bottom boundary layer in the deepest part of the model domain. The mesh has 70240 nodes at the surface layer and more than

3 million nodes for the 3D state variables i.e. temperature, salinity, zonal and meridional velocity.

Aydoğdu (2017) performed inter-annual simulations using a similar model setup. Two six years simulations using different25

surface salinity boundary conditions have been completed and evaluated. It is shown that the model is able to simulate main

characteristics of the system qualitatively. It simulates the two layer structure of the TSS, successfully. Moreover, dynamical

properties such as sea level difference between different compartments and dynamics related to high frequency atmospheric

events are well-captured. However, the error growth in temperature and salinity throughout the simulation is also demonstrated

which motivates the need for data assimilation in the TSS.30

In this study FESOM has been coupled with an ensemble-based data assimilation framework, Data Assimilation Research

Testbed (DART). DART is an open-source community facility developed at NCAR (Anderson et al., 2009) that provides data
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assimilation tools to work with either low-order or high-order models for different research activities (Raeder et al., 2012;

Karspeck et al., 2013; Schwartz et al., 2015; Hoteit et al., 2013).

DART includes several different stochastic and deterministic ensemble Kalman filtering algorithms. In this study, we use

the Ensemble Adjustment Kalman Filter (EAKF) as described in Anderson (2001). The EAKF is a deterministic ensemble

Kalman filter, where the observations are not perturbed randomly before they are assimilated. One of the main advantages of5

the EAKF for our application is that it preserves the prior covariance distribution during resampling which is not the case for

the ensemble filters such as kernel or Gaussian resampling filters. The ensemble covariance is used to quantify the relation

between pairs of state variables or an observation and a state variable in the linear Gaussian context of the ensemble Kalman

filter. In other words, it is the statistical representation of the prior constraints (dynamical balances) generated by the model.

For a linear model, a sufficiently large ensemble would be able to represent all the balances. However, our model is nonlinear10

and cost forces us to use a small ensemble. This means that the ensemble sample covariances do not exactly represent the

dynamical balances. The ensemble filter algorithm and inflation we use are designed to maintain the prior ensemble covariance

as much as possible. Moreover, localization is effective in reducing forecast RMSE compared to observations given the errors

in the sample covariances. However, it disrupts the prior sample covariance, so can result in reduced dynamical balance. In the

TSS, where different dynamics compete and generate circulation structures at various scales, the prior distribution is crucial15

for maintaining the dynamical balances among different scales which justifies the choice of the EAKF. In addition, analysis

covariances are updated in every assimilation cycle which is important to sustain the high frequency variability of the system.

One of the main issues to take into consideration in ensemble data assimilation is the filter divergence. It can result from in-

sufficient ensemble variance which leads to assigning more weight to the prior information which in turn may cause rejection of

information from observations. As a result, the analysis departs from the observations (Anderson, 2001). There are techniques20

to prevent filter divergence such as inflating the covariances (Anderson and Anderson, 1999). In the standard DART, inflation

of the prior ensemble leads to multiplying the prior covariances by a constant slightly larger than 1. Instead of DART’s multi-

plicative covariance inflation, we have applied random perturbations to the background vertical diffusivity for each ensemble

member since one of the main sources of error in the model is the vertical mixing and the position of the interface between the

upper and lower layers. The background vertical diffusivity κv0 which is implicity represented in the κv of the tracer equations25

is randomly perturbed all over the domain every timestep by fitting a gaussian with a mean of 0 and a standard deviation of 5%

of the κv0 . We note that κv0 is approximately two orders of magnitude smaller than the spatially and temporally varying κv .

