
Answer to the comment of anonymous referee #1

We thank the anonymous reviewer for his/her very complete review of our
paper. We really appreciate the time investment that it must have been, and
hope that the answers provided here, as well as the modifications proposed in
the paper will be satisfactory. Please find below the list of comments, each
associated with our answer and details on the associated modifications of the
manuscript.

1 Major Comments

1. It’s fine to introduce an established method to a new field, but there should
be a number of additional references to literature in other areas of geophysics
where all of the tuning, methodology, and evaluation techniques have been
more carefully documented.
⇒We added reference to the litterature when deemed necessary
(10 new data assimilation references have been added). If you feel
that a specific reference is missing, please let us know.

2. The method used to create the initial ensemble is unclear and not common
in the ensemble filtering literature for geosciences. The discussion of ’contin-
uous’ versus sample P matrices seems to be part of the confusion. Normally,
one wouldn’t really know P outside of the ensemble filter context, except
perhaps in a loose ’climatological’ sense. General discussion of P’s versus en-
semble sample P’s is fuzzy. The discussion starting at the end of p. 7 seemed
particularly confusing. Apparently there are 400 ’climatological’ samples.
These will only span a phase subspace of at most 399 dimensions. However,
an eigenvector analysis somehow produces 1928 distinct eigenvalues. An SVD
analysis, the common way to filter a sample covariance in general, would give
399 or fewer. After the eigenanalysis is completed, an initial analysis step is
somehow done (continuous, not ensemble?) and finally the analysis covari-
ance is somehow sampled to generate an initial ensemble. Additional clarity
is needed here. Also, doing anything more than filtering the sample covari-
ance from the 400-member sample seems inappropriate. Can you relate this
to a similar procedure in the literature from a more mature ensemble field?
⇒ We are not simply computing the sample correlation matrix,
but use the symmetries of the problem to better estimate the co-
variance matrix. That is why we do not do an SVD but an EVD
instead and obtain more than 399 eigenvalues. We rephrased the
paragraph to make this point clear. We also cite the paper where
the procedure is explained in more details (Bocher et al., 2016).

3. The Kalman Filter and ensemble variants basically depend on exponentially
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growing directions in the model phase space to work effectively. For novel
applications, it is important to know something about the growth of error.
Many geophysical applications will include an experiment where ensembles
are evolved without assimilation to demonstrate that there is ensemble error
growth and to show that the assimilation improves on this control case. I
suggest including results from such a case. Easiest way would be just to use
one or more of the existing ensemble initial conditions, but it can also be
done with smaller ensembles to just explore error growth.
⇒ This work has already been done and discussed extensively in
Bello et al. (2014). We reworked section 2.1 on the mantle convec-
tion model, adding more explanations on the choice of the model,
and adding a paragraph on the chaotic nature of mantle convec-
tion, the thermal turbulence that affects it, and the result of twin
experiments measuring error growth for our model.

4. Although it happens far too often in the literature, looking at analysis in-
novations is simply bad practice. It is almost impossible to interpret the
results as you demonstrate with your figure 7. There is, however, a simple
alternative that is much easier to interpret: look at forecast innovations. The
forecast observations are independent of the forecast and so should give re-
sults consistent with comparisons to truth (although noisier of course). You
can, of course, also easily simulate withheld (not assimilated) observations
and compare your analysis to these. However, given the dearth of available
observations it is unlikely that this is what you would choose to do in a real
data experiment.
⇒ We are not looking at the analyzed innovation, but forecast
innovation, as defined in equation 21 of the original manuscript,
or equation 44 of the revised version. The x-axis title of figure 2
”number of analyses” might have been confusing, so we changed it
to ”forecast number”.

5. I suspect that you will find that a deterministic ensemble filter will produce
significantly better results for your problem with small (say less than 100)
ensemble sizes. The additional sampling error may be a primary cause of the
96 member ensemble being significantly worse than the large ones.
⇒ We actually started implementing a deterministic ensemble fil-
ter. However, as is said on page 10, second paragraph of the sub-
mitted manuscript, and validated on figure 6 for example, we need
to apply localization on both the horizontal and vertical direction.
Since the observations are only located at the surface, we need to
apply localization in the state space. To do so with a deterministic
filter would require choices on the resampling after analysis that
we could not justify properly, which is why we did not implement
and test it yet.

