
Relevant changes made to the manuscript 
 
The following is a list of the major changes made to the manuscript in response to the 
reviewer’s constructive feedback: 
 
- Changed the title of the manuscript from “Instabilities within Rotating mode-2 Internal Wave” 
to “Multi-scale phenomena of rotation modified mode-2 internal waves”. 
- Improved the motivation for the Schmidt number dependence section. 
- Clarification of the use of the term DNS. 
- Additional comments regarding the characterization of the leading wave. 
- Expanded the discussion on the applicability of the resolution used in our simulations. 
- Compared the length and times scales of the shear instabilities for different cases. 
 



Reviewer 1 Response

David Deepwell, Marek Stastna, Aaron Coutino

January 30, 2018

We thank the Reviewers for their comments. We have responded to all comments, and where
applicable have added in their feedback into the article. Reviewer comments are in bold font,
responses are in normal font.

Page 3, Line 11: I do not think the authors conducted DNS as they claim in line 11.
For such kind of simulations the grid step should be at the level of the Kolmogorov’s
scale, but there are no details on both in the text. And what about numerical viscosity?
With quite a coarse grid it can be several order higher than the molecular viscosity,
2⇥ 10�6m2/sec, as claimed in the paper.

The text has been modified to include the following paragraph addressing this issue: “We have
run a series of direct numerical simulations (DNS) in a setup similar to that of Maxworthy (1983),
who employed a gravity intrusion from a lock release in a rotating, rectangular tank to generate
mode-2 waves. Since the flow develops from a state of rest the precise definition of the term “Direct
Numerical Simulation” from the turbulence literature, namely that grid spacing must be smaller
than the Kolmogorov microscale, cannot be directly translated to the present situation. We define
DNS in the sense commonly adopted in the stratified flow modeling literature, with Arthur and
Fringer (2016) providing a concrete example. These authors state that DNS is a three-dimensional
simulation which has a grid spacing which is “within approximately one order of magnitude of the
Kolmogorov length scale”. The Kolmogorov scale for transitional flows is defined in an ad hoc
manner, usually via the explicit calculation of the viscous dissipation rate. The grid scale of our
simulations is comparable to this usage since it is within an order of magnitude of the Kolmogorov
scale defined from the maximum local dissipation rate. Moreover, our numerical method is spectral,
and hence higher order than that used in Arthur and Fringer (2016). The spectral filter used control
aliasing applies only to the largest 30% of wavenumbers and leaves the majority untouched, and no
subgrid scale model as in Large Eddy Simulation (LES) is used. In the absence of a better term,
DNS will be used throughout.”

Page 4, line 8: The authors take the first-mode phase speed as the velocity scale,
although the whole model set-up is for the 2nd mode experiments. Does this make
sense?

The presented velocity scale is the correct mode-2 phase speed rather than the mode-1 phase
speed. We have clarified this point in the manuscript to remove further confusion.

I’m not sure I understand the meaning of two concepts, cw and aw. They are
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introduced in line 2 on page 4 in a very general way, without clear explanation how do
they relate to the model set-up. However, they appear in table 2 as input parameters.
What is the link of these values with the tank experiment parameters (size scales,
stratification parameters, rotation, etc)?

cw and aw are characterizations (not initial parameters) of the resultant mode-2 ISW which
describe the measured amplitude and wave speed along the focusing wall. aw is related to the
depth of the initial perturbation, Hm, while cw is amplitude dependent. aw and cw have maxima
along the focusing wall and have their values decrease along a normal to this surface. The choice of
aw and cw was made following Maxworthy (1982). We have included a short discussion and included
additional references on how these parameters are associated with tank experiment parameters.

And why the wave speed, as it is introduced on page 4, is larger than the fastest
mode 1 wave speed c0? It seems to me the authors did not pay much attention how
their paper will be accepted by the readers.

The wave speed is faster than the linear, mode-2, long wave speed because these waves are
highly non-linear and have a strong amplitude dependence. This is a result for finite amplitude
mode-2 waves (see Terez and Knio (1998), Brandt and Shipley (2014), or Salloum et al. (2012)).
For clarity, we have added a comment about the amplitude dependence of the wave speed which
leads to this larger value.

Relatively minor, but important: The presented on page 5 system is not the NS-
system as stated.

We have fixed this.
Please, be careful defining the total water density and its perturbations. Secondly,

the temperature, salinity and the EoS are the constituents of the NS-type system, but
not the density perturbation (find also a mistake in the first eqn.)

We have explained the set of governing equations used and their relation to the set of equations
believed to apply to the oceanic situation: “The equations used di↵er from the oceanic situation
in that we take the density as a variable to be evolved, where as in the ocean it is the salinity
and temperature that evolve, with density recovered from an equation of state. The nonlinearity
of the equation of state leads to a variety of complex phenomena (e.g. salt fingering, cabbeling,
the fact that pure water has a density maximum at 4 degrees Centigrade, etc). In the laboratory,
density changes are typically imposed by variations in salinity with the temperature held fixed. Our
formulation mirrors this situation, though the experimentally observed di↵usivity of salt proves too
low for inclusion in the numerical simulations.”

The set of equations we use is standard throughout the literature, but the distinction with the
oceanic situation is worth discussion.

I’m not sure why do the author change the Sc number? They call it the Schmidt
number (why not the Prandtl number?, but never mind) and vary it from 1 to 10. This
does not make any sense if the authors conduct their experiments for the laminar-size
grid. The viscosity and di↵usivity coe�cients are constant at the Kolmogorov scale
level (laminar!!), so why the authors considered their ten times variation (Table 2)?
What is the idea behind that?

We have rewritten the introduction so as to have the reason for varying the Schmidt number
be clear at the outset. An extract from this paragraph reads: ”In terms of the numerical modeling
literature, we are interested in exploring how the Schmidt number (or Prandtl number in thermally
stratified systems) a↵ects the localized shear instabilities generated near the Kelvin wave crest. This
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is important since Schmidt numbers representative of salt stratification (Sc ⇡ 700) are presently
intractable for numerical simulations on all but the smallest scales, but realistic results may be
obtained by choosing a Schmidt number larger than that for a heat stratified system (Sc ⇡ 7)
but much smaller than that of salt. It also implies that while field scale simulations like those
of Sanchez-Garrido and Vlasenko (2009) may have a similar Rossby number to an experimental
study, they cannot have the same viscosity and di↵usivity, implying that experimentalists need to
carefully assess what aspects of such simulations they may successfully observe in the laboratory.”

Finally, what is the spatial grid resolution after all? Looking at Table 3 I can see it
is at the level of 10�3 m (i.e. 1mm), which is small, but does not tell me whether this is
small enough for replication of the laboratory-scale experiments and the background
mixing. Maybe yes, but the text in its present state is not convincing enough for me.

We have added “For the resolution listed in table 3, the strongly stratified region of the back-
ground stratification contains approximately, 2h/�z ⇡ 33 points, while the entire stratification
has approximately 140 points. Small scale features in the transitional flow typically are a couple
centimetres in diameter and contain about 20 points. The applicability of the stated resolution
was also found by comparing the grid scale to the Kolmogorov scale which we define using the
maximum local energy dissipation rate. In all cases the maximum grid resolution is within an order
of magnitude of the Kolmogorov scale. Thus, our simulations are well resolved.”

No details are provided how the initial ISW was created. Figure 1 does show the
initial installation, and I can believe that in the vertically symmetrical case the leading
ISW is a second mode wave, but it really takes time to form in the front of the wave
field. Is 6.4m tank long enough to form it? When the rotation has been switched on?
Right in the beginning of the experiment? What is the idea of all these experiments?
I would accept the method of initial wave formation and initiation of the rotation
after that to learn the e↵ect of rotation, but all the details must be explained. I’m
really confused without the correct setting of the experiment conditions. Lines 15-25
on page 6 do not bring any clearance on this point.

It was assumed that a reader either has a prior knowledge of tank scale mode-2 experiments or
is prepared to follow some of the references provided, but obviously this needed to be cleared up.
Based on the reviewer comment, we have ensured that some discussion of the lock-release generation
method is provided and that su�cient references have now been given which explain in detail the
process by which the ISW is formed. For the initial conditions of the manuscript, the resultant
mode-2 ISW is essentially formed within a meter of the collapse region. This is su�ciently quick
and leaves the majority of the tank to be used as the domain for the rotation a↵ected ISW. The
rotation is present from the moment the simulation begins (as would be the case in a laboratory
realization of our numerical set up). Lines 15-25 on page 6 describe a way to measure the location
of the wave front in the x-y plane by tracking the kinetic energy. This is used to show the span-wise
variation in the ISW rather than the vertical variation which is normally done.
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Reviewer 2 Response

David Deepwell, Marek Stastna, Aaron Coutino

January 30, 2018

We thank the Reviewers for their comments. We have attempted to respond to all com-
ments. In the case of Reviewer 2, some very insightful comments require computational re-
sources/computation time beyond the one-month revision period and we have taken these as sug-
gestion for future work. Reviewer comments are in bold font, responses are in normal font.

1 Major comments

There is no comparison between the numerical results and field observations, or at-
tempts to suggests how and where the processes discussed in this manuscripts could
be observed in nature. I think is relevant to motivate the readers with some realistic
applications of the paper’s outcomes. For instance, the authors might compare their
numerical experiments in the absence of rotation with the laboratory experiments per-
formed by Carr et al. (2015), since they have collaborated on recent work (Deepwell
et al. 2017).

The reviewer is correct that we were not very clear on this point. We have added a paragraph to
the introduction that outlines where we see our study in terms of field, experimental and numerical
approaches:

“Results on non-rotating mode-2 ISWs, especially with regards to their mass transport capa-
bilities (Deepwell and Stastna (2016), Salloum et al (2012), Brandt and Shipley (2014), Terez and
Knio (1998)), are readily available and there is considerable contact between the experimental and
numerical modeling literature. This is exemplified by recent progress on quantifying the e↵ects of
displacing the pycnocline center from the mid-depth (Carr et al. (2015), Olsthoorn et al. (2013)).
In contrast, mode-2 ISWs in a rotating reference frame have been document experimentally by
Maxworthy (1983), but no high resolution numerical simulations that provide concrete examples of
phenomena future experimental e↵orts could aim to document exist. We provide such simulations
below, with a focus on the overturning induced by the rotation modified ISW (or Kelvin wave,
depending on one’s choice of terminology) at the focusing boundary.

Our primary qualitative results that could be confirmed in the laboratory concern the funda-
mentally three dimensional nature of the shear instability at the edges of the mode-2 wave’s core,
and the the details of the spatial structure of the span-wise kinetic energy flux. The former could
be visualized by a PIV system with a light sheet oriented in the span-wise direction, while the
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latter could be characterized by the more usual along-tank PIV set up. Moreover, the quantitative
results of the Kelvin wave-Poincaré wave resonance and the formation of secondary Kelvin waves
in our simulation should provide an easier comparison than field oriented simulations such as those
of Sanchez-Garrido and Vlasenko (2009). In terms of the numerical modeling literature, we are in-
terested in exploring how the Schmidt number (or Prandtl number in thermally stratified systems)
a↵ects the localized shear instabilities generated near the Kelvin wave crest. This is important
since Schmidt numbers representative of salt stratification (Sc ⇡ 700) are presently intractable
for numerical simulations on all but the smallest scales, but realistic results may be obtained by
choosing a Schmidt number larger than that for a heat stratified system (Sc ⇡ 7) but much smaller
than that of salt. It also implies that while field scale simulations like those of Sanchez-Garrido and
Vlasenko (2009) may have a similar Rossby number to an experimental study, they cannot have the
same viscosity and di↵usivity, implying that experimentalists need to carefully assess what aspects
of such simulations they may successfully observe in the laboratory.”

The authors do not discuss the implications of the free-slip boundary conditions
adopted in their numerical experiments; this is the case of Maxworthy (1983). For
instance, how does the growth of shear instabilities near no-slip walls would change
the results?

Free slip boundaries are the commonly adopted first choice in numerical studies. No slip bound-
aries, and the clustered Chebyshev grids necessary to resolve them, would greatly increase the ex-
pense of the simulations. We believe that a no-slip boundary condition will have minimal impact
on the Kelvin wave and on the shear instabilities near the wall, because the length scales of these
instabilities are significantly larger than the boundary layer thickness. We have added a comment
to the text, but carrying out no slip simulations is certainly an important future direction.

The authors explore only one background stratification aspect ratio h1=h2, h,
with di↵erent wave amplitudes. I wonder why they did not explore other background
stratification. I would expect that in nature an upper layer thinner than a deep
layer, or vice-versa. It might be interesting to explore how the asymmetry in layer
thicknesses would change the growth and structure of K-H like instabilities.

It is correct that nature typically has stratifications which consist of a thick deep layer and a
thinner upper layer, but this break in the symmetry of layer depth leads to far more complicated
behaviour (see Olsthoorn et al. (2013) and Carr et al. (2015)) coupling mode-2 and mode-1 wave
generation. We decided, as many authors have in the literature on mode-2 ISWs, to begin with
the simple first case of equal layer depths. We have included a comment on this in the article, and
mention that unequal layer depths is a possible avenue for further investigation.