Houtekamer and Mitchell (1998) shows that spurious correlations in the prior information can be avoided by using large

ensembles. Since it is computationally expensive to use large ensembles in large geophysical models, they proposed a spatial

localization technique to overcome spurious small correlations associated with remote observations. The impact of an obser-30

vation on state variables is reduced as a function of distance from the observation with impact going to zero at a finite cutoff

value. In DART, the cutoff value can be set as a constant value in radians. The localization function is the fifth order piecewise

continuous, compactly supported as presented in Gaspari and Cohn (1999). The horizontal cutoff radius, which is the half-

width of the Gaspari-Cohn kernel, is used to deal with the high spatial variability of the water masses along the TSS. Moreover,

the water column in the TSS is strongly stratified in the vertical. Therefore, vertical localization is also applied to update of the35
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Figure 1. Flow of FESOM/DART system. Reproduced after Anderson et al. (2009) with modifications for the TSS application

state in the upper layer of the water column with less impact in the lower layer. As a result, the localization is an ellipsoidal

volume centered on the observation being assimilated with a horizontal radius of two cutoff value and vertical radius of two
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cutoff value normalized by a factor. This approach is chosen not to face with problems, such as the breaking of the stratification

during the integration.

For interfacing FESOM and DART, a forward operator that maps model state vector into observation space, characterized

by a type of physical quantity, geo-referenced location and time was defined. For the ferrybox type of observations we used

a simple, but theoretically justifiable nearest-neighbor mapping. Specifically, for each discrete observation value the forward5

operator first finds the closest horizontal grid point in the state vector and then the closest vertical location.

The details of the FESOM/DART coupling are shown schematically in Fig. 1. The interface to DART requires two model

specific routines that convert the model restart files to DART state vectors and vice versa. For the model to DART step the state

vector is provided from each ensemble member. The updated state vectors are then converted to the model restart files as an

initial ensemble for the next assimilation cycle within which FESOM is applied to integrate the model state forward to the next10

analysis time. This process is repeated until the experiment finishes.

4 Design of the OSSE

The OSSE methodology used is shown schematically in Fig. 2. A proposed ferrybox network was assumed to be in the eastern

Marmara Sea using the existing transportation infrastructure. Therefore, we were able to the simulate the observations from the

ferrybox network by tracking the ferrylines in the Marmara Sea. The impact assessment of this network was performed using15

the FESOM/DART ensemble data assimilation system.

Figure 2. OSSE methodology applied in the Turkish Straits System. The forward model (FM) is a different configuration of the model setup

used for the Nature Run (NR) as detailed in the text.
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4.1 The nature run and forward model

The OSSE methodology requires a representation of a reference true atmosphere or ocean which is called the nature run (NR).

The NR is used for generating the synthetic observations to assimilate and for assessing the quality of the assimilation. For a

fully objective OSSE the NR should be created using a simulation from a different model than the forward model (FM) used

in the assimilation in an attempt to simulate the inevitable model errors.5

In the current study the fraternal twin method was used, where the NR and FM are based on the two different configurations

of the same model. The difference between the NR and the FM configurations is the surface salinity boundary condition, where

the former employed the relaxation boundary condition for the sea surface salinity whereas the latter uses the mixed salinity

boundary condition (Huang, 1993, see also appendix A).

This approach was chosen because FESOM in the Marmara Sea is sensitive to equally plausible salinity boundary conditions.10

This was demonstrated through long-term simulations using both configurations, which were validated with the actual in-

situ observations (Aydoğdu, 2017). The simulations were performed for period 1 January 2008 to 31 December 2013. It is

demonstrated that they deviate from each other but both are still realistic during the OSSE period which is 1-8 January 2009.

The output of the NR was saved hourly during the OSSE period to generate synthetic observations.

Figure 3. Schematic representation of the methodology used to generate the initial ensemble. MEAN is the average of January over five

years between 2009-2013

The ensemble consists of 30 members. An initial ensemble is produced for 1 January 2009 as schematized in Fig. 3. The15

five-year means of the temperature and salinity for January are computed from the multi-year simulation. Then, the deviations

of each day between 2-31 January 2009 from the inter-annual mean are calculated. Finally, these deviations are added to the

temperature and salinity fields of 1 January 2009 to provide an initial perturbation for each ensemble member. Fig. 4 shows the

variance of the initial ensemble for salinity and temperature for the depths 5 m and 20 m. The horizontal distributions of the

variance are similar for both variables. The variance is larger in the exits of the straits. In particular, the spread at the Bosphorus20
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exit for the upper layer down to 15 m is larger due to the variability in the outflow. Correspondingly, the Dardanelles inflow

to the Marmara Sea increases the variance in the lower layer. Such a distribution of initial variance in the Marmara Sea is

appropriate to initialize the experiments since the assimilation of synthetic observations is performed in the impact area of the

Bosphorus outflow where the ensemble spread can be diminished by the assimilation.