6. Repeated claims are made that the 288-member ensemble (or an ensemble
of size about 300) is optimal/optimum. These claims are unsupported. A
norm is not established and it is clear that you are doing some intuitive
combination of quality and cost. In addition, having only 3 ensemble sizes
gives you no basis for claiming that the middle one is optimal. You would
need to try additional cases.
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⇒We agree and rephrased the two occurences were we used the
word optimal for the ensemble size.

7. The adaptive inflation approach you are using is fairly simplistic. More
robust methods that do an evolving Bayesian estimation for inflation have
been described in papers like Miyoshi, T., 2011: The Gaussian Approach to
Adaptive Covariance Inflation and Its Implementation with the Local En-
semble Transform Kalman Filter. Mon. Wea. Rev., 139, 1519-1535, and
ANDERSON, J. L. (2009), Spatially and temporally varying adaptive covari-
ance inflation for ensemble filters. Tellus A, 61: 72–83. doi:10.1111/j.1600-
0870.2008.00361. It is clear that almost all of your ensembles are significantly
under dispersed and improved performance should result from better infla-
tion. This may be particularly important in improving the 96-member case,
too.
⇒ The adaptive inflation, although simplistic, corrects rather suc-
cessfully the forecast variance of the temperature as soon as it is
close to observations (see rank histogram of figure 7a of the revised
manuscript: we have a slight bias of the ensemble towards colder
temperatures, but the ensemble is not under-dispersed at the sur-
face). However, in depth, the ensemble is under-dispersed and our
interpretation is that, since observations are only at the surface,
we do not correct the ensemble spread adequately in depth, and
any adaptive inflation scheme based on the innovation statistics
will not improve the spread of the ensemble in depth. We added
a paragraph on the possible improvement of adaptive inflation in
the discussion, and added a subsection on rank histograms in the
section 4:A posteriori evaluation of the ensemble Kalman filter
method.

8. Doing all interpretations with normalized error and spread is not common and
can make interpretation of relative capabilities complicated. Certainly, the
discussion at the end of the paper referring to percentage errors is confusing
and potentially misleading. I suggest at least including a few results that
look at the unnormalized RMSE, etc.
⇒ Our aim was to provide the reader with a reference point, since
the temperature is non dimensional in our models. We agree that
this formulation made the whole discussion on results confusing,
so we changed all the figures to plot RMSE instead of the RMS of
the normalised error. To provide a point of reference for the error,
we plotted also on the figures 1 and 3 the error that we would have
made if we had supposed a 1D temperature profile corresponding
to the average temperature field computed from a very long free
run.

9. You briefly look at the range of the ensemble and whether it bounds the
truth (end of p. 22). This type of evaluation is misleading since how often
the truth should be bounded is a function of the ensemble size. A rank his-
togram analysis would be more appropriate and would also have the potential
to reveal more about challenges being faced by the ensemble assimilation.
⇒ Indeed, this was a mistake on our part. We deleted sentences
referring to this in the text. We performed a rank histogram anal-
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ysis for the temperature, heat flux and velocities, the results are
described in section 4.3 and shown in figures 6 and 7 of the revised
manuscript.

2 Minor Comments

1. p. 3, line 9: The reference to Evensen 1994 should include a caveat that
it is not a correct derivation of the EnKF and that the 1998 Burgers et al
presents the correct algorithm.
⇒Text has been modified

2. P. 6, line 8: ”data that ARE”
⇒Text has been modified

3. P. 7, equation 11: Using an extended (or joint) state is okay. However, you
don’t really motivate why. The most standard practice would have been to
include all the observation priors in the joint state. Include a brief discussion
of why you made this choice.
⇒ We rephrased the paragraph in question to clarify the use of the
augmented state to avoid a nonlinear observation operator, added a
reference to Evensen 2003, and a reference to the paragraph where
the observation operator is discussed.