The title of the article suggests that the focus of the manuscript is the transition to
turbulence driven by second vertical mode internal waves in a rotating environment,
but the paper is more general than this title. The paper examines the macro- and
micro-scale processes driven by the degeneration of second vertical mode solitary
waves in a rotating and bounded stratified flow. I would suggest the authors think of
a di↵erent title.

The title has been changed to “Multi-scale phenomena of rotation modified mode-2 internal
waves”.
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2 Specific Comments

1. In the introduction, one would also cite the work by Moum et al. (2003) or more
recent observations by Zhang and Alford (2015), and for motivations, for instance,
Cuypers et al. (2010).

We have added references to these articles in the introduction.
2. On page 2, between 20 and 25, I would mention the results obtained by Melville

et al. (1989).
We have done so. This was a necessary inclusion in this article.
3. How did you estimate that a single turbulent patch has a vertical extent of about

40 cm, where are the 25 points coming from? Vertical grid points? Are the authors
making a reference to Ulloa et al. (2015)’s paper?

Yes, we are referencing Ulloa et al. (2015) in measuring their turbulent patch. We estimated
that the vertical extent of the patch was 0.04 m. With a vertical grid spacing of 1.55 mm this
would give a total of 25 grid points in the region. We have decided to remove the discussion on
the resolution of the turbulent patch since it doesn’t add anything to the current article and makes
sense to revisit in future work.

4. Subsections 1.1 and 1.2: Why equations are not enumerated? Please, enumerate
them.

We have done so.
5. Page 3, paragraph 20: It seems obvious, but the authors could write that the

domain is Lx x Ly x Lz = 6.4 m x 0.4 m x 0.3 m, or something like that.
We have done so.
6. Table 1: Missing units of z0 and h; both variable should be defined and schema-

tised in Figure 1.
The definition and units of the variables have been included. The schematic has been unchanged

since the addition would cause too much clutter to the plot.
7. Page 4, paragraph 10: ’ ... we attempt to carry out a Direct Numerical

Simulation (DNS) ... ’. Concerning this sentence, what is the Kolmogorov scale
of the numerical experiments? What is the Ozmidov scale? If authors are solving
the Kolmogorov scale, please take the word ’attempt’ out of the sentence, otherwise
explain further.

The text has been modified to include the following paragraph addressing this issue:
“We have run a series of direct numerical simulations (DNS) in a setup similar to that of

Maxworthy (1983), who employed a gravity intrusion from a lock release in a rotating, rectangular
tank to generate mode-2 waves. Since the flow develops from a state of rest the precise definition of
the term “Direct Numerical Simulation” from the turbulence literature, namely that grid spacing
must be smaller than the Kolmogorov microscale, cannot be directly translated to the present
situation. We define DNS in the sense commonly adopted in the stratified flow modeling literature,
with Arthur and Fringer (2016) providing a concrete example. These authors state that DNS is a
three-dimensional simulation which has a grid spacing which is “within approximately one order of
magnitude of the Kolmogorov length scale”. The Kolmogorov scale for transitional flows is defined
in an ad hoc manner, usually via the explicit calculation of the viscous dissipation rate. The grid
scale of our simulations is comparable to this usage since it is within an order of magnitude of
the Kolmogorov scale defined from the maximum local dissipation rate. Moreover, our numerical
method is spectral in all directions, and hence formally higher order than that used in Arthur
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and Fringer (2016). The spectral filter used to control aliasing applies only to the largest 30% of
wave numbers and leaves the majority untouched, and no subgrid scale model as in Large Eddy
Simulation (LES) is used. Based on these considerations, and in the absence of a better term, DNS
will be used throughout.”

8. Page 4, paragraph 10: Did Sanchez-Garrido and Vlasenko (2009) define in the
same way the Rossby number? It seems that their Rossby number is almost twice
smaller than the smaller Ro considered in this work.

Sanchez-Garrido and Vlasenko (2009) do not define a Rossby number or Rossby radius of
deformation. An estimate based on the latitude, wave speed, and channel width does give a
smaller Rossby number than the one we present, however, we are not attempting to make a direct
comparison to a specific geographic region. Comparison to experiments such as those carried out
by Grimshaw et al. (2013) gives similar Rossby numbers.

9. Table 2 is referenced in page 4; so far there is no clear explanation about how cw
and aw were estimated. The authors explained these parameters were parametrised
on the wall, y = 0 m, and the amplitude was defined before the formation of instabil-
ities. Was the emergence of interfacial instabilities defined by visual inspection of the
isopycnals? How was then estimated the phase speed, cw? This matter requires a bit
of further explanation.

The initial discussion of these parameters was fairly terse, and we have now expanded their
discussion and included a reference to a schematic in a previous paper. The main points (as they
are now in the paper) are: aw is measured as the average maximum displacement from the upstream
value of the isopycnal ⇢(z0 ± h). cw is the speed of the location of this maximum displacement.
Yes, the instabilities were visually inspected from the density field.

10. Subsection 1.2: I would suggest rewriting the description of the governing
equations. I would suggest something like ’our numerical model solve the Boussinesq
equations of motion on an f-plane ...’. ’stratified Navier-Stokes equations’ sounds a
bit unusual.

We have done so.
11. Page 5, paragraph 15: Is SPINS the acronym given to the numerical solver or

is a general pseudo-spectral method?
SPINS is the acronym for the numerical solver. We have fixed the typo in calling it a method

as it is actually a particular solver.
12. Page 6, paragraph 5: What type of computational resources were used to

perform the numerical experiments (machine, number of cores, computational time)?
A typical run completed in approximately 3 days on 64 processors on Compute Canada resources

(SHARCNET). The higher resolution cases required significantly more resources, approximately two
weeks using a combination of 64 and 128 processors (either number was used on a restart). Data
analysis requiring a day or two added additional computation time. The supercomputer cluster is
mentioned in the Acknowledgments.

13. Page 6, paragraph 5: How many vertical grid points does the numerical ex-
periment use to solve the peaks of the square of the buoyancy frequency, N2, on
the initial solitary wave? I would include this information to show that the density
transitions are well solved. For instance, the vertical length-scale of the pycnocline
thickness in the wavefront, h, is solved by around 17 and 36 grid points each vertical
grid resolution, respectively.
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Yes, we should have discussed the resolution of the stratification. We have added the following
sentences to clarify this: ”For the resolution listed in table 3, the strongly stratified region of the
background stratification contains approximately, 2h/�z ⇡ 33 points. The entire stratification has
approximately 140 points, and is thus well resolved.”

14. Section 2. The authors start refereeing the work of Maxworthy (1983). Sim-
ilarly to ?, I would compute the relationship between wave amplitude, Aw, phase
celerity, cw, and the dependence with the controlling parameter, the Rossby num-
ber (and later with the Schmidt number). These results can be discussed along with
Figure 3.

Based on the information in table 2 we have added the following discussion: “The wave speed,
measured as the speed of the location of the maximum displacement, is independent of the rotation
rate and has a value larger than the linear long wave speed due to the large amplitude nature of
these waves. The amplitude is only weakly dependent on the rotation rate or Rossby number.”

15. Equation 1. The definition of ⇠ does not allow a quantitative comparison
between the numerical experiments. I would recommend using a scaling that allows
comparison.

We are concerned with comparing the geometric structure of the waves between di↵erent simu-
lations, thus the maximum-scaled KE is the best choice. We have included the maximum unscaled
values in the caption for comparison.

16. Page 6, paragraph 25. Where does the shear reach its maximum? at ey = 0?
Yes, the shear reaches its maximum at y=0. This has been made clearer in the article.
17. Figure 3: I would include the Rossby number for each experiment to show the

background rotation environment along with the resulting wave dynamics.
The Rossby numbers have been added to the figure caption.
18. Section 2 (Page 7, paragraph 5) How did the authors compute the energy par-

tition between Kelvin and Poincar waves? The authors may compute spatial spectra
as a function of time to quantify the energy contained in the spanwise and streamwise
axes.

We agree that the sentence, as written, was confusing. We have replaced it with: “Overall,
the spatial distribution of kinetic energy is dominated by the Kelvin wave front and two secondary
features near the focusing wall.” This re-write is based on the observations made in figure 3. We
note that because of the curvature of the Kelvin wave front, a spanwise spectrum will not provide
an accurate representation of the energy.

19. Page 8, paragraph 10. How is this Kelvin-Poincar wave resonance compared
with the one studied by Melville et al. (1989), and the observed by Renouard et al.
(1993). It seems that the train of solitary waves obtained by Ulloa et al. (2015) also
converges to azimuthal secondary Kelvin waves.

In Renouard et al. (1993) the Poincare waves were resonantly generated as the ISW turned at
a right-angled corner. We have added the following sentences:

“Renouard et al. (1986), however, matches our results of Poincare waves being resonantly
generated along the side wall. Melville et al. (1989) also clearly shows that the curvature of the
wave front is due to the combination of a Poincare and Kelvin wave. Our results are in agreement
with both of these results, but now applying to mode-2 ISWs.”

20. Page 9, paragraph 10: Is there any experimental evidence that a secondary
Kelvin wave becomes more energetic and overtakes the leading Kelvin wave? What
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is the relevance of this phenomenon? This might be possible to show, for instance, by
using a circular basin such as those used by Wake et al. (2005) and Ulloa et al. (2014).
However, this would be a di↵erent problem. I think the authors should emphasize the
relevance and implications of having secondary Kelvin waves in the system.

We are unaware of any experimental evidence showing secondary waves surpassing the leading
Kelvin wave. For rectangular geometry, this is likely to remain the case as it takes considerable
time for the transfer of energy to occur. Circular basins are a di↵erent problem with additional
e↵ects due to the curvature of the side walls. We have added this point into the article.

21. Page 12, paragraph 5: Is there any relationship between the internal Rossby
radius of deformation and the length-scale where shear instabilities were found in the
spanwise direction? The authors state that this region is confined to a quarter of the
transversal length-scale, Lz. However, did they observe any change in terms of the
Rossby radii?

Yes, the Rossby number does play a role in determining the length-scale of the instabilities.
We’ve added a discussion on this result.

22. Page 12, paragraph 10: Why did the oscillatory K-H like billows disappear
once the vertical resolution was increased? Any further thought? What was the
most critical wavenumber in both cases, when nz = 256, and nz = 512. The authors
could perform a stability analysis to understand the nature of the instabilities and the
growth rate.

For clarity, we note that the billows do not “disappear”, but that small details of their evolution
change. We have begun a more systematic study of even higher resolution simulations of this, and
a number of other, studies in order to unravel some of the subtle ways in which hydrodynamic
instability and numerical viscosity interact. Since such simulations take a long time we have cut
down some of the discussion in the present manuscript. The suggestions given by the reviewer
here will be taken into account in the future study. The background state is quite complex (i.e.
it is not a parallel shear flow, see figure demonstrating non-negligible vertical velocity (in m/s) at
focusing wall in case 10 1 below), and hence a detailed stability analysis, while a good idea, is really
a separate study. (figure 1 here).

23. Page 12, paragraph 10: Regarding the von-Karman like vortices. I would think
that this kind of instabilities is possible to have a physical sense. There is a localised
solitary wave propagating through a mid-layer in an initially quiescent stratified fluid.
If we move on the leading solitary wave on the near-wall zone, the solitary wave feels
there is a streamwise flow in the opposite direction. This scenario leads to a shear flow
that could be similar than the one observed in the generation of von-Karman street
vortices. Could you please give a look at the vertical velocity profile along the core of
the leading wave?

We have added the following: “These K-H billows can also be considered analogous to a von
Karman vortex street. In a reference frame moving with the wave, the background flow is directed
around the wave, much like it is around a cylinder in von Karman’s classical experiment. The
analogy is somewhat limited since the Kelvin wave core is not a solid, and due to the rotation the
core bends backward away from the wall (and hence isn’t a cylinder). Moreover, the instability is a
shear instability, as opposed to a boundary layer separation.” We have looked at the velocity, but
have not included this figure in the manuscript since the density figures makes the vortices quite
apparent. (Figure 2 here)
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24. Page 13, paragraph 5: Is there any clue of baroclinic-like instabilities? Have
the authors observed the vorticity field in the x -y plane?

We have looked at the vorticity field and find no evidence of baroclinic-like instabilities. We
have also done a back-of-the-envelope calculation for the fastest growing baroclinic mode and find
that the scale of the waves in the manuscript is smaller than typical baroclinic disturbances by
more than an order of magnitude.

25. Page 14, paragraph 10: Did the authors compute the local gradient Richardson
numbers on the leading solitary wave zone?

Yes, we did. We have added the following sentence: “Though the Richardson number is not
applicable in the upper and lower layers where there is no vertical density variation, within the
wave core the Richardson number drops below 1/4 around the edge of the mode-2 bulge while the
K-H billows form.”

26. Page 16, paragraph 10: Do the authors think that the channel width plays any
role in the train of solitary-type waves structure and the shear instabilities growth?
If so, please comment.