(a) Salinity at 5 m (b) Temperature at 5 m

(c) Salinity at 20 m (d) Temperature at 20 m

Figure 4. Salinity (left) and temperature (right) variance of the initial ensemble at 5 m (top) and 20 m (bottom) depth on 1 January 2009 at

00:00 UTC.

4.2 The eastern Marmara Sea ferrybox network design5

The Marmara region has the highest urban population in Turkey. It includes the metropolitan city of Istanbul which is divided

into two by the Bosphorus and surrounded by the Black Sea in the north and the Marmara Sea in the south. As a consequence,

a network of ferries is an essential means of transportation. The main hub for the ferries is Istanbul which is connected to the

other cities around the Marmara Sea by several ferries (Fig. 5a).

In the Marmara Sea, it is not easy to deploy, for instance, argo floats or gliders close to the surface since there is heavy ship10

traffic. However, the infrastructure for a ferrybox network is already available. The ferrylines in the Marmara Sea cover most
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of the eastern basin including the Marmara Sea exit of the Bosphorus. Using the ferry network as a monitoring system would

be an efficient way to build a sustainable ocean observing network in the Marmara Sea.

Some existing state-of-the-art ferrybox networks are discussed by Petersen (2014). Usage has increased since the European

network for ferrybox measurements project1, especially in the northern European seas. In the Mediterranean, there is a ferrybox

system between Piraeus and Heraklion (Korres et al., 2014) operated by Hellenic Centre for Marine Research (HCMR). A5

ferrybox is mainly includes temperature, salinity, turbidity and chlorophyll-a fluorescence sensors, and a GPS receiver for

measuring position. Oxygen, pH, pCO2 or algal groups as well as air pressure, air temperature and wind sensors can also be

installed (Petersen, 2014). The ferrybox observations can be used for analyzing the state of the ocean (Seppälä et al., 2007),

comparison with other instruments (Sørensen et al., 2007) and can also be assimilated to improve the state of the ocean models

(Grayek et al., 2011).10

The sampling rate of the data can can vary between systems. The data used in Grayek et al. (2011) is sampled at 10 s

intervals. For our OSSE, we use a sampling rate of 1 min. following Korres et al. (2014). The synthetic observations are

obtained from hourly NR outputs at varying spatial locations so as to remain within one minute time intervals along the track

of the ferries. The depth of the sampling is set to 5 m, an average depth given by Grayek et al. (2011). A random error, sampled

by a gaussian around zero mean and standard deviation of 0.1◦C for temperature and 0.04 psu for salinity, is added to each15

synthetic observation following Aydoğdu et al. (2016) in order to simulate realistic measurements taking the instrumental error

into account. These synthetic observations are the same for each ensemble member i.e. the kalman filtering is not stochastic

in which observations are perturbed. On the other hand, observational error matrices in the Kalman gain are chosen to be

uncorrelated and constant diagonal with 0.5◦C and 0.25 psu for temperature and salinity, respectively, as proposed by Grayek

et al. (2011) considering other sources of error such as representativeness.20

(a) (b)

Figure 5. a) The routes of the intercity ferrylines from Istanbul and to Istanbul suggested by the operating company IDO

(http://www.ido.com.tr). b) Approximate unidirectional ferry tracks. The legend shows the direction of the ferries. The section A-B is used

only for impact assessment against the NR. Triangular mesh of the model is underlaid.

1http://www.ferrybox.org
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Route Location Distance Speed Duration Departure Time

Yenikapi 28.956E-41.002N 09:45,15:45,21:45

| 46.2km (28.7mi.) 23 kn 75 min.