4. P. 7, line 12 and other places: “expectancy” To the best of my knowledge,
this word is not being used correctly here. “expected value” might be better.
⇒Text has been modified

5. P. 7, line 12: This sentence is confusing since you never really compute the
P’s, why even refer to them? They are unknown and unknowable in some
sense.
⇒ We corrected the sentence, accounting for the fact that we actu-
ally compute the covariance matrices, but just for the initialization
step. As discussed in major comment 2, Pf

1
is the background co-

variance matrix, computed from a free run (the ”climatology”), so
we know it, if we consider the model to be perfect.

6. P. 7, line 19: Note that the velocity forward operator is just a vector extrac-
tion (identity).
⇒Text has been modified

7. P. 8, line 20: What does ’efficient’ mean here. Should become irrelevant
anyway if this is behaving like a KF/EnKF; the initial ensemble choice should
lose any qualitative impact as the filter proceeds. If this is not the case, then
a Kalman filter class algorithm may not be a particularly good choice.
⇒ Efficient in the sense that the errors are smaller at the beginning
of the assimilation and decrease faster. This is important for our
problem, since the spin up time of the assimilation is of the same
order as the total timespan for which we have observations. We
rephrased the sentence accordingly.

8. P. 10, line 12: This statement is too strong. The Janjic approach can be
significantly more efficient in some parallel computation situations. In the
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simple PDAF implementation, this may not be the case.
⇒Text has been modified

9. P. 10, sentence starting on line 25: I cannot understand this sentence. Not
sure what “direct forecast error localization” means here.
⇒ we meant we apply localization directly on the forecast error
covariance matrix, as opposed to the domain localization already
implemented in PDAF, text has been modified accordingly.

10. P. 11, line 9: Replace “noise” with “add noise to”
⇒Text has been modified

11. P. 11, line 10: What is the root mean square of surface heat flux... Instanta-
neous, variation over model?
⇒ the root mean square of surface heat flux and velocity are long
term averages computed from the results of a free run. They are
characteristic of the dynamics of the system. Text modified with
these precisions.

12. Figure 1 caption: “150 Myr OBSERVATION dataset” makes it clear that
you are just using the synthetic observations.
⇒Text has been modified

13. Figure 1: Note that the error seems to be going back up towards the end of
the time series. This probably merits a comment in the text. I suspect it is
due to the insufficient spread.
⇒ The text has been modified to acknowledge the error growth at
the end of the time series. Additionally, we show now in Figure
1 the evolution of the error of the surface velocity, as suggested
by reviewer # 2. It shows that, contrary to the temperature, the
error on velocity does not grow at the end of the time series. We
also discuss in more details the reliability of the ensemble forecast
in section 4.3 of the revised manuscript, using rank histograms.

14. P. 12, line 6: Not sure what is meant by a “stabilization”
⇒ We deleted the word stabilization and changed the description
of figure 1: we identify 2 phases: rapid decrease of error and then
slow growth of error (which we described as stabilization in the
former version)

15. Start of p. 13, discussion of parallel efficiency. This discussion is inappro-
priate without lots more detail about the computing resources used. A good
parallel implementation of an EnKF should scale very well (embarrassingly
parallel) for a problem like this, so I was surprised that the time wasn’t very
nearly constant with a sufficient number of cores.
⇒ The time is indeed nearly constant provided we have a sufficient
number of cores, we meant here CPU time and not real elapsed
time. We rephrased the sentence to make it clear that we evaluate
the quality of the data assimilation against its computational cost.

16. P. 13, line 13: rms values over what sample?
⇒ We added precisions in the text (see also minor comment 11)
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17. P. 13, line 16: Not sure what “at first order” means here.
⇒ We meant that the cumulative mean innovation check is not a
comprehensive test, but allows only a partial check of consistency.
We rephrased the sentence.

18. P. 13, line 20: An estimate of the uncertainty, not the error, would be more
common usage to describe the spread.
⇒ Text has been modified

19. Figure 2: I don’t see how these can be consistent with figure 1 which shows
N=96 much worse by the 10th assimilation time.
⇒ Figure 1 represents the error on the whole temperature field.
Figure 2 shows statistics on the innovation, so the difference be-
tween observed and forecast surface velocities and heat fluxes. This
means that although the forecast and the observed data at the sur-
face are close, the estimated temperature field at depth differs from
the true temperature field much more for N=96 than for N=288
or 768. We added this remark to the paragraph commenting on
figure 2. We also reorganized the whole description of figure 2, for
more clarity.