For the instability of the leading Kelvin wave, the highest rotation rate case shows that the
instability occurs within 10 cm of the focusing wall (approximately a quarter of the channel width
used). Thus in fact a narrower tank would give similar results. Since the trailing Poincare and
Kelvin waves are a result of the leading wave we expect them to have no impact on the shear
instabilities of the leading wave. The width of the channel will, however, adjust the reflection of
the Poincare waves and thus the resonance of the secondary Kelvin wave. This last point has been
included.

27. Page 17, paragraph 10: What grid resolution would be required to solve the
Batchelor scale in a numerical experiment with Sc=700? How far are we to solve this
problem?

Our Kolmogorov scale (as defined from the maximum local dissipation rate) is approximately
2.5e-4 m. The Batchelor scale is therefore approximately 1e-5 m for Sc=700. For our domain size
(6.4x0.4x0.3) this would require about 7.5e14 total points. At our highest resolution we use about
5e8 total points. Hence, we are still a very long way from resolving the Sc=700 case.

28. Page 18, paragraph 10: ’Since the stratification has broadened in this case, the
Richardson number has increased leaving the unstable region for shear instabilities to
form.’ Please, explain better this sentence.

The meaning in this was certainly unclear. We have changed it to read: “The higher di↵usivity
in the Sc = 1 case acts to hinder the production of shear instabilities by quickly di↵using them as
they form.”

29. Results: Schmidt number dependence. What is the message from this section?
In a thermally stratified fluid (Pr=7) we could expect dynamics such as those shown
in Figure 14(a,b).

We were not as clear as we could have been in the purpose of the Schmidt number dependence
section. The following sentences have been included in the introduction to motivate this better.

“In terms of the numerical modeling literature, we are interested in exploring how the Schmidt
number (or Prandtl number in thermally stratified systems) a↵ects the localized shear instabilities
generated near the Kelvin wave crest. This is important since Schmidt numbers representative
of salt stratification (Sc ⇡ 700) are presently intractable for numerical simulations on all but the
smallest scales, but realistic results may be obtained by choosing a Schmidt number larger than
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that for a heat stratified system (Sc ⇡ 7) but much smaller than that of salt. It also implies that
while field scale simulations like those of Sanchez-Garrido and Vlasenko (2009) may have a similar
Rossby number to an experimental study, they cannot have the same viscosity and di↵usivity,
implying that experimentalists need to carefully assess what aspects of such simulations they may
successfully observe in the laboratory.”

30. There is a problem with the references, the doi link is duplicated.
Unfortunately this is a problem with the Copernicus bibliography style. We have done what

we can to fix it.
31. Abstract: I do not understand what does the last sentence mean: ’Comparisons

of equivalent cases with di↵erent Schmidt numbers indicate that while low Schmidt
number results in the correct general characteristics of the modified ISWs, it does not
correctly predict the trailing Poincar wave field or the intensity and duration of the
K-H instabilities’. What is not possible to predict at low Schmidt number (guessing
the authors refer to Sc = 1)? How are the authors predicting the trailing Poincar
wave field and the intensity and duration of K-H instabilities?

We have re-written the abstract to clarify this point. We had unwisely used the word ‘predict’
when ‘model’ would have been a better choice. By this we mean that a low Schmidt number does
not accurately model what we have observed in the higher Schmidt number cases.
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Abstract. We present high resolution, three dimensional simulations of rotation modified mode-2 internal solitary waves at

various rotation rates and Schmidt numbers. Rotation is seen to change the internal solitary-like waves observed in the absence

of rotation into a leading Kelvin wave followed by Poincaré waves. Mass and energy is found to be advected towards the right-

most side wall (for Northern hemisphere rotation)which led to Kelvin-Helmholtz instabilities within
:
,
::::::
leading

::
to
:::::::::

increased

::::::::
amplitude

::
of

:
the leading Kelvin wave that form above and below the

::
and

:::
the

:::::::::
formation

::
of

:::::::::::::::
Kelvin-Helmholtz

:::::::::
instabilities

:::
on

:::
the5

:::::
upper

:::
and

:::::
lower

:::::
edges

::
of

:::
the

::::::::
deformed

:
pycnocline. These

:::::::::::
fundamentally

:::::
three

::::::::::
dimensional

:
instabilities are localized within a

region near the side wall
:
, and intensify in vigour with increasing rotation rate. Secondary Kelvin waves form further behind the

wave from either resonance with radiating Poincaré waves or the remnants of the K-H instability. The first of these mechanisms

is in accord with published work on mode-1 Kelvin waves,
:::
the

::::::
second

:::
is,

::
to

:::
the

::::
best

::
of

:::
our

::::::::::
knowledge,

:::::
novel

::
to

:::
the

:::::::
present

::::
study. Both types of secondary Kelvin waves form on the same side of the channel as the leading Kelvin wave. Comparisons of10

equivalent cases with different Schmidt numbers indicate that while
:::::::
adopting

:
a
::::::::::
numerically

::::::::::::
advantageous low Schmidt number

results in the correct general characteristics of the modified ISWs, it does not correctly predict the
:::::
Kelvin

:::::::
waves,

::::::::
excessive

:::::::
diffusion

::
of

:::
the

::::::::::
pycnocline

:::
and

:::::::
various

::::::
density

:::::::
features

::::::::
precludes

::::::::
accurate

::::::::::::
representation

::
of

::::
both

:::
the

:
trailing Poincaré wave

field or
:::
and

:
the intensity and duration of the K-H

::::::::::::::
Kelvin-Helmholtz

:
instabilities.

1 Introduction15

Over recent decades nonlinear internal solitary waves (ISWs) have been the subject of continuing research due, in part, to

their common presence in coastal waters (Shroyer et al. (2010)and Lamb (2004)
:
,
:::::::::::
Lamb (2004),

::::
and

::::::::::::::::
Zhang et al. (2015)) and

estuaries (Bourgault and Kelley (2003)), and an expanding set of applications, such as plankton and krill transport (Scotti and

Pineda (2004)
::::::::::::::::::
,Cuypers et al. (2010)) or cross-shelf transport (Hosegood and van Haren (2004)). Of particular interest are the

effects that rotation has on these waves, since they have been observed to have lifetimes such that this effect is non-negligible20

(Farmer et al. (2009)). At observation sites such as Knight inset (Klymak and Gregg (2001)) and within the St. Lawrence river

(Mertz and Gratton (2013)), side walls may also impact the propagation of these waves. Indeed, classical linear wave theory

for rotation modified waves demonstrates that the presence of side walls allows a different type of wave to be created, namely

a Kelvin wave.
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The dominant
::::::::
laboratory insights on Kelvin waves in a channel geometry come from the experimental work of Maxworthy

(1983), and Renouard et al. (1987). These authors performed lab-scale experiments in which mode-2 (Maxworthy (1983)) and

mode-1 (Renouard et al. (1987)) Kelvin waves were generated in a rectangular domain. They
:::
Both

:::::::
authors found that though

the wave amplitude increased at the channel wall with increasing rotation rate, the phase speed and shape were comparable

to waves of similar amplitude in the presence of no rotation. The authors also described how the wave amplitude decayed5

exponentially away from the wall, how the wave front was curved backwards, and how the waves decayed as they propagated

away from the generation site due to the generation of inertial waves.
::::::::::::::::::::::::
Melville et al. (1989) followed

::::
this

:::
by

:::::::
showing

::::
that

:::::::
Poincaré

::::::
waves

::
of

::::::::::
comparable

:::::
phase

:::::
speed

::
to

::
a
::::::
Kelvin

:::::
wave

:::
will

::::::::
naturally

:::::::
resonant

:::::
with

:::
the

::::::
Kelvin

:::::
wave,

::::
thus

:::::::
causing

:::
the

::::::::
curvature

::
of

:::
the

::::
wave

:::::
front

:::
and

:::
the

::::::::
amplitude

::::::
decay

::::
away

:::::
from

:::
the

:::
side

:::::
wall.

In Sánchez-Garrido and Vlasenko (2009) the authors discussed numerical simulations constructed to approximately model10

the evolution of mode-1 waves in the Strait of Gibraltar. When the latitude was increased to 60 degrees, the authors found clear

evidence of a secondary tail of Poincaré waves which trailed the leading Kelvin wave and extracted energy from this wave. The

authors also found clear evidence of Mach stems. As this study provides a direct comparison work to our own, its results will

be discussed at various points in the following.
::::::::::
Observation

::
of

:::::::
mode-1

::::
ISW

::::::::
breaking

::
in

:
a
:::::::::::
non-rotating

::::::::::
environment

:::
has

:::::
been

::::::::
presented

::
by

:::::::::::::::::
Moum et al. (2003).

::::
The

::::::
authors

:::::
show

:::
that

::::::::
localized

::::::::
increases

::
in

:::::::::::
stratification

::
(a

:::::::::::
compression

::
of

::::::::::
isopycnals)

::
at15

::
the

:::::
wave

::::
crest

::
is
::::::::
followed

::
by

:::::::::
interfacial

::::::::::
overturning

:::
and

:
a
::::::::::
breakdown

::
to

:::::::::
turbulence.

:

In the simpler case of a rotating fluid adjusting without the presence of side walls, it has been observed that if dispersive ef-

fects are accounted for, a leading solitary wave is created which then breaks down into a nonlinear wave packet as it propagates

(Coutino and Stastna (2017)). Additionally, a geostrophic state is created at the site of the initial condition which oscillates

at a near inertial frequency and radiates waves. Previous work based on hydrostatic equations (Kuo and Polvani (1997)) had20

suggested that the nonlinear waves created would steepen and eventually break, however, when dispersive effects are accounted

for, breaking does not occur and a nonlinear wave packet is generated instead. This effect has been observed in lab scale ex-

periments using the Coriolis Rotating Platform in Grenoble (Grimshaw et al. (2013)). To account for
::::::::::
numerically

:::::
model

:
these

effects the authors used model equations based on the rotation modified Korteweg-de Vries (KdV) or Ostrovsky equation,

which gave qualitatively similar results to the observations. However, these equations do not account for the full nonlinearity25

which accounts for the differences to
:::
and

:::::::::
dispersion.

::::
This

::::::::
accounts

::
for

:::::
some

::
of

:::
the

::::::::::
differences

::::
with

:::
the

:::::
results

::
in
:
Coutino and

Stastna (2017) where the full
:::::::
stratified Euler equations were used.

The work by Fedorov and Melville (1995) showed that if dispersive effects are neglected (when nonlinearity is large)
:
, the

Kelvin waves will break. Specifically, the authors found that rotation delays the onset of breaking by 60%. When the breaking

occurs, it simultaneously forms across the zone of uniform phase that is normal to the boundary. The increase in nonlinearity30

is seen to create a dipole structure in the cross-shelf velocities. On a similar note, (Kuo and Polvani (1997)) note that time to

::
the

:::::
time

::
of breaking depends on both the rotation rate and the steepness of the initial conditions (see their Figure

::::
figure

:
18 for

details). However, it is unclear how a more realistic model with short wave dispersion would modify these results.

There have been a number of studies on Kelvin waves from a model equation approach. Grimshaw (1985) derived a rotation-

modified Korteweg-de Vries (rKdV) equation whose transverse structure is that of a linear Kelvin wave. The author also35
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showed that when rotation is weak, (the internal Rossby radius is much larger than the wavelength of the wave) the evolution is

described by the rotation-modified Kadomstev-Petviashvili (rKP) equation. This was followed up by Katsis and Akylas (1987)

who performed a numerical simulation of these equations and found that the wave amplitude varied exponentially across the

channel and the wave front was curved backwards in agreement with the results seen in Maxworthy (1983) and Renouard et al.

(1987).5

:::::::
Rotation

::::::::
modified

::::::
mode-1

:
ISWs within a cylindrical geometry have also been investigated by Ulloa et al. (2014) and Ulloa

et al. (2015) using an immersed boundary numerical method. The authors found that the rotation rate affected the nonlinear

steepening which further caused a degeneration of the fundamental Kelvin wave into a solitary-type wave packet. When the

Kelvin wave amplitude was large enough, localized turbulent patches were produced by Kelvin wave breaking. However, we

estimate that a single turbulent patch has a vertical extent of about 40 cm and contains approximately 25 points. Since the10

features within this turbulent patch are highly chaotic, it is doubtful that the small-scale structure contained within this region

were sufficiently resolved.

While results
::::::
Results

:
on non-rotating mode-2 ISWs, especially with regards to their mass transport capabilities (Deepwell

and Stastna (2016); Salloum et al. (2012); Brandt and Shipley (2014); Terez and Knio (1998)), are readily available , however

the case of
:::
and

::::
there

::
is

::::::::::
considerable

::::::
contact

:::::::
between

:::
the

:::::::::::
experimental

:::
and

:::::::::
numerical

::::::::
modeling

::::::::
literature.

::::
This

::
is

:::::::::
exemplified

:::
by15

:::::
recent

:::::::
progress

::
on

::::::::::
quantifying

:::
the

::::::
effects

::
of

::::::::
displacing

:::
the

:::::::::
pycnocline

:::::
center

:::::
from

::
the

:::::::::
mid-depth

:::::::::::::::::::::::::::::::::::
(Carr et al. (2015); Olsthoorn et al. (2013)).