Yalova 29.274E-40.661N 07:15,13:45,19:45

Yenikapi 28.956E-41.002N 07:30

| 110.0km (68.5mi.) 27 kn 150 min.

Bandirma 27.967E-40.354N 18:30

Ambarli 28.676E-40.966N 20:00

| 70.0km (43.2mi.) 12 kn 210 min.

Topcular 29.434E-40.690N 16:00
Table 1. The unidirectional ferry tracks used in this study. The locations, distance between the ports, speed of the ferries, the duration of the

cruise and time of departure from each port are listed.

Three different ferry routes are chosen from the map in Fig. 5a, and their tracks are approximated by observing from the

real-time Marine Traffic2 application (Fig. 5b). The longest duration for a cruise in the eastern Marmara Sea is about 3.5

hours between Ambarlı-Topçular (Table 1). Another transect used here is YeniKapı-Yalova which takes about 75 min. and

has cruises every two hours from each port. This route directly crosses the Bosphorus outflow and has the highest number of

cruises a day. Therefore, we include six ferries in various periods of the day for YeniKapı-Yalova transect. The last transect5

chosen is Yenikapı-Bandırma crossing the Marmara Sea from north to south. The navigation on this line takes about 2.5 hours.

This transect is the only one that has direct impact in the southern basin. The resulting synthetic temperature and salinity

observations sampled from the NR for the first day are shown in Fig. 6.

(a) (b)

Figure 6. Synthetic a) temperature and b) salinity observations on 1 January 2009 sampled from the NR.

2https://www.marinetraffic.com
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4.3 Experiments

Two experiments are performed as an initial evaluation for the data assimilation studies in the Marmara Sea (Table 2). The first

experiment FB001 is a reference experiment without assimilation. It is used to evaluate the errors when the synthetic observa-

tions are not assimilated. In the second experiment, FB002, all the synthetic observations are assimilated in the corresponding

assimilation window. A six hours width is chosen for each assimilation window, since the area is under the influence of the5

Bosphorus jet which may develop high frequency variability in the water mass structure and circulation at the upper layer,

especially during severe storms and atmospheric cyclone passages.

Start Date End Date Assimilation A.Cycle Evaluation

FB001 01-JAN-2009 00:00 8-JAN-2009 00:00 NONE N/A YES

FB002 01-JAN-2009 00:00 8-JAN-2009 00:00 ALL 6 hr YES
Table 2. Summary of the OSSEs. Start and end date of both experiments are the same. There is no assimilation in FB001 whereas all the

data are assimilated in FB002. Assimilation cycle is 6 hr for FB002.

The horizontal cutoff radius is set to 6.36 km and the vertical cutoff radius is considered as 15 m centered on the observation

location. The mean temperature and salinity increments after the first and third assimilation cycle are shown in Fig. 7a and

Fig. 7b, respectively. As can be seen from the temperature corrections after the first cycle, the whole track of the Yenikapı-10

Bandırma route is not assimilated at once since the southern section of the data is not in the current assimilation window.

Moreover, the updates on the salinity fields are smaller around 20 m (Fig. 7b), compared to the upper layers (not shown) closer

to the observation locations.

(a) (b)

Figure 7. Mean increments after assimilation for a) temperature at 01-01-2009 06:00 at 5 m depth and b) salinity at 01-01-2009 18:00 at 20

m depth.
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4.4 Methodology for impact assessment

The DART offers tools to have the control on the data without any difficulty. Each type of observation can either be assimilated

or withheld to evaluate the resulting analyses. DART also provides a rudimentary quality control capability that can reject ob-

servations that are too different from the ensemble mean prior estimate. Synthetic observations are not used in the assimilation

(rejected) if xb − y > TE(xb − y). Here, y is the observation and xb is the corresponding prior mean of the ensemble of5

forward operators. The expected value, E, is computed as:

E(xb− y) =
√
σ2
xb

+σ2
y (1)

where σ stands for the standart deviation. T is chosen as 3 for both temperature and salinity in these experiments considering

the real model errors reported by Aydoğdu (2017).