20. Figure 3: These are dangerously under dispersed in 3 cases.
⇒ We added a remark in the result section, study more pre-
cisely where the ensemble is biased/underdispersed with rank his-
tograms, and rediscuss underdispersion in the discussion.

21. P. 17, line 2: It’s the ensemble covariance that matters, not the scales of
spatial variability. These may or may not be the closely related.
⇒ We agree. However, the ensemble covariance will be affected by
the way small perturbations evolve and grow in the system. In our
system, a slight temperature perturbation in the upper boundary
layer can lead to the developpment of a new plate boundary. This
links our discussion of spatial variability due to the structure of
plate boundaries to the ensemble covariance matrix. Text has been
complemented to make this link clearer.

22. P. 19, line 13: Are the figure 8 results for the best localizations?
⇒ Yes, we added this precision in the legend of Figure 8.

23. Figure 7 caption: What is ‘K’?
⇒ K=16, legend updated.

24. Figure 9 caption: Need more caption info. What assimilation? Max and min
temps from ensemble members? How many of them?
⇒Text has been modified

25. P. 25, line 13: This looks like very poor parallel behavior to me, unless this
is somehow dominated by the model forecast times.
⇒ We already stated that, indeed, ”during the assimilation of a
dataset, most of the computational time is dedicated to the forecast
step”.
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26. P.26, line 7: This is too simplistic. In a smoother for a problem with things
that are advecting/convecting, an observation at the current time will have
largest correlation with a point upstream at an earlier time. The localization
needs to be shifted away from the observation as a function of time lag and
the maximum value should be less than 1.
⇒Yes, we agree that a potential smoother could benefit from shift-
ing the localization away from the observation. However, we might
already gain some information by applying a simple localization for
the smoother. Nerger et al. (2014) obtain encouraging results with
this type of localisation in a large-scale ocean circulation model for
example.

27. P. 26, line 27: Why do you think this? Are there more parameters than state
variables?
⇒Not necessarily, but, as explained in the following sentence, the
relationship of mantle dynamics to different rheological parameters
is highly nonlinear: most likely, we will need very large ensembles
to determine accurately the parameters.

28. P. 26, line 34: You think you are not converged? Plots look like you’ve
bottomed out and error is increasing as a function of assimilation time.
⇒We agree, we deleted the sentence.
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Answer to the comment of anonymous referee #2

October 31, 2017

We thank the anonymous reviewer for his/her review of our paper. We
hope that the answers provided here, as well as the modifications proposed in
the paper will be satisfactory. Please find below the list of comments, each
associated with our answer and details on the associated modifications of the
manuscript

1. The discussion of the error plots was at times confusing. In some places
you simply refer to errors, when you could mean the difference between the
true state and the assimilation, or sometimes the innovation (equation 36
for example, which isn’t really a forecast error). Please be clear about what
error you mean each time you use this term.
⇒ We changed the notations for innovations to a system which

is hopefully more straightforward. We also changed the name of

variables based on the innovation vector that were refered to as

”errors”.

2. I was surprised by how little the errors dropped in Figure 1, until later in the
results and discussion it became apparent that only small regions have most
of the errors (like the plumes, ridge or subduction). It would be really helpful
to plot the average error over these regions rather than the entire domain
(where the temperature field is fairly constant for long periods). I think this
would give a clearer picture of the errors between the various experiments.
⇒ We found a compromise between this suggestion and the major

comment number 8 of reviewer 1. We changed all the plots to rep-

resent the RMS error and plot on each figure the RMS error that

we would obtain if the estimate was the ”climatological” average

1D profile.

3. It would also be really useful to see how the velocity field responds to the as-
similation, because this is the part of the state directly related to the surface
velocity. I realize that it is not a prognostic variable, but it is an important
part of the state.
⇒Overall, the surface velocities are very well corrected during anal-

yses, due to their direct link with observations. We plotted on

figure 1 the evolution of errors on Velocities.