::
In

:::::::
contrast,

:
mode-2 ISWs in a rotating reference frame has only been investigated

:::
have

:::::
been

::::::::
document

:
experimentally by

Maxworthy (1983). We extend that research ,
::::
but

::
no

::::
high

:::::::::
resolution

::::::::
numerical

::::::::::
simulations

::::
that

::::::
provide

:::::::
concrete

:::::::::
examples

::
of

:::::::::
phenomena

::::::
future

:::::::::::
experimental

:::::
efforts

:::::
could

::::
aim

::
to

::::::::
document

:::::
exist.

:::
We

:::::::
provide

::::
such

::::::::::
simulations

::::::
below, with a focus on the

breaking of
:::::::::
overturning

:::::::
induced

::
by

:
the rotation modified ISW (or Kelvin wave, depending on one’s choice of terminology) at20

the focusing boundary.

:::
Our

:::::::
primary

:::::::::
qualitative

:::::
results

::::
that

:::::
could

::
be

:::::::::
confirmed

:
in
:::
the

:::::::::
laboratory

:::::::
concern

:::
the

::::::::::::
fundamentally

::::
three

::::::::::
dimensional

::::::
nature

::
of

:::
the

:::::
shear

::::::::
instability

::
at
::::

the
:::::
edges

::
of

:::
the

:::::::
mode-2

::::::
wave’s

:::::
core,

:::
and

::::
the

:::
the

::::::
details

::
of

:::
the

::::::
spatial

::::::::
structure

::
of

:::
the

:::::::::
span-wise

:::::
kinetic

:::::::
energy

::::
flux.

::::
The

::::::
former

:::::
could

::
be

:::::::::
visualized

:::
by

:
a
::::
PIV

::::::
system

:::::
with

:
a
::::
light

:::::
sheet

:::::::
oriented

:::
in

:::
the

::::::::
span-wise

:::::::::
direction,

::
or

:::::::::
along-tank

::::
light

::::::
sheets

::
at

::::::
varying

::::::::
distances

:::::
from

:::
the

::::::::
focussing

:::::
wall.

::::
The

::::
latter

::::::
could

::
be

:::::::::::
characterized

:::
by

:::
the

:::::
more

:::::
usual25

:::::::::
along-tank

:::
PIV

:::
set

:::
up.

:::::::::
Moreover,

:::
the

::::::::::
quantitative

::::::
results

::
of

::::
the

::::::
Kelvin

::::::::::::
wave-Poincaré

:::::
wave

::::::::
resonance

::::
and

:::
the

::::::::
formation

:::
of

::::::::
secondary

::::::
Kelvin

::::::
waves

::
in

:::
our

:::::::::
simulation

::::::
should

:::::::
provide

::
an

:::::
easier

::::::::::
comparison

::::
than

::::
field

::::::::
oriented

:::::::::
simulations

:::::
such

::
as

:::::
those

::
of

::::::::::::::::::::::::::::::::
Sánchez-Garrido and Vlasenko (2009).

::
In

:::::
terms

::
of

:::
the

:::::::::
numerical

::::::::
modeling

:::::::::
literature,

:::
we

:::
are

::::::::
interested

::
in
:::::::::

exploring
::::
how

::
the

::::::::
Schmidt

::::::
number

:::
(or

::::::
Prandtl

:::::::
number

::
in

::::::::
thermally

::::::::
stratified

:::::::
systems)

::::::
affects

:::
the

::::::::
localized

:::::
shear

:::::::::
instabilities

:::::::::
generated

::::
near

::
the

::::::
Kelvin

:::::
wave

:::::
crest.

::::
This

::
is
:::::::::
important

::::
since

::::::::
Schmidt

:::::::
numbers

::::::::::::
representative

::
of

::::
salt

::::::::::
stratification

:::
(Sc

:::::::
⇡ 700)

:::
are

::::::::
presently30

::::::::
intractable

:::
for

:::::::::
numerical

:::::::::
simulations

:::
on

::
all

:::
but

:::
the

:::::::
smallest

::::::
scales,

:::
but

:::::::
realistic

:::::
results

::::
may

:::
be

:::::::
obtained

:::
by

:::::::
choosing

::
a

:::::::
Schmidt

::::::
number

:::::
larger

::::
than

::::
that

:::
for

:
a
::::
heat

::::::::
stratified

::::::
system

:::
(Sc

::::
⇡ 7)

:::
but

:::::
much

:::::::
smaller

::::
than

:::
that

::
of

::::
salt.

::
It

::::
also

::::::
implies

::::
that

:::::
while

::::
field

::::
scale

::::::::::
simulations

:::
like

:::::
those

:::
of

:::::::::::::::::::::::::::::::::::
Sánchez-Garrido and Vlasenko (2009) may

::::
have

::
a

::::::
similar

::::::
Rossby

:::::::
number

::
to

:::
an

:::::::::::
experimental

:::::
study,

::::
they

:::::
cannot

:::::
have

:::
the

::::
same

::::::::
viscosity

:::
and

:::::::::
diffusivity,

::::::::
implying

:::
that

::::::::::::::
experimentalists

::::
need

::
to

::::::::
carefully

:::::
assess

::::
what

:::::::
aspects

::
of

::::
such

::::::::::
simulations

:::
they

::::
may

:::::::::::
successfully

::::::
observe

::
in
:::
the

:::::::::
laboratory.

:
35
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The remainder of the paper is structured as follows: the set up of the numerical experiments and numerical methods are

outlined first, with the results that follow structured to identify fundamental differences between rotating and non-rotating

evolution, characterize the three-dimensional structure of near wall overturning, and point out the importance of keeping
:::::
using

a realistic Schmidt number than Sc = 1

::::
other

::::
than

::::::
Sc = 1, which has been consistently used in past literature.

1.1 Configuration of Numerical Experiments5

We have run a series of direct numerical simulations
:::::
(DNS)

:
in a setup similar to that of Maxworthy (1983). These experiments

:
,
::::
who employed a gravity intrusion in a rectangular domain

::::
from

::
a

::::
lock

::::::
release

:
in a rotatingreference frame ,

::::::::::
rectangular

:::
tank

:
to generate mode-2 waves. On experimental scales, both the gravity intrusion and the subsequent set of rank-ordered

mode-2 internal solitary-like waves are modified by rotation.
::::
Since

:::
the

::::
flow

::::::::
develops

::::
from

::
a
::::
state

::
of

:::
rest

:::
the

:::::::
precise

::::::::
definition

::
of

:::
the

::::
term

::::::
“Direct

::::::::::
Numerical

::::::::::
Simulation"

::::
from

:::
the

:::::::::
turbulence

:::::::::
literature,

::::::
namely

::::
that

:::
grid

:::::::
spacing

:::::
must

::
be

:::::::
smaller

::::
than

:::
the10

::::::::::
Kolmogorov

::::::::::
microscale,

::::::
cannot

::
be

:::::::
directly

::::::::
translated

::
to

:::
the

::::::
present

::::::::
situation.

:::
We

::::::
define

::::
DNS

::
in

:::
the

:::::
sense

:::::::::
commonly

:::::::
adopted

::
in

:::
the

:::::::
stratified

:::::
flow

::::::::
modeling

::::::::
literature,

::::
with

::::::::::::::::::::::::::::::
Arthur and Fringer (2016) providing

::
a
:::::::
concrete

::::::::
example.

::::::
These

::::::
authors

:::::
state

:::
that

:::::
DNS

:
is
::
a
:::::::::::::::
three-dimensional

:::::::::
simulation

:::::
which

:::
has

::
a
::::
grid

::::::
spacing

::::::
which

::
is

::::::
“within

::::::::::::
approximately

::::
one

:::::
order

::
of

:::::::::
magnitude

::
of

:::
the

:::::::::::
Kolmogorov

:::::
length

::::::
scale".

::::
The

:::::::::::
Kolmogorov

:::::
scale

:::
for

:::::::::
transitional

:::::
flows

::
is
:::::::

defined
::
in

:::
an

::
ad

::::
hoc

:::::::
manner,

:::::::
usually

:::
via

::
the

:::::::
explicit

:::::::::
calculation

:::
of

:::
the

::::::
viscous

::::::::::
dissipation

::::
rate.

::::
The

:::
grid

:::::
scale

::
of

::::
our

:::::::::
simulations

::
is
::::::::::

comparable
:::

to
:::
this

:::::
usage

:::::
since

::
it15

:
is
::::::

within
:::
an

:::::
order

::
of

:::::::::
magnitude

:::
of

:::
the

::::::::::
Kolmogorov

:::::
scale

:::::::
defined

::::
from

:::
the

:::::::::
maximum

:::::
local

:::::::::
dissipation

::::
rate.

:::::::::
Moreover,

::::
our

::::::::
numerical

:::::::
method

::
is

::::::
spectral

:::
in

::
all

:::::::::
directions,

::::
and

:::::
hence

::::::::
formally

::::::
higher

::::
order

::::
than

::::
that

::::
used

:::
in

::::::::::::::::::::::
Arthur and Fringer (2016).

:::
The

:::::::
spectral

::::
filter

::::
used

::
to

::::::
control

:::::::
aliasing

::::::
applies

::::
only

::
to
:::
the

::::::
largest

::::
30%

::
of

:::::
wave

:::::::
numbers

::::
and

:::::
leaves

:::
the

:::::::
majority

::::::::::
untouched,

:::
and

::
no

:::::::
subgrid

::::
scale

::::::
model

::
as

::
in

:::::
Large

:::::
Eddy

:::::::::
Simulation

::::::
(LES)

:
is
:::::
used.

:::::
Based

:::
on

::::
these

:::::::::::::
considerations,

:::
and

::
in
:::
the

:::::::
absence

::
of

::
a

:::::
better

::::
term,

:::::
DNS

:::
will

:::
be

::::
used

::::::::::
throughout.20

We form the gravity intrusion by releasing a large
:::::
density

:
perturbation into a quiescent, quasi-two-layer background strati-

fication (Figure 1
:::::
figure

::
1

:::::
shows

:::
this

::::::::
so–called

:::::::::::
lock-release

:::::::::::
configuration). Algebraically, the density field has the form,
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(1)

:::::
where

::
z0::

is
:::
the

:::::::
location

::
of

:::
the

::::::::::
background

::::::::::
pycnocline,

:
h
::
is
:::
the

:::::::::
half-width

::
of

:::
the

::::::::::
pycnocline,

::::
and,
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
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describes the perturbation in which H
m

, L
m

, and p set the height, width, and transition length, respectively. This
:::
The

::::::
above

::::::::::
specification

::
of

:
stratification leads to a single hyperbolic tangent profile for x � L

m

and a double hyperbolic tangent profile

with an intermediate density layer for x ⌧ L
m

. The
::
As

::
is

::::::
typical

::
of

::::::
studies

::
of

::::::
mode-2

::::::
waves

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Davis and Acrivos (1967); Stamp and Jacka (1995); Salloum et al. (2012)),

::
the

:
pycnocline is centred on

::
at the mid-depth , while the rest of the

:::::::::::
(z0 = L

z

/2).
:::
The

:
stratification parameters are listed in ta-

ble 1. For comparison, the domain size is 6.4 m⇥ 0.4 m⇥ 0.3 m
::::::::::::::::::::::::::::::::
L

x

⇥L
y

⇥L
z

= 6.4 m⇥ 0.4 m⇥ 0.3 m.

Table 1. Stratification parameters.
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Figure 1. Schematic of the numerical domain. The blue region,
::::::
centred

::
at

::
the

:::::::::
mid-depth, corresponds to ⇢= ⇢0 with heavier fluid below and

lighter fluid above.
::
All

::::::
lengths

::::
have

::
the

::::
units

::
of
::::::
meters

:::
and

::
the

::::::
rotation

:::
rate

:::
has

:::
the

::::
units

::
of

:::
s�1.

We have completed a suite of numerical simulations at various rotation rates and Schmidt numbers. The rotation rate has been

specified using the Coriolis parameter, f , which is defined in the usual way as twice the rotation rate. We define our maximum

Coriolis parameter as f0 = 0.105 s�1 which is comparable to the literature (Grimshaw et al. (2013)) andin particular ,
:::

in

::::::::
particular,

:
to values achievable in the Coriolis Rotating Platform

::
in

:::::::
Grenoble.

We characterize the parameters of
::::::::
Following

::::
the

:::::
work

::
of

:::::::::::::::::
Maxworthy (1983),

:::
we

::::::::::
characterize

:
the leading wave in re-10

gard to their
::
its

:
size at the y = 0 m wall. In particular, the wave speed, c

w

, and amplitude, a
w

, will be
:::
are parametrized

at this boundary because it is where they reach their maximal values due to the focusing of mass and energy by rota-

tion. The amplitude is defined as the
::::::
average

:
maximum upstream displacement of the ⇢(z0 ±h) isopyncals just prior

:::
(for

:
a
:::::::::
schematic

:::
see

::::::
figure

::
2

::
in

:::::::::::::::::::::::::
Deepwell and Stastna (2016)).