The first diagnostic we use to assess the impact of the observations is the RMS of innovations which are the root mean square10

of the difference between the prior and observation. We also use horizontal maps of the innovations to determine the spatial

distribution of error.

The OSSE methodology allows various ways to evaluate the analysis since the NR is assumed to be the true state of the

system. We exploit this assumption to compare the experiments with the NR to understand the impact of assimilation better.

One diagnostic we use in this sense is to compare the NR and ensemble mean in the vertical. Although we don’t assimilate15

any data below 5 m and we limit the radius for vertical updates it is important to assess the vertical distribution of the errors

given the strongly stratified water column in the Marmara Sea. For this purpose, we compute the difference between prior

ensemble mean and NR along the transect A-B (see Fig. 5) in the first 50 m depth.

Second diagnostic is the RMS of difference between the prior ensemble mean and the NR computed in the first 10 m of the

water column for the whole basin. The propagation of the error reduction can be traced from the spatial maps of this diagnostic.20

5 Results

Figure 8 shows the time evolution of prior RMS of innovations, ensemble spread and total spread for temperature and salinity.

The RMS of salinity innovations continuously grows in FB001. It fluctuates around 2 psu and reaches to 2.4 psu at the end of

sixth day. In FB002, assimilation of the observations decrease the RMS of innovations, significantly. The RMS of innovations

is generally below 1.2 psu. Although there is an increase of error in the first two days a gradual reduction takes place in the25

following days. The RMS of temperature innovations behaves similarly to that of salinity after the second day. The error grows

in FB001 even though the trend is not as obvious as in salinity errors of the same experiment. The analysis is improved at

the end of experiment FB002 compared to FB001. The range of errors are comparable to the real model errors with respect

to in-situ observations as demonstrated by Aydoğdu (2017). Another important result is that the ensemble still has spread

comparable to the RMS errors at the end of the experiments (larger in FB001). In other words, the ensemble didn’t collapse30

after a week of assimilation. We recall that the ensemble spread is maintained by perturbing the background vertical diffusivity.

The method seems promising at least for a week long period.
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(a) (b)

(c) (d)

Figure 8. Timeseries of prior RMS of innovations, spread and total spread of salinity (top) and temperature (bottom) for FB001 (left) and

FB002 (right). The statistics are computed in the location of the observations used in the corresponding assimilation cycle. The spread is the

square root of the variance. Total spread is the square root of the observational error added to the variance. Vertical axis shows the range of

each statistics indicated in the legend. Bottom panel of each figure shows the number of available observations (Nposs) in each assimilation

cycle. For the assimilation experiment, FB002, Nused and Nout show the number of assimilated observations and outliers, respectively. For

the experiment without assimilation, FB001, they are the number of observations which would be assimilated or rejected, respectively, in

that specific assimilation cycle if assimilation was performed.

As discussed in section 4.4, the data are subjected to a quality control before assimilation. The bottom panels of Fig. 8

shows the number of available observations (Nposs), number of used observations (Nused) and number of outlier observations

(Nout). The decrease in the number of outlier observations in FB002 points out an improvement also in the regions in which

the innovations are larger as can be deduced from Fig. 9.

In the last day of experiments (Fig. 9), the salinity innovations are better almost everywhere in FB002 compared to FB001.5

There is a significant reduction in errors in the northern basin. Assimilation decreases the number of outlier salinity observa-

tions especially on the route between Yenikapı and Yalova. Moreover, innovations are also improved to a lesser extent in the

southern basin where fewer observations are assimilated. The number of outlier temperature observations is very small in both
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(a) (b)

(c) (d)

Figure 9. Horizontal distribution of salinity (top) and temperature (bottom) innovations along the ferry tracks in 7 January 2009 for FB001

(left) and FB002 (right). Observations with a innovation out of the range ±3 are considered as outliers.

experiments. Overall, the assimilation of temperature and salinity observations in the selected transects notably helps to correct

the water column above the pycnocline.

The improvement of the analysis is also noticed in remote areas such as the A-B transect in the central basin (see Fig. 5).