4. Please define the vector 1 in equation 18.
⇒ The text has been modified.

5. The text is pretty carefully edited for writing and typos. I just found a couple
of things: line 12 , change explicitely to explicitly (though this suggests that
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you didn’t run a spell check, so there might be more). And page 13, line 3,
the word ”embarassingly” is probably not appropriate.
⇒ The text has been modified.

6. Please clarify what you mean by state space localization, page 10, line 16.
⇒We mean that the localization has to be done on the forecast

error covariance matrix. Text modified.

7. Some of the figures need larger fonts on the captions, particularly Figure 6.
And if possible, use the Greek symbol for pi.
⇒The text has been modified.
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Abstract.

Recent advances in mantle convection modelling led to the release of a new generation of convection codes, able to generate

self-consistently plate-like tectonics at their surface. Those models physically link mantle dynamics to surface tectonics. Com-

bined with plate tectonic reconstructions, they have the potential to produce a new generation of mantle circulation models that5

use data assimilation methods and where uncertainties on plate tectonic reconstructions are taken into account. We recently

provided a proof of this concept by applying a suboptimal Kalman Filter to the reconstruction of mantle circulation (Bocher

et al., 2016). Here, we propose to go one step further and apply the ensemble Kalman filter (EnKF) to this problem. The EnKF

is a sequential Monte Carlo method particularly adapted to solve high dimensional data assimilation problems with nonlinear

dynamics. We tested the EnKF using synthetic observations consisting of surface velocity and heat flow measurements, on a10

2D-spherical annulus model and compared it with the method developed previously. The EnKF performs on average better

and is more stable than the former method. Less than 300 ensemble members are sufficient to reconstruct an evolution. We use

covariance adaptive inflation and localization to correct for sampling errors. We show that the EnKF results are robust over a

wide range of covariance localization parameters. The reconstruction is associated with an estimation of the error, and provides

valuable information on where the reconstruction is to be trusted or not.15

1 Introduction

Mantle circulation models are estimates of mantle flow history. They combine two sources of information: observations on the

dynamics or 3D structure of the Earth’s mantle and a numerical model of mantle convection. In their effort to reconcile both

observations and our physical understanding of mantle dynamics, they serve a wide variety of purposes and disciplines. Hager

and O’Connell (1979) originally built instantaneous mantle circulation models to understand the effect of plates on large-scale20

mantle flow. Since then, they have been used, among other applications, to understand the dynamics and evolution of the deep

earth mantle structures (Bunge et al., 1998; McNamara and Zhong, 2005; Bower et al., 2013; Davies et al., 2012), to study the
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evolution of mantle plumes and their relationship to hotspots (Hassan et al., 2016), to infer changes in the Earth’s rotation axis

(Steinberger and O’Connell, 1997), sea-level (Moucha et al., 2008) or dynamic topography (Flament et al., 2013).

The geodynamics community has developed three alternative approaches to the problem of the reconstruction of mantle

circulation. The first approach, backward advection, consists in starting at present by estimating the current density field of

the mantle from seismic tomography models (see Conrad and Gurnis, 2003, for a description of this method). This den-5

sity field is then advected backward in time with plate tectonic reconstructions as imposed boundary condition (Steinberger

and O’Connell, 1997). This method has a limited numerical cost and exploits the two most instructive constraints on man-

tle circulation: plate tectonic reconstructions and seismic tomography. However, this technique neglects thermal diffusion,

so it is not able to reconstruct past thermal structures that have completely diffused before present and it is limited to times

and regions for which the effect of diffusion is thought to be small. This limits reconstructions to the last 50 to 75 Myr
✿✿✿

Ma10

(Conrad and Gurnis, 2003) or even to shorter periods if we consider the uncertainties on tomographic models (Bello et al.,

2014). The second approach, the semi-empirical sequential method, estimates mantle circulation by integrating plate tectonic

reconstructions chronologically into a mantle convection model. Plate tectonic reconstructions are either introduced as ve-

locity boundary conditions, as first described by Bunge et al. (1998), or with a more sophisticated method, by blending a

convection solution with thermal and kinematic models of plates and slabs (Bower et al., 2015). This approach allows the15

use of models of convection with chemical heterogeneities (McNamara and Zhong, 2005). Also, it is not anymore the re-

construction method that limits the timespan of the reconstruction, but the availability of plate tectonic reconstructions. This

led to mantle circulation models integrating up to 450 Myr
✿✿

Ma
✿

of plate reconstruction history (Zhang et al., 2010). How-

ever, this method considers plate tectonic reconstructions as perfect estimates of surface tectonics: uncertainties affecting

the reconstructions are not taken into account although they are substantial, especially as reconstructions go further in the past20