::
A
::::::::::::

representative
::::::

value
:::::
(table

::
2)
:::

is
::::::
chosen

::::
just

:::::
prior

:::
(in

:::::
time)
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to the formation of instabilities. The
::::
wave

::::::
speed,

::::::::
measured

::
as

::::
the

:::::
speed

::
of

:::
the

::::::::
location

::
of

:::
the

:::::::::
maximum

::::::::::::
displacement,

::
is

::::::::::
independent

::
of

:::
the

:::::::
rotation

::::
rate

:::
and

:::
has

::
a
:::::
value

:::::
larger

::::
than

:::
the

::::::
linear

::::
long

:::::
wave

:::::
speed

:::
due

::
to
::::

the
::::
large

:::::::::
amplitude

:::::
nature

:::
of

::::
these

::::::
waves.

::::
The

::::::::
amplitude

::
is

::::
only

::::::
weakly

:::::::::
dependent

:::
on

:::
the

::::::
rotation

::::
rate

::
or

:::::::
Rossby

:::::::
number.

::
In

:::::::
general,

:::::::::
increasing

:::
the

:::::
initial

::::::::::
perturbation,

::::
both

::::
L

m :::
and

::::
H

m

,
:::::
leads

::
to

:::
the

::::::::
formation

:::
of

::::
more

:::::::::
individual

:::::
ISWs,

:::::
larger

:::::
wave

:::::::::
amplitude,

::::
and

:::
thus

::::::
higher

:::::
wave

:::::
speed.

:::
For

::
a

::::::::::::
comprehensive

::::::::::
discussion,

::::::
consult

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Deepwell and Stastna (2016); Salloum et al. (2012); Terez and Knio (1998) or5

::::::::::::::::::::::::
Brandt and Shipley (2014) for

:::::
more

:::::
details

:::
on

::
the

::::::::::
relationship

:::::::
between

:::::
initial

::::
tank

:::::::::
parameters

::::
and

::
the

::::::::
resultant

:::::
wave.

:::::::::
Discussion

::::
about

::::
how

:::
the

::::
ISW

::
is
:::::::
formed

::::
from

:::
the

:::::
initial

:::::::::
conditions

::::
will

:::
also

:::
be

:::::::
deferred

::
to

::::
these

:::::::
articles.

:

:::
The

:
internal Rossby radius of deformation is thus defined as L

c

= c
w

/f , the Rossby number as Ro = c
w

/fL
m

, the Reynolds

number as Re = c
w

L
m

/⌫, and the Schmidt number as Sc = ⌫/. The kinematic viscosity was ⌫ = 2⇥10

�6 m2/s for all cases,

whereas the mass diffusivity, , varied. The parameters and characteristic values for each simulation are presented in table 2.10

The velocity is scaled by the
:::::::
mode-2,

:
linear, non-rotating, long wave speed, c0 =

1
2 (gh�⇢/⇢0)

1/2 (Benjamin (1967)). The

average rate of change of the amplitude is given by a0
= �T

h

daw
dt

, where T = L
m

/c0 is the characteristic time scale.

Table 2. Case parameters and characterizations.

Case Sc f/f0 c
w

/c0 a
w

/h a0 Re Ro L
c

(m)

10_0 10 0 1.48 1.47 1.83 6960 1 1
10_1/16 10 1/16 1.49 1.45 2.47 7010 23.74 7.12

10_1/4 10 1/4 1.48 1.49 6.02 6960 5.90 1.77

10_1/2 10 1/2 1.46 1.53 6.40 6870 2.91 0.87

10_1 10 1 1.47 1.61 6.76 6900 1.46 0.44

4_0 4 0 1.48 1.46 2.03 6930 1 1
4_1/2 4 1/2 1.45 1.53 5.96 6820 2.89 0.87

4_1 4 1 1.46 1.61 6.62 6870 1.45 0.44

1_0 1 0 1.44 1.41 2.88 6770 1 1
1_1/2 1 1/2 1.41 1.50 4.97 6640 2.81 0.84

1_1 1 1 1.44 1.61 6.32 6780 1.43 0.43

We briefly contrast our set-up to that of Sánchez-Garrido and Vlasenko (2009). The primary difference is the scale to be

modelled
:::::::
modeled. While we seek to model laboratory scale motions, and hence resolve both tank scale and small scale motions,

in Sánchez-Garrido and Vlasenko (2009) the authors seek to model field scale motions. Hence their ratio of depth to span-wise15

extent is much smaller than ours. Moreover they model dissipation through an eddy viscosity, while we attempt to carry out a

Direct Numerical Simulation (DNS). Nevertheless, the ratio of their Rossby radius to span-wise extent is roughly 0.6, hence

similar to some of our experiments. Thus many of the large scale motions in the two sets of simulations can be expected to be

similar. In particular, Figure
:::::
figure 2 of Sánchez-Garrido and Vlasenko (2009) makes for a useful comparison to some of our

findings.20
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1.2 Numerical Methods

The governing equations used within our numerical model are the stratified Navier-Stokes equations with the
:::
Our

:::::::::
numerical

:::::
model

:::::
solves

:::
the

::::::::
so-called

:::::::::
Boussinesq

::::::::
equations

::
of

::::::
motion

:::
on

::
an f -plane and Boussinesq approximations (Kundu et al. (2012)),

Du

Dt
+ (�fv,fu,0)= � 1

⇢0
rp +

⇢

⇢0
g+ ⌫r2u,5

r ·u= 0,

D⇢

Dt
= r2⇢,

where each variable has
:::::::::::::::::
(Kundu et al. (2012)),

:

Du

Dt
+ 2⌦⇥u

::::::::::::

= � 1

⇢0
rp +

⇢

⇢0
g+ ⌫r2u,

::::::::::::::::::::::

(3a)

r ·u
::::

= 0,
:::

(3b)10

D⇢

Dt
:::

= r2⇢,
:::::::

(3c)

:::::
where

::
g,

:::
the

:::::::::::
gravitational

::::::::::
acceleration

:::::
vector

:::::::
pointing

::
in

:::
the

:::::::
negative

::
z
::::::::
direction,

:::::::::
⌦ = f/2

ˆk
::
is

:::
the

::::::
f-plane

::::::
rotation

::::::
vector,

::::
and

::::
other

::::::::
variables

::::
have

:
their usual meaning. The Navier-Stokes

:::::
These

:
equations are presented in dimensional form, while the

remainder of this article will use the following non-dimensionalizations,

ex = x/L
m

, ey= y/L
y

, ez = z/L
z

,15

et= t/T,

e⇢= (⇢� ⇢0)/⇢0,

ex = x/L
m

, ey
::::::::::::

= y/L
y

, ez = z/L
z

,
:::::::::::::::::

(4a)

et= t/T,
:::::

(4b)20

e⇢
:
= (⇢� ⇢0)/⇢0,
::::::::::::

(4c)

where the later is called the density anomaly. Scaling time by the rotation rate is inapplicable because the flow is predominantly

a Kelvin wave
:::
with

::
a
::::::::::
propagation

:::::
speed

::::::::::
independent

::
of

:::
the

:::::::
rotation

:::
rate. Rather, time has been scaled by T = L

m

/c0 since the

propagation speed of a Kelvin wave is equivalent to the gravity wave speed in the absence of rotation.
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:::
The

::::::::
equations

:::::
used

:::::
differ

::::
from

:::
the

:::::::
oceanic

:::::::
situation

::
in

::::
that

:::
we

::::
take

:::
the

::::::
density

::
as

::
a

:::::::
variable

::
to

::
be

:::::::
evolved,

::::::::
whereas

::
in

:::
the

:::::
ocean

:
it
::
is
:::
the

:::::::
salinity

:::
and

::::::::::
temperature

::::
that

::::::
evolve,

::::
with

:::::::
density

::::::::
recovered

:::::
from

::
an

::::::::
equation

::
of

:::::
state.

:::
The

::::::::::
nonlinearity

:::
of

:::
the

:::::::
equation

::
of

::::
state

:::::
leads

::
to

:
a
::::::
variety

::
of
::::::::
complex

::::::::::
phenomena

::::
(e.g.

:::
salt

::::::::
fingering,

:::::::::
cabbeling,

:::
the

:::
fact

::::
that

::::
pure

:::::
water

:::
has

:
a
:::::::
density

::::::::
maximum

::
at

::
4

::::::
degrees

::::::::::
Centigrade,

::::
etc).

::
In

:::
the

:::::::::
laboratory,

:::::::
density

:::::::
changes

::
are

::::::::
typically

:::::::
imposed

:::
by

::::::::
variations

::
in

:::::::
salinity

::::
with

::
the

::::::::::
temperature

::::
held

:::::
fixed.

::::
Our

::::::::::
formulation

::::::
mirrors

:::
this

::::::::
situation,

::::::
though

:::
the

::::::::::::
experimentally

::::::::
observed

:::::::::
diffusivity

::
of

:::
salt

::::::
proves5

:::
too

:::
low

:::
for

::::::::
inclusion

::
in

:::
the

::::::::
numerical

::::::::::
simulations.

:

Numerical simulations were completed using the Spectral Parallel Incompressible Navier-Stokes Solver (SPINS) (Subich

et al. (2013)). SPINS is a psuedo-spectral method uniquely
::::
code

:
capable of solving the given problem to a high degree of

accuracy in the given geometry. The third-order Adams-Bashforth method with an adaptive time step was used to evolve the

flow. Free slip boundary conditions were specified on all walls.
::::
This

::
is

::
an

::::::::::
unphysical

::::::::
condition

:::::::::
compared

::
to

:::
the

:::::::::
laboratory10

::::::::::
experiments

::
of

:::::::::::::::::
Maxworthy (1983),

::::::
though

::
is

::::::::
standard

::::::::
numerical

::::::::
practice.

::::::::
However,

:::
as

:::
we

::::
will

:::
see

:::::
later,

:::
the

::::::
length

:::::
scale

::::::::
associated

::::
with

:::::
shear

::::::::::
instabilities

::
is

:::::
much

:::::
larger

::::
than

:::
the

::::::::
boundary

:::::
layer

::::::::
thickness

:::
and

:::::
hence

:::::::::
boundary

::::
layer

::::::
effects

::::
will

:::
not

:::::
affect

:::
the

::::::::
dominant

::::::::::
mechanism

:::
for

:::::
shear

::::::::::
production.

::::::
Besides

::
a
::::::
minor

::::::::
reduction

::
in

:::
the

::::::
energy

::::::
within

:::
the

::::::
Kelvin

::::::
wave,

:::
we

::::::
believe

:::
that

::::::::
changing

::
to

:
a
:::
no

:::
slip

::::::::
boundary

::::::::
condition

:::
on

:::
the

::::
side

::::
wall

:::
will

::::
have

::::::::
minimal

:::::
impact

:::
on

:::
the

::::::
Kelvin

:::::
wave.

The size of the channel and the grid resolution are listed in Table 3. The stated resolution was sufficient for all but two sim-15

ulations: case 10_1 and case 4_1. These both had the resolutions in the x and z dimensions doubled to have the total number

of points be 4096⇥ 256⇥ 512

:::::::::::::::::::::::::::::
N

x

⇥N
y

⇥N
z

= 4096⇥ 256⇥ 512. Grid convergence studies were conducted for these cases

because they were the most energetic with the largest and most energetic density overturns. Good agreement was found for

the cases with the stated resolution and those with half the resolution. In general, the higher resolutions have been used in this

article because of their higher accuracy, though bulk characteristics of the flow computed at the lower resolution remain accu-20

rate.
:::
For

:::
the

::::::::
resolution

:::::
listed

::
in
:::::
table

::
3,

:::
the

:::::::
strongly

::::::::
stratified

:::::
region

::
of

:::
the

::::::::::
background

:::::::::::
stratification

:::::::
contains

:::::::::::::
approximately,

::::::::::
2h/�z ⇡ 33

::::::
points,

:::::
while

:::
the

:::::
entire

:::::::::::
stratification

:::
has

::::::::::::
approximately

::::
140

::::::
points.

:::::
Small

:::::
scale

:::::::
features

::
in

:::
the

::::::::::
transitional

::::
flow

:::::::
typically

:::
are

:
a
::::::
couple

::::::::::
centimetres

::
in

::::::::
diameter

:::
and

:::::::
contain

:::::
about

::
20

::::::
points.

::::
The

::::::::::
applicability

:::
of

:::
the

:::::
stated

::::::::
resolution

::::
was

::::
also

:::::
found

::
by

:::::::::
comparing

:::
the

::::
grid

::::
scale

::
to
:::
the

:::::::::::
Kolmogorov

::::
scale

::::::
which

:::
we

:::::
define

:::::
using

:::
the

::::::::
maximum

:::::
local

::::::
energy

:::::::::
dissipation

::::
rate.

::
In

::
all

:::::
cases

:::
the

:::::::::
maximum

:::
grid

:::::::::
resolution

::
is

:::::
within

:::
an

:::::
order

::
of

:::::::::
magnitude

::
of

:::
the

:::::::::::
Kolmogorov

:::::
scale.

:::::
Thus,

:::
our

::::::::::
simulations

:::
are25

:::
well

::::::::
resolved.