Figure 10 shows the difference between the truth and prior state down to 50 m depth along the A-B transect after the last assim-

ilation cycle. Comparison of salinity differences in FB001 and FB002 reveals the improvement in the northern section down5

to 15 m depth. The southern part away from the coast also gets better. The middle of the transect still has large discrepancies

in both experiments at the end of seven days. The correction in the remote area suggests a mechanism related to the outflow

of the Bosphorus and the surface circulation of the Marmara Sea. The water masses which are corrected by assimilation in the

eastern basin are pushed towards the west and reduce the error.

Figure 11 depicts the RMS of the difference between NR and prior ensemble mean salinity at the first 10 m depth. It clearly10

supports the mechanism suggested above. The distribution of RMS of differences in the non-assimilation case shows that the

Bosphorus outflow also has some capability to reduce the difference since the Black Sea water masses govern the upper layer
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(a) (b)

(c) (d)

Figure 10. Vertical distribution of salinity (top) and temperature (bottom) difference between the NR and the prior ensemble mean along the

cross-section A-B (see Fig. 5) in 7 January 2009 for FB001 (left) and FB002 (right).

of the Marmara Sea (Fig. 11a and 11c). These two snapshots from the fifth and the last day of the FB001 show the error

reduction in some regions due to the dynamics. Therefore, the conclusion that the improvement is due to the assimilation is not

straightforward. However, comparison of the FB001 and FB002 reveals the role of the assimilation of ferry tracks on the error

reduction, clearly. In the fifth day, lower RMS of differences in FB002 (Fig. 11b) extend towards the eastern-most part of the

basin which is absent in FB001 (Fig. 11a). The westwards propagation is more pronounced in the last day in FB002 (Fig. 11d)5

compared to FB001 (Fig. 11c). The central basin has lower errors almost everywhere in the north-south orientation including

the A-B transect shown before.

Temperature fields are already closer to the NR in the fifth day even in the western basin (Fig.12). After seven days of assimi-

lation, the temperature error in the Bosphorus plume is significantly reduced. The southern and central basin has improvements

as much as 0.5◦C locally.10

Finally, Fig.13 compares FB001 and FB002 in terms of salinity fields overlaid with corresponding circulation at 5 m. depth

on 7 January 2009 at 00:00. The salinity differs significantly between the two experiments especially along the southeastern

coast, while there is very little change in both qualitative and quantitative terms in the horizontal circulation, namely the
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(a) (b)

(c) (d)

Figure 11. RMS of the difference between NR and prior ensemble mean salinity at the first 10 m. Comparison of FB001 (left) and FB002

(right) are shown for 5 January 2009 (top) and 8 January 2009 (bottom). RMS of difference is higher than 2 psu in the gray areas.

current speed and direction, in the affected region that can be attributed to assimilation. The effect of assimilation is more

pronounced in terms of the property fields, which alternatively indicates changes in stratification and vertical mixing along the

southern coast. This can be seen also in the comparison of the experiments (Fig.13) with the nature run (Fig.A1b) which shows

that salinity in the FB002 is closer to the nature run than FB001 where the synthetic observations are assimilated. However,

circulation is always more intense in the nature run compared to both experiments but with similar circulation pattern.5

6 Summary and Discussion

We have described data assimilation experiments performed in the Marmara Sea. The main characteristics of the TSS have

been summarized. For the study, a general ocean circulation model, FESOM and an ensemble data assimilation framework,

DART have been coupled. The implementation of the data assimilation scheme has been reported.

The TSS is an important water passage for the oceanography of the neighboring Black and Aegean Seas. It also has important10

impacts on their ecosystem by maintaining the exchange of water masses and nutrients. The high population in the cities
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(a) (b)

(c) (d)

Figure 12. RMS of the difference between NR and prior temperature at the first 10 m. Comparison of FB001 (left) and FB002 (right) are

shown for 5 January 2009 (top) and 8 January 2009 (bottom). RMS of difference is higher than 1◦C in the gray areas.

(a) (b)

Figure 13. Salinity overlaid with current fields at 5 m. depth, obtained from experiments a) FB001 and b) FB002 on 7 January 2009 at 00:00.
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surrounding the TSS and intense marine traffic through the passages add social and economic reasons to monitor the TSS in a

sustainable way.