(for example, there is almost no information on the state of the ocean floor before 140 Myr, see e.g. Torsvik et al., 2010)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(for example, there

. This method also requires the choice of an arbitrary initial temperature field to compute the evolution. The third approach

uses data assimilation methods to solve the mantle circulation problem. Data assimilation methods are inverse methods dealing

with the specific problem of estimating the evolution of a dynamical system from asynchronous data and a physical model

(Evensen, 2009a). The full inverse problem for mantle circulation, as stated by Bunge et al. (2003), would take into account25

model errors, numerical approximations, errors on plate reconstructions and on the estimation of the current tomography-

derived temperature field to provide the best fit given all sources of information. However, solving the full inverse problem

of mantle circulation is still a great challenge given the nonlinearities in mantle convection dynamics and the computational

power required to compute a realistic forward mantle convection evolution alone (Stadler et al., 2010; Burstedde et al., 2013).

So far, variational data assimilation dominates over other methods to estimate mantle circulation (Bunge et al., 2003; Horbach30

et al., 2014; Ghelichkhan and Bunge, 2016). To simplify the problem, they minimize the misfit between the final temperature

field of the mantle circulation model and the one deduced from seismic tomography. These mantle circulation models impose

plate tectonic reconstructions as boundary conditions, as in the first two approaches.

Here, we take a different view on data assimilation methods for mantle circulation models by focusing on how to take into

account the uncertainties in plate tectonic reconstructions. For almost a decade, 3-D spherical mantle convection models have35
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shown the capability to self-consistently produce plate-like tectonics at their surface (Walzer and Hendel, 2008; Van Heck and

Tackley, 2008; Yoshida, 2008; Foley and Becker, 2009). These models physically link surface tectonics comparable to that of

the Earth to mantle convection processes (Coltice et al., 2012; Rolf et al., 2014; Mallard et al., 2016). In Bocher et al. (2016), we

took advantage of this link to build a sequential data assimilation algorithm able to integrate plate reconstructions into a mantle

convection code while taking into account the uncertainties on those plate tectonic reconstructions. This technique assimilates5

a time series of surface observations chronologically, by repeating two stages, analysis and forecast, until all observations are

taken into account. Whenever an observation is available, the analysis evaluates the most likely state of the mantle at this time,

considering a prior guess (supplied by the forecast) and the new observations at hand. For this evaluation, we used the classical

best linear unbiased estimate (Talagrand, 1997). Then, the forward model of mantle convection forecasts the evolution of the

mantle until the next observation time. We tested this algorithm on synthetic experiments. It proved to be efficient in recovering10

mantle circulation given constraints on the amplitude of errors affecting observations and the timespan between observations.

Here we extend this work by applying a more advanced sequential data assimilation method, the ensemble Kalman filter

(EnKF, described in Evensen, 1994; Burgers et al., 1998)
✿✿✿✿✿

(EnKF,
✿✿✿✿✿✿✿✿✿

originally
✿✿✿✿✿✿✿✿

described
✿✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿

Evensen, 1994
✿

,
✿✿✿

and
✿✿✿

in
✿✿✿

its
✿✿✿✿✿✿✿✿

corrected

✿✿✿✿✿✿

version
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Burgers et al., 1998
✿

). This method is particularly suited for high dimensional nonlinear dynamical models (Evensen,

2009b). Instead of estimating the most likely state of the mantle, the Ensemble
✿✿✿✿✿✿✿✿

ensemble Kalman filter provides at each time15

an approximation of the probability density function of the state of the system in the form of a finite ensemble of states. During

the forecast stage, each member of the ensemble evolves independently. For the analysis, we use the second order statistics

of the ensemble to correct each ensemble member with the new observations at hand. We evaluate this method with synthetic

experiments in 2D-spherical annulus geometry (Hernlund and Tackley, 2008) and compare it to the algorithm developed by

Bocher et al. (2016). The EnKF provides more accurate estimations than the former method, and is even able to reconstruct20

evolutions that the former method could not. Moreover, the EnKF also estimates locally the error on the reconstruction. The

optimal size of the ensemble for our test case is 300 members. Both covariance inflation and localization eliminate spurious

correlations arising from the finite size of the Ensemble
✿✿✿✿✿✿✿

ensemble
✿

that is used to compute them.