:

Table 3. Tank dimensions and numerical resolution.

L
x

(m) L
y

(m) L
z

(m) N
x

N
y

N
z

�x (mm) �y (mm) �z (mm)

6.4 0.4 0.3 2048 256 256 3.1 1.6 1.2
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2 Results: Influence of rotation

We begin by looking at how the ISW is affected by rotation through the Coriolis force. We have chosen the rotation to match

that of the Northern Hemisphere which causes objects to be deflected towards the right of their trajectory. In the context of

our experiment this leads to span-wise variation in the developing ISW. Maxworthy (1983) found that the wave front became

curved as a result of variation of the celerity on wave amplitude. At ey = 0 (which we will call the focusing wall) the amplitude5

and celerity were both larger than at other y values. The time evolution of the scaled, vertically integrated kinetic energy,

⇠, for case 10_1 at t = a) et = 2.6 (t = 25 s) b) et = 5.2 (t = 50 s) c) et = 7.8 (t = 75 s) d) et = 10.4 (t = 100 s). Colour axis is

saturated at early times to show the wave at later intervals.

We investigate the location of the ISW crests using the scaled, vertically integrated kinetic energy,

⇠(x,y, t) =

R
Lz

0 KE dz

max

x,y,t

R
Lz

0 KE dz
(5)10

where the kinetic energy is defined in the usual way, KE =

1
2⇢0

�
u2

+ v2 + w2
�
, and the maximum is over space and time.

The time evolution of ⇠ displays the bending of the leading internal Kelvin wave and the developing Poincaré waves for

case 10_1 (figure 2). Early on (figure 2a), the energy is mostly within the leading wave since insufficient time has passed for

radiation to occur. However, at this early time, the wave, which began as a plane wave across the channel, has clearly been

affected by the rotation as evidenced by energy being focused towards ey = 0. This focusing also resulted in the curvature of15

the leading Kelvin wave front, a phenomenon which remains evident for the remainder of the simulation.

As time progresses, Poincaré waves form behind the Kelvin wave, as previously described by Sánchez-Garrido and Vlasenko

(2009). The Poincaré waves reflect multiple times off both the ey = 1 and ey = 0 walls. At et = 10.4 (t = 100 s) the ratio of total

KE on the ey = 1 wall to the ey = 0 is approximately 0.11 indicating that location of primary activity will be near the focusing

wall. The shear also reaches its maximum in this location
:
at
:::::
ey = 0, enabling the onset of dynamic instabilities.20

The presence of the Kelvin and Poincaré waves in this context is quite common and is dependent on the rotation rate (figure

3). An increasing rotation rate leads to an increase in the angle that the leading wave makes with the normal of the boundary.

The Poincaré waves behave similarly as the rotation rate is varied, however they also have the added complication of reflection

and non-linear interaction between waves. When rotation is absent (figure 3a), Poincaré waves are unable to form; instead,

a simple train of three planar ISWs of decreasing amplitude and energy are formed. Overall, the energy within the Poincaré25

waves is considerably smaller than the energy in the leading wave , at least over the duration of our numerical experiments.

:::::
spatial

::::::::::
distribution

::
of

::::::
kinetic

::::::
energy

::
is

::::::::
dominated

:::
by

:::
the

::::::
Kelvin

::::
wave

:::::
front

:::
and

:::
two

:::::::::
secondary

:::::::
features

::::
near

:::
the

:::::::
focusing

::::
wall.

:

It needs to be mentioned that the presence of side walls removes the possibility of a span-wise invariant geostrophic state

forming in the collapse region since the presence of walls enforces that flow is in the along tank direction. This means that the

release of mass and energy into the ISWs is greater than when no side wall is present. The detailed dynamics of the near field30

are interesting, but beyond the present manuscript.

A secondary boundary trapped wave also forms in the rotation modified cases (figure 3b-d). The generation mechanism for

this wave is fundamentally distinct from the formation of trailing ISWs in the non-rotating case. In discussing this difference,
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ISW will be used to describe the non-rotating waves only, while Kelvin and Poincaré waves will naturally be understood to

relate to the rotation modified waves. To see how this secondary Kelvin wave is formed, figure 4 compares the span-wise

average ⇠ of the non-rotating case (case 10_0, in red) to that of the full ⇠ for case 10_1 (black pseudocolour). At the early time,
et = 4.7 (t = 45 s), there is a single leading Kelvin wave and a few radiating Poincaré waves which are just beginning to reflect

off the ey = 1 wall. Scaled, vertically integrated kinetic energy, ⇠, for case 10_1 at t = a) et = 4.7 (t = 45 s) b) et = 6.3 (t = 60 s)5

c) et = 7.8 (t = 75 s). Scaling and colour axis is identical to figure 2. The red plots are the span-wise average ⇠ profiles for

the non-rotating case (Case 10_0), with corresponding maxima locations (vertical lines). The trailing ISWs of the non-rotating

case are completely unrelated to the energy distribution of the rotating case. This is clearly evident in figure 4 b) and c) where

the second trailing ISW is located where very little energy exists in the rotating case. The third ISW is near where the second

Kelvin wave is forming, but this happens to be a coincidence of the choice of the presented time. Later, at et = 10.4 (t = 100 s)10

(figure 3) the third ISW is well behind the second Kelvin wave.

Figure 2.

:::
The

::::
time

:::::::
evolution

::
of

::
the

::::::
scaled,

:::::::
vertically

:::::::
integrated

::::::
kinetic

:::::
energy,

::
⇠,
:::
for

:::
case

::::
10_1

::
at

::
a)

:::::::::::::
et= 2.6 (t= 25 s)

::
b)

::::::::::::::
et= 5.2 (t= 50 s)

:
c)
::::::::::::::
et= 7.8 (t= 75 s)

::
d)

::::::::::::::::
et= 10.4 (t= 100 s).

:::::
Colour

::::
axis

:
is
:::::::
saturated

::
at

::::
early

::::
times

::
to

::::
show

:::
the

::::
wave

::
at

::::
later

:::::::
intervals.

10



More importantly, at high rotation rates the second Kelvin wave is clearly formed by a resonance with the Poincaré waves at

the focused wall, which is directly contrary to how the trailing ISWs form without rotation (they are the excess mass that isn’t

trapped by the leading wave). This description appears to be valid for rotation rates greater than f/f0 = 1/4, since
::::
while

:
rates

slower than this show that the trailing Kelvin wave matches
::
to

:::::
match

:
the generation of a trailing ISW in the non-rotating case

with additional perturbations due to
:::::
weak Poincaré waves.

::::::::::::::::::::::::::
Renouard et al. (1987) describes

:::::::
Poincaré

::::::
waves

:::::
being

:::::::::
resonantly5

::::::::
generated

:::::
along

:::
the

::::
side

::::
wall

::::::
while

:::::::::::::::::::::::
Melville et al. (1989) clearly

::::::
shows

::::
that

:::
the

::::::::
curvature

:::
of

:::
the

:::::
wave

::::
front

:::
is

:::
due

:::
to

:::
the

::::::::::
combination

::
of

::
a
::::::::
Poincare

:::
and

::::::
Kelvin

::::::
wave.

::::
Our

::::::
results

:::
are

::
in

:::::::::
agreement

::::
with

:::::
both

::
of

:::::
these

::::::
results,

::::
but

::::
now

:::::::
applying

:::
to

::::::
mode-2

::::::
ISWs.

As described by Sánchez-Garrido and Vlasenko (2009) the Poincaré waves will continue to remove energy from the leading

Kelvin wave, which is then deposited in this secondary Kelvin wave. This deposition primarily occurs on the focusing wall,10

as opposed to equal deposition on both sides of the channel, because of the broken symmetry caused by the collapse of

Figure 3. Scaled, vertically integrated kinetic energy, ⇠, at et= 10.4 (t= 100 s) for case with f/f0 = a) 0
:::::::
f/f0 = 0

::::::::
(Ro=1) b) 1/4

:::::::::
f/f0 = 1/4

::::::::
(Ro= 5.9) c) 1/2

::::::::
f/f0 = 1/2

:::::::::
(Ro= 2.91)

:
d) 1.

:::::::
f/f0 = 1

::::::::::
(Ro= 1.46). The scaling is by the maximum over the f = f0 case and

the colour axis is saturated to emphasize the Poincaré waves emanating from the focusing region and their reflection off the ey = 1 wall.
:::
The

:::::::
maximum

::
of

:::
the

:::::::
unscaled

:
⇠
:::
for

:::
each

::::
case

::
is

:
a)
::::
0.08

:::
J·m

::
b)

::::
0.12

:::
J·m

::
c)

:::
0.16

:::
J·m

::
d)

::::
0.27

:::
J·m.Though in non-dimensional form, the axes have

correct dimensional scaling.
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Figure 4.

:::::
Scaled,

::::::::
vertically

:::::::
integrated

:::::
kinetic

::::::
energy,

::
⇠,

::
for

::::
case

::::
10_1

:
at
:::
t=

::
a)

::::::::::::::
et= 4.7 (t= 45 s)

:
b)
::::::::::::::
et= 6.3 (t= 60 s)

::
c)

::::::::::::::
et= 7.8 (t= 75 s).

:::::
Scaling

:::
and

:::::
colour

::::
axis

:
is
:::::::

identical
::
to

:::::
figure

:
2.
::::
The

::
red

::::
plots

:::
are

:::
the

:::::::
span-wise

::::::
average

::
⇠

:::::
profiles

:::
for

:::
the

:::::::::
non-rotating

:::
case

:::::
(Case

:::::
10_0),

::::
with

::::::::::
corresponding

:::::::
maxima

::::::
locations

:::::::
(vertical

:::::
lines).

intermediate fluid on one end of the channel. This means that there is more residual kinetic energy at ey = 0 (compared to

ey = 1), and that the time for the Poincaré wave to resonantly interact with the Kelvin wave is greater at ey = 0 since both are

traveling in the same direction. Once the secondary Kelvin wave is fully developed, this resonance can be considered analogous

to a Mach stem in that the energy builds up on the boundary enough that the reflection no longer occurs at the boundary, and

moves instead some distance away from the wall.5

As energy is drained from the leading Kelvin wave and deposited into the secondary wave, the secondary wave will eventu-

ally become more energetic than the first resulting in an eventual overtaking. Our simulations do not show this feature since our

channel is not long enough and we are focused on the shorter time scales associated with the energetics of the leading Kelvin

wave. See Sánchez-Garrido and Vlasenko (2009) for a description of overtaking.
:::::::::::
Unfortunately,

:::
we

::::::
predict

::::
that

:::
the

:::::::::
overtaking

:
is
:::::
likely

::
to
::::::
remain

::::::::::
undetected

::
in

:
a
:::::::::
laboratory

:::::::::
experiment

::::
with

::::::::::
rectangular

::::::::
geometry

::::::
because

:::
of

::
the

:::::::::::
considerable

:::::
time,

:::
and

::::
thus10

:::::
length

:::
of

:::::::
channel,

::::::::
required

::
for

:::
the

::::::
energy

:::::::
transfer

::
to

:::::
occur.

:

The differentiation of whether a wave is a Kelvin wave or a Poincaré wave is made difficult because of the non-linearity

associated with the large amplitude of these waves. The classical linear theorypresented by Kelvin
:
,
::
as

::::::::
presented

::
in
::::::::
standard

::::::::
textbooks

:::::::::::::::::::::::::::::
(Vallis (2006); Kundu et al. (2012)) describes a Kelvin wave as one which has no span-wise velocity, and where the

wave crest does not curve in the span-wise direction. A simple check shows that the leading and radiating waves have significant15

span-wise velocities which would indicate that they are not Kelvin waves (in the classical sense). However, we choose to label

12



Figure 5. Vertically integrated v2 at et= 10.4 (t= 100 s) for case 10_1. Red contours are level curves of the vertically integrated KE.

the radiating waves as Poincaré waves and the leading wave as a Kelvin wave because both fit all other descriptions of the

particular wave type.

We just saw that the radiating Poincaré waves resonate to form a secondary Kelvin wave. Since this secondary wave is

separated from the chaotic leading wave, it could possibly fit better in the description of a classical Kelvin wave. Figure 5

presents a test for this by plotting the vertically integrated span-wise squared velocity (in dark) and contours of the total5

vertically integrated KE (in red). The secondary wave (at ex ⇡ 12.5) does indeed show no span-wise velocity or wave crest

curvature, and thus our description of it as a Kelvin wave is valid. We also notice that the region directly trailing the wave

also has little to no span-wise velocity. Looking back at figure 3b and c it becomes clear that there are Kelvin waves directly

trailing the leading wave at weaker rotation rates (the highest rotation rate requires more time to settle into this description).

This Kelvin wave is distinct from the previously described secondary wave. In this case they are formed out of the remains of10

the excess focused mass along ey = 0. To distinguish this Kelvin wave from the leading wave, we call it the Kelvin wave tail.