Real observations in the TSS have been obtained by dedicated projects for short time periods or have limited spatial cover-

age. Moreover, the satellite measurements are still low-resolution for monitoring and assimilation purposes. In this study, we

proposed a sustainable marine monitoring network using the ferrylines in the eastern Marmara Sea. We think that equipping5

the ferries which operate daily everyday from Istanbul to various cities around the Marmara Sea with temperature and salinity

sensors can provide immense amounts of data both in time and space. Given this motivation, we tested a ferrybox network

including some of the ferry transects in the basin.

The OSSE methodology has been used to assess the impact of ferrybox measurements. We tried to satisfy the main criteria

determined by approximately forty years experience of the atmosphere and ocean communities. However, it was still not10

possible to perform an observing system experiment (OSE) using real observations to compare with OSSE due to the lack of

data during the experiment period.

The results of the two experiments presented here are promising. We showed that the assimilation of the salinity and tem-

perature observations significantly improve the analysis in the Marmara Sea. The Bosphorus jet has an important role in the

propagation of the error reduction towards the western basin where no data is assimilated. Moreover, the Marmara Sea circula-15

tion helps to improve the southern basin even for short timescales. The lower layer doesn’t show any response to assimilation

since a vertical localization around the observations around 5 m is applied to keep the impact in the upper layer as much as

possible. Moreover, the stratification between the upper and lower layers is too strong so that it prevents the interaction be-

tween the two layers. Assimilation of temperature and salinity observations doesn’t alter the circulation in the Marmara Sea

significantly within the experiment period.20

In conclusion, the results encourage further data assimilation studies in the Marmara Sea. The investigations can be extended

to different observing systems, different areas of the sea or different dynamical focuses. Moreover, we believe the unique

dynamics of the system demonstrated its ability to be a good natural laboratory for future data assimilation studies.

Appendix A

A125

The OSSE is performed in a fraternal twin setup as discussed in section 4.1. The nature run (NR) and forward model (FM)

are integrated using similar model configurations, but different surface salinity boundary conditions. The NR and FM use the

boundary condition A1a and A1b, respectively.

Kv∂zS
∣∣
z=η

= γ(S∗ −S0)−Scorr (A1a)

Kv∂zS
∣∣
z=η

= S0(E−P −R)+ γ(S∗ −S0)−S∗
corr (A1b)30
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In the boundary conditions (A1a) and (A1b), S0 and S∗ are the surface salinity and the reference salinity, respectively, γ is

the relaxation coefficient. Scorr and S∗
corr are correction terms applied to the salinity corresponding to boundary conditions

(A1a) and (A1b), respectively. The correction term is required for mass conservation in a closed lateral boundary model and

discussed extensively in Aydoğdu (2017).

(a) (b)

Figure A1. a) Daily mean timeseries of sea surface temperature (SST), sea surface salinity (SSS), volume temperature (VT) and volume

salinity (VS) in the Marmara Sea obtained from the nature run throughout the experiment period between 1-7 January 2009 b) Salinity

overlaid with current fields at 5 m. depth, obtained from nature run on 7 January 2009 at 00:00

In Fig.A1a, the daily timeseries of the temperature and salinity are presented . The surface mean temperature and salinity5

show slight variability between 1-7 January 2009. The salinity field overlaid with circulation at 5 m. depth on 7 January 2009 at

00:00 is shown in Fig.A1b. Low salinity water coming from the Black Sea occupies the area close to the Bosphorus Strait. High

salinity near the southern and eastern coasts implies an upwelling of the Mediterranean origin water in the lower layer. The

circulation in NR actually favours upwelling and is dominated mainly by westward currents with two anti-cyclones, one in the

northern basin and the other generated by the Bosphorus jet. The NR is more saline compared to the experiments FB001 and10

FB002 (see Fig.13) which are performed using the FM. This is because of the water flux term in the surface salinity boundary

condition used in FM. However, both model configurations are realistic as discussed in Aydoğdu (2017).
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