The dynamics seen thus far are fundamentally different than in the case without the side walls. As described in Coutino

and Stastna (2017), without the walls the Poincaré waves steepen and eventually breakdown into a non-linear wave packet as

dispersive effects take over. The addition of side walls appears to slow the large-scale breakdown of the leading wave. Rather,

this energy is moved towards the side wall, and is then radiated leeward into trailing Poincaré waves at a slower pace.15

The advection of kinetic energy within the Kelvin and Poincaré waves is key to understanding how the distribution of this

energy is influenced by the side wall. The span-wise flux of KE (figure 6) reveals some interesting features. Of primary interest

is
:::
that

:
the leading Kelvin wave which has

:::::::
induces both positive and negative span-wise flux of KE. Close to the wall (figure

6c), the front of the wave has advection away from the wall, which then becomes a stronger, more localized , return of kinetic

13



Figure 6. Span-wise kinetic energy flux density for case 10_1 at et= 10.4 (t= 100 s) and ey = a) 1/2 b) 1/4 c) 1/8.

energy flux towards the wall within the downstream portion of the leading wave. Further from the side-wall (figure 6a), the KE

flux is weaker by nearly an order of magnitude and the structure has changed so that the leading wave contains more positive

flux.

The secondary Kelvin wave (near ex = 12.75 m) has much weaker KE flux even though the waves are of comparable am-

plitude. The leading wave still contains residual energy from the K-H instabilities while the secondary wave receives energy5

from upstream. To within 3%, the same KE flux is advected towards and away from the focusing wall in this secondary Kelvin

wave.

For comparison purposes, we have completed the same simulation in two dimensions while allowing transverse flow to be

coupled to horizontal motion through the Coriolis force (i.e. a two-and-a-half dimensional model). Since there exists no side

wall, the radiated ISWs are smaller because much of the energy remains within the geostrophic state. Regardless of the waves10

being smaller and thus traveling slower, the KE flux in the leading wave of the 2D case (not shown) is different from that of the

3D case with sidewalls, especially near the wall. Further from the side walls, the two become more similar yet remain distinct

in the magnitudes and distributions of the KE flux.

The span-wise variation in the KE flux along the mid-depth (ez = 0.5 m) further describes
:::::::
provides

:
a
::::::::
different

:::
way

::
to

::::::::
visualize

the KE flux away and towards the focusing wall. Figure 7 displays both the magnitude of the flux (colour) and direction15

(streamlines
::::
with

::::
flow

:::::
going

::::
from

:::::
right

::
to

:::
left) in a reference frame moving with the wave. The strongest KE flux is directed

14



Figure 7. Horizontal kinetic energy flux density for case 10_1 at et= 10.4 (t= 100 s) and ez = 0.5. Streamlines show direction of KE flux in

reference frame moving with the leading wave (i.e. flow is right to left). Colour axis shows magnitude of KE flux.

towards the wall in the aft of the Kelvin wave. We hypothesize that this KE flux is the cause of wave breaking in the Kelvin

wave (the details of which we present in the next section). The kinetic energy near the wall then leaves the Kelvin wave and

travels along the wall until forming the Kelvin wave tail some time later.

3 Results: Details of wave breaking

Now that the description of the global wave field has been presented, we move onto the localized behaviour of the leading5

Kelvin wave at the focusing wall. As described by Maxworthy (1983), the dominant instability takes the form of a pair of

Kelvin-Helmholtz (K-H) billows at the crests of the leading Kelvin wave at the upper and lower extrema of the wave (figure

8a), and
::
or,

:::::::::::
alternatively,

::
at

:::
the

:::::
edges

::
of

:::
the

::::::::::
pycnocline.

::
In

:::
the

::::::
highest

:::::::
rotation

:::
rate

:::::
(case

:::::
10_1)

:::
the

:::::::::
instability

::
is confined to within approximately ten centimetres (a quarter of the

channel width) of the focusing wall (figure 8b-d).
::
As

:::
the

:::::::
rotation

:::
rate

:::::::::
decreases,

:::
the

:::::
extent

::
of

:::
the

:::::::::
instability

::::::::
decreases.

:::::
Table

::
410

:::
lists

:::
the

::::::
length

:::::
scale,

::
l⇤,

::
of

:::
the

:::::
initial

::::::
billow

:::
and

:::
the

::::::::::::::
non-dimensional

:::::::
duration

:::
of

::
the

:::::
shear

:::::::::
instability,

:::
t⇤.

::::::
Except

::
in

::::
case

:::::
10_1,

::
the

::::::::::
instabilities

::::
stop

::::::
within

:::
the

:::::::
duration

::
of

:::
the

::::::::::
simulation.

:::
For

::::::
case_1

:::
the

:::
size

:::
of

:::
the

::::
K-H

::::::
billows

::::::::
decreases

:::::::::::
significantly

::::
near

::
the

::::
end

::
of

:::
the

::::::::::
simulation.

::
It

::
is

:::::
worth

::::::::
repeating

:::
that

::::::
higher

:::::::
rotation

::::
rates

::::::::
(smaller

::::::
Rossby

::::::::
numbers)

::::
lead

::
to

::::::
larger

:::
and

::::::
longer

:::::
lasting

:::::
shear

::::::::::
instabilities

:::::
within

:::
the

:::::
crests

:::
of

::
the

::::::
Kelvin

::::::
wave.

For all cases, the Kelvin-Helmholtz billows simultaneously form as pairs with a vortex above and below the pycnocline.15

Furthermore, except during the early energetic K-H formation, these billows remain synchronous even during the process of

being broken down. For a while it appeared as though case 10_1 made a transition from simultaneous
::::::::::
Comparison

:::
to

:::
the

::::::::::
observations

::
of

::::::::::::::::::
Moum et al. (2003) is

::::::
evident

:::
as

:::::::
upstream

:::::::::
isopycnals

:::
are

::::::::::
compressed

:::::
along

:::
the

:::::
wave

::::
crest

::::::::
followed

::
by

:::
the

:
K-

H formation to an oscillatory one. However, this transition disappeared when the resolution was increased to properly resolve
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Figure 8.

::::::
Density

:::::::
anomaly,

::
e⇢,

::
at

:::::::::::::
et= 5.2 (t= 50 s)

:::
and

::
a)

:::::
ey = 0

::
b)

::::::
ex= 8.8

:
c)
:::::::
ex= 8.9

::
d)

::::
ex= 9

:::
for

:::
case

:::::
10_1.

this case. Whether the vortices form simultaneously or not, they are visually analogous to a von Karman vortex street. We note

that there is no quantitative correspondence since the object
::::::
billows.

::::::
These

::::
K-H

::::::
billows

:::
can

::::
also

:::
be

:::::::::
considered

::::::::
analogous

::
to

::
a

:::
von

:::::::
Karman

:::::
vortex

::::::
street.

::
In

:
a
::::::::
reference

:::::
frame

:::::::
moving

::::
with

:::
the

:::::
wave,

:::
the

::::::::::
background

::::
flow

::
is

:::::::
directed

::::::
around

:::
the

:::::
wave,

:::::
much

:::
like

::
it

::
is

::::::
around

:
a
:::::::
cylinder

:::
in

:::
von

::::::::
Karman’s

::::::::
classical

::::::::::
experiment.

::::
The

::::::
analogy

::
is
:::::::

limited
::::
since

:::
the

::::::
Kelvin

:::::
wave

::::
core

:
is not a

solid, there are no boundary layers, and the rotation rate is an additional parameter which affects the form of the vortex street.5
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Table 4. Density anomaly, e⇢, at et= 5.2 (t= 50 s)
:::::
Length

:
and a) ey = 0 b) ex= 8.8 c) ex= 8.9 d) ex= 9 for case

:::
time

:::::
scales

::::::::
associated

::::
with

::::::
localized

:::::
shear

:::::::::
instabilities.

::::
Case

::
l⇤

:::
(m)

::
t⇤

10_1.
:
0
: :

0
:
0
:

::::::
10_1/16

: :::
0.02

:::
1.35

:

:::::
10_1/4

: :::
0.05

:::
1.88

:

:::::
10_1/2

: :::
0.07

:::
7.93

:

::::
10_1

:::
0.10

:::
>12

:

:::
and

:::
the

::::
core

:::::
bends

::::::::
backward

:::::
away

::::
from

:::
the

::::
wall

::::
due

::
to

:::
the

::::::
rotation

::::
(and

::::::
hence

::::
isn’t

:
a
::::::::
cylinder).

:::::::::
Moreover,

:::
the

::::::::
instability

::
is
::
a

::::
shear

:::::::::
instability,

::
as

:::::::
opposed

::
to
::
a
::::::::
boundary

::::
layer

::::::::::
separation.

At the wave crest, the wave has the expected exponential decay (figure 8d). Further behind, a description that is purely in

the ex� ez plane is no longer valid , since the wave front curves backwards
:
,
:
as discussed in the previous section. However,

the instabilities remain trapped along the side wall (figure 8b and c), while the wave itself, which created the instabilities,5

remains stable further away. In the density field, the instabilities are recognized as interleaving layers of lighter and denser

fluid associated with the roll-up of the K-H billows. The span-wise extent remains largely unchanged as the vortices leave the

leading wave. This means that rotation causes mixing and turbulence to occur at a preferred location, namely on the focusing

wall. Should the geometry, or environmental forcing (e.g. flow over a sill in a fjord) cause Kelvin waves to be generated at a

specific location, this would indicate that one side of the channel would experience more mixing. The aforementioned fjords,10

as well as narrow lakes would be particularly susceptible to this.

We find that changes in the rotation rate (i.e. the strength of the Coriolis force) influence the intensity of the K-H billows

(figure 9). Though the initial available energy is the same in all cases, the higher rotation rates lead to higher localized kinetic

energy density. At early times (first column of figure 9) the amplitude of the leading waves are all comparable, but have varying

levels of stability. The cases with increasing rotation are far more energetic. Fundamentally, these vortices are formed from15

stratified shear instabilities commonly associated with larger amplitude waves (Brandt and Shipley (2014)). This leads us to

suggest that a coastally trapped wave
::::
ISW has a lower minimum amplitude threshold for instability generation . Over time this

causes the wave to reduce in amplitude considerably faster than would be the case without the presence of rotation
::::::::
compared

::
to

:
a
::::
ISW

:::::
away

::::
from

::::::::::
boundaries. The precise reason for the lower minimum amplitude remains an open problem, but it likely

has to do with the mass and energy flux towards the focusing region discussed in the previous section.20

As time progresses, the wave sheds energy and mass in the shear instabilities until reaching a critical amplitude, after which

the wave
::::::
remains

::::::
stable,

:::
but continues to decay because of the lossy behaviour of the core region of large amplitude mode-2

ISWs (Deepwell and Stastna (2016)). At et = 10.4 (t = 100 s), only the highest rotation rate still produces shear instabilities. In

comparison, the non-rotating case is laminar and time-invariant, apart from small dissipative effects for all times. The weaker

rotation rate cases do not exhibit instabilities at later times, but rather the mass from the shed vortices has formed the Kelvin25
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wave tail. This wave is also immediately apparent from figure 3 which shows the kinetic energy within this wave directly

behind the leading Kelvin wave. Over time the lower rotation rates show that this Kelvin wave tail obtains energy from the

leading wave and eventually overtakes
:::
will

:::::::::
eventually

::::::::
overtake it. At the highest rotation rate, the shear instability remains

active for the entire simulation which makes it difficult for this wave
:::
the

::::::
Kelvin

::::
wave

:::
tail

:
to form.

The emergence of shear instabilities is correlated with the rotation rate. That is, a higher rotation rate is associated with5

an earlier shear instability. The higher rotation causes greater fluid to be directed towards the focusing wall which leads to a

greater initial amplitude which creates favourable conditions for shear instabilities. Though the initial amplitude is correlated

with rotation rate (figure 10), the three fastest rotations result in similar wave amplitudes as the experiment continues. This

leads to the interesting question of whether Kelvin waves have a stability restriction based on their amplitudes, though the form

of their creation here (as a collapse of a span-wise invariant perturbation) greatly impacts the dynamics, especially with the10

Figure 9. Density anomaly, e⇢, at ey = 0 for f/f0 = a,b) 0 c,d) 1/4 e,f) 1/2 g,h) 1. Black contours are equispaced isopycnals between ⇢(z0�h)

and ⇢(z0 +h). All cases have Sc= 10
::::::
Sc = 10.
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K-H billows.
::::::
Though

:::
the

::::::::::
Richardson

::::::
number

::
is
:::
not

:::::::::
applicable

::
in

:::
the

:::::
upper

:::
and

:::::
lower

::::::
layers

:::::
where

:::::
there

:
is
:::
no

::::::
vertical

:::::::
density

::::::::
variation,

:::::
within

:::
the

:::::
wave

::::
core

:::
the

::::::::::
Richardson

::::::
number

:::::
drops

::::::
below

:::
1/4

::::::
around

:::
the

:::::
edge

::
of

:::
the

:::::::
mode-2

:::::
bulge

:::::
while

:::
the

::::
K-H

::::::
billows

:::::
form.

Figure 10. Wave amplitude as a function of time for different rotation rates (f/f0 in legend). All cases have Sc= 10
::::::
Sc = 10.

The wave amplitude decay rate, a0
= �T

h

daw
dt

, increases with rotation rate (table 2, and figure 10). At larger rotation rates

this is a result of a greater initial amplitude, while slower rates create far less K-H billows and the associated loss of mass. At5

et = 5.2 (t = 50 s), the kinetic energy within the leading wave increases with rotation rate (first column of figure 11). The kinetic

energy also becomes localized in space at the K-H billows. At later times, The kinetic energy has decreased most substantially

in the higher rotation rates because of the shear instabilities.

Figure 12 shows the kinetic energy slices in the ỹ� z̃ plane at the crest of the Kelvin wave (ISW in the non-rotating case).

The case of no rotation has an essentially span-wise invariant wave front, whereas the rotation breaks the symmetry by curving10

the wave front. Along the cross-section of maximum amplitude this appears as an exponential decay of the wave amplitude.

Essentially all of the kinetic energy resides within the characteristic isopycnals, ⇢(z0 ±h). Furthermore, the density overturns

resulting from the instabilities are correlated with the locations of maximum KE.

Over time, due to the radiation of energy into trailing waves, the leading Kelvin wave reduces in amplitude, span-wise width,

and KE. The time dependent nature of the width, and thus the exponential decay, results in an increased localization of KE15

along the focusing wall (seen very clearly in the second row of figure 12). This is true along the cross-section of maximum

amplitude where the decaying Kelvin wave applies. In the curved portion of the leading wave, this coincides with a simple

reduction of the width of the curved wavefront.

Maxworthy (1983) found that the measured Rossby radius of deformation, L
M

, (that is, the distance from the wall for the

amplitude to drop by a factor of e) was a factor of two smaller than the calculated Rossby radius, L
c

. Only the highest rotation20

rate has L
M

smaller than the width of the channel for us to make a comparison. Case 10_1 has the factor being close to 2.6,
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Figure 11. Kinetic energy density at at ey = 0 for f/f0 = a,b) 0 c,d) 1/2 e,f) 1. Red contours are the same as in figure 9. All cases have

Sc= 10
::::::
Sc = 10.

which is comparable. This does not appear to be the case at lower rotation rates since these cases have their amplitudes decay

over the entire channel width even though the Rossby radius increase
:::::::
increases by up to a factor for 4. This could be due to the

narrowness of the channel compared to the Rossby radius or more likely a difference in measurement technique. Maxworthy

(1983) made their
::
his estimate based on the projection of the wave field onto the ey�ez plane. This would lead to a weaker decay

rate since the wave curves backwards away from the cross-section with a fixed x̃ at which our estimate is made. In other words5

the method of Maxworthy (1983) integrates in the along tank direction, while we choose a particular stream-wise location for

our estimate.
:::
The

:::::
width

::
of

:::
the

:::::::
channel

::::
will,

::::::::
however,

:::::
adjust

:::
the

::::::::
reflection

::
of

:::
the

::::::::
Poincare

:::::
waves

:::
and

::::
thus

:::
the

:::::::::
resonance

::
of

:::
the

::::::::
secondary

::::::
Kelvin

:::::
wave,

:::
but

::::
this

:::
will

::::
have

:::
no

::::::
impact

::
on

:::
the

:::::::
leading

:::::
wave.
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Figure 12. Kinetic energy density at the location of maximum amplitude for f/f0 = a,b) 0 c,d) 1/4 e,f) 1/2 g,h) 1. Red contours are the same

as in figure 9. All cases have Sc= 10
::::::
Sc = 10.

4 Results: Schmidt number dependence

The shear instabilities and associated dynamics are fundamentally small scale behaviour which are damped by viscosity and

smeared by diffusion, both of which are determined by the properties of the fluid, namely the molecular diffusivity and the vis-

cosity. Experimentally, the diffusivity is fixed by the choice of stratifying solute. Physical values of a salt stratified experiment,

which are typical for experiments of this type, give a Schmidt number of approximately 700. Since direct numerical simulations5

at these values are unattainable due to the resolution required, we provide here a short description of the impact that various

Schmidt numbers have on the results presented thus far.
::
Of

::::::::::
importance

::
is

:::::::::
measuring

:::
the

::::::
change

::
in

:::
the

:::::
shear

::::::::::
instabilities

:::
by

::::::
varying

:::
the

:::::::
Schmidt

:::::::
number.

:

For longer simulations, such as the ones conducted here, the pycnocline will diffuse causing the waves to propagate in

a slightly different stratification near the end of the simulation compared to the beginning. Smaller Schmidt numbers have10
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greater diffusion causing a greater impact (figure 13a). The Sc = 1 case had the pycnocline grow by 70% while the Sc = 10

case only grew by 10%. The background stratification at the end of the experiment is noticeably different (figure 13b).

Figure 13. a) Pycnocline half-width as a function of time for different Schmidt numbers. b) The background stratification at

t/T = 12.5 (t= 120 s)
:::::::::::::::
et= 12.5 (t= 120 s).

We find that the wave amplitude is unaffected when compared at various Schmidt numbers. The
::::
Thus,

:::
the

:
general features

characterizing the wave are thus fairly similar at et = 5.2 (t = 50 s) (figure 14). The details, however, are significant enough

to warrant comment. All Schmidt numbers experience the shedding of Kelvin-Helmholtz billows, but in the lowest Schmidt5

number case formation ceases at around et = 11.7 (t = 112 s) while the other two cases never stop. Since the stratification

has broadened in this case , the Richardson number has increased leaving the unstable region for shear instabilities to form.

:::::
create

::::::
billows

:::
for

:::
the

:::::::
duration

::
of

:::
the

:::::::::
simulation.

::::
The

:::::
higher

:::::::::
diffusivity

::
in

:::
the

::::::
Sc = 1

::::
case

:::
acts

::
to

::::::
hinder

:::
the

:::::::::
production

::
of

:::::
shear

:::::::::
instabilities

:::
by

::::::
quickly

::::::::
diffusing

::::
them

:::
as

:::
they

:::::
form.

:

The span-wise profile of the wave also shows the difference (right column of figure 14). The highest Schmidt number case10

has overturning which is not present in the lowest Schmidt number case. These features are secondary to the over-all behaviour.

For example, the total kinetic energy is comparable between all cases at a given rotation rate but remains consistently weaker

for lower Schmidt number. The greatest separation between the Sc=1 and Sc=10 case is 13%. As this ratio is only expected

to grow as Sc increases, the difference between typical simulations of Sc=1 or Sc=7 are bound to misrepresent the smaller

dynamical features of an equivalent physical experiment .
::::
which

::
is
::::::::
typically

:::
salt

:::::::
stratified

:::::
with

:
a
:::::::
Schmidt

:::::::
number

::::::
around

::::
700.15

::
As

::
a

::::
result

::
of
::::
this,

:::
the

::::::::
dynamics

::
of

::
a

:::::::
physical

:::::::::
experiment

::::
will

::::
look

:::
like

:::::
figure

:::::
14a,b

::::
with

:::::::::::
substantially

::::
finer

::::::
details.

::
A

::::::::
thermally

:::::::
stratified

::::::::::
experiment,

::::::::
however,

:::
will

:::
be

::::
well

:::::::::
represented

:::
by

:::::
figure

:::::
14a,b.

:::
We

:::
are

::::::::
unaware

::
of

:::
any

:::::::::::
experimental

:::::
work

::
on

:::::::
mode-2

::::::
internal

::::::
waves

::::
with

::::::::::
stratification

::::::::
achieved

::
by

:::::::
varying

::::::::::
temperature.

:
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Figure 14. Density anomaly, e⇢, at et= 5.2 (t= 50 s) with cross-sections at ey = 0 (first column) and at the location of maximum amplitude

(second column) for Sc = a,b) 10 c,d) 4 e,f) 1. Black contours are the same as in 9. Vertical, black line denotes location of the cross-section

shown in the right column. All cases have f/f0 = 1.

In the f/f0 = 1/2 rotation rate cases (comparison not shown) the differences are more obvious. The density field does not

clearly show the Kelvin wave tail in the Sc=1 case. Rather, the wave is of such small amplitude that it is nearly indistinguishable

compared to the pycnocline width. Only by looking at the vertically integrated KE does the wave appear, but is of considerably

smaller magnitude. The fanning structure seen in figure 4 also goes from at least two branches in case 10_1/2 to one in case

1_1/2. This results in a different Poincaré wave field in the majority of the domain.5

5 Conclusions

We have performed a series of numerical experiments of a lock–release configuration exploring the effects that rotation and

side walls have on the evolution of mode-2 ISWs. When the stratification has a single pycnocline form, naturally occurring

mode-2 waves are quite likely to exhibit regions of overturning and hence our configuration is ideal for exploring the combined
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effects of rotation and instability. Matching with the results of Maxworthy (1983), we observe that the leading wave
::::::::
wavefront

becomes curved by rotation and that the dominant instability takes the form of two K-H billows
:::::
billow

:::::
trains at the crest of the

wave, above and below the pycnocline center. By modifying the rotation rate we observe that as the rate of rotation increases
:
,

the instabilities become more energetic. This appears to be due to increased focusing of mass and the kinetic energy density

along the focusing wall, especially in the early period of adjustment after the lock is released. Since these type
::::
types of shear5

instabilities are most commonly formed by large amplitude waves, this suggests that channel trapped waves
:::::
Kelvin

::::::
waves

::
in

:
a
:::::::
channel have a lower minimum amplitude threshold for instability generation and thus will have smaller amplitude waves

compared to internal solitary waves in the open ocean.

These instabilities cause the leading wave to lose energy and thus higher rotation rates result in a faster decay in wave

amplitude than cases with a lower rotation rate. The increased instability generation along the side wall also serves to create10

an asymmetry in the extent of mixing across the width of the tank. This effect could be observed in fjords or narrow lakes by

making a careful comparison of mixing levels and wave amplitudes across the channel.

The high level of mass and kinetic energy along the focusing wall also resulted in the radiation of Poincaré waves, as previ-

ously described by Sánchez-Garrido and Vlasenko (2009). The Poincaré waves reflect off the opposing wall before returning

to resonantly generate the secondary Kelvin wave along the focusing wall. When compared against an equivalent non-rotating15

case we found that this generation mechanism (through resonance) at higher rotation rates was completely different from the

creation of secondary ISWs in a non-rotating reference frame. We referred to this wave as the secondary Kelvin wave. In ad-

dition to this, a Kelvin wave tail formed from the remains of the focused mass and energy along the wall. During propagation,

we observed that the leading Kelvin wave appeared to lose energy to the both of these Kelvin waves, each of which became

more energetic and thus faster. Eventually, these trailing Kelvin waves will overtake and surpass the leading wave
:
,
::::::
though

:::
we20

:::
did

:::
not

::::::
witness

::::
this

::::::::::
phenomena. The results observed are fundamentally different than those seen without side walls. In the

case without the side walls the leading wave energy is deposited into the trailing waves through dispersion eventually forming

a wave packet. This packet has no span-wise variation. With side walls, the trailing waves are a fan of Poincaré waves that

exhibit a complex interference pattern and hence have a span-wise structure. Furthermore, the energy of the leading wave is not

continuously being lost to the primary trailing wave and hence this wave lives significantly longer, compared to the non-rotating25

case. .

The results presented above suggest two clear avenues for future work. One avenue would focus on the rotation modified

instability region. While in the above, clear evidence of transitional behaviour was presented, it is unclear to what extent a truly

turbulent state was achieved. This is because trapping by the leading Kelvin wave is incomplete and turbulence may lose energy

due to a spreading in space. Moreover, while the resolution of the numerical simulations was excellent for the full domain, a30

study that is focused on turbulent transition could optimize the domain and stratification parameters. For example, the domain

could be shortened and the initial perturbation increased in size to increase the wave amplitude.
:::::
While

:::
we

:::::
have

:::::::::
speculated

:::
that

::::::
no-slip

::::::::
sidewalls

::::::
would

:::
not

::::::::::::
fundamentally

::::
alter

:::
the

:::::
shear

:::::::::
instability,

::::
this

:::::::
remains

::
to

:::
be

::::::::
confirmed

:::
by

:::::
using

:
a
:::::::::

clustered,

:::::::::
Chebyshev

::::
grid

::
in

:::
the

:::::::::
span-wise

::::::::
direction.

::
A

:::::
more

:::::
likely

::::::::::
mechanism

::
to

::::
alter

:::
the

:::::
shear

:::::::::
instability

::
is

::
to

::::
raise

:::
the

::::::::::
pycnocline

::::
such

:::
that

:::
the

:::::
layers

:::
are

::
of
:::::::
unequal

::::::
depths

::
to

:::::
better

:::::::::::
approximate

::
an

::::::::::::
oceanographic

:::::::::::
stratification.

:
35
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A second possible avenue for future work would explore the effect of the span-wise extent. Figure 15 of Sánchez-Garrido

and Vlasenko (2009) suggests that for wider domains, mode-1 Kelvin waves yield Poincaré wave trains whose focusing yields

Mach stems on the far wall. We did not observe this phenomenon in our simulations, but it is possible that our span-wise extent

was simply not large enough to achieve this. Of course, an experimental realization of our simulations would provide both a

test of our results, and suggestions for future numerical studies that are most relevant to the experimentalist.5
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