This paper is organized as follows. In Sect.
✿✿✿✿✿✿

section 2, we present our simplifications on the general mantle circulation

reconstruction problem and the correspondence with the notation in the EnKF algorithm. Then, in Sect.
✿✿✿✿✿

section
✿

3, we detail the25

EnKF method and justify the variants chosen for the application to mantle circulation. Section 4 presents the results obtained

on synthetic experiments and compares them to results obtained by the method described in Bocher et al. (2016). Section 5 is

a discussion on the choice of the method and the challenges involved in the application of such a method to a realistic setting.

2 Presentation of the problem

We aim at reconstructing mantle circulation for the last hundreds of millions of years by combining a mantle convection model30

with plate tectonic reconstructions, using an ensemble Kalman filter. To study the behavior of the Ensemble
✿✿✿✿✿✿✿✿

ensemble Kalman

filter on such problem, we consider a simplified mantle convection model. This section describes the model used to compute a

mantle evolution, the data set assimilated in this evolution, and finally the backbone of ensemble Kalman filtering.
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2.1 Mantle convection model

At the timescales and lengthscales we are interested in (≥ 10 kyr, ≥ 1000 km), the mantle can be modelled as a continuous

visco-plastic
✿✿✿✿✿✿

viscous medium. To compute mantle circulation, we solve the equations of conservation of mass (Eq. 1
✿✿

(1)
✿

below),

momentum (Eq. 2
✿✿✿

(2) below) and energy (Eq. 8
✿✿

(8)
✿

below) for an isochemical mantle under the Boussinesq approximation.

The system of equations is non-dimensionalized to the thermal diffusion time scale (see Ricard, 2015). Given the high Prandtl5

number of the mantle (of the order of 1024), inertia is neglected. With these assumptions, the equations of conservation of mass

and momentum become diagnostic equations of the form

∇ ·u= 0, (1)

∇ ·σ−∇p+RaT
✿

Ter = 0, (2)

where σ, u, p, and T are the non-dimensional deviatoric stress, velocity, dynamic pressure, and temperature, respectively. The10

equations are written in spherical coordinates (r,θ,φ), using the physical convention with r the radius, θ the colatitude and φ

the longitude. The associated unit vectors are (er,eθ,eφ).

Ra
✿✿✿✿

RaT is the Rayleigh number
✿✿✿✿✿✿✿

Rayleigh
✿✿✿✿✿✿✿

number
✿✿✿✿✿

based
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿

top
✿✿✿✿

and
✿✿✿✿✿✿

bottom
✿✿✿✿✿✿✿✿✿

boundaries

✿✿

of
✿✿✿

the
✿✿✿✿✿✿

domain, defined as

RaRaT
✿✿✿

=
ρ0g0α0∆Ta3

µ0κ0
, (3)15

with ρ0 the density for T = 0, g0 the gravitational acceleration, α0 the thermal expansivity, ∆T the temperature drop, a the

depth of the layer, κ0 the thermal diffusivity, µ0 the dynamic viscosity of the system. The Rayleigh number in our model is 106.

It is one or two orders of magnitude lower than that of the Earth, but high enough to ensure chaotic convection. The vertical

velocities and shear-stress at the surface and the base of the model are set to zero.

The deformation response of mantle material to stress is implemented as a linear relationship linking the strain rate tensor ǫ̇20

to the deviatoric stress tensor σ as

σ = 2µeff ǫ̇= µeff

(

∇u+(∇u)T
)

. (4)

The
✿✿✿✿✿

choice
✿✿

of
✿✿✿

the effective viscosity µeff takes into account both a viscous Newtonian behavior with a viscosity
✿

is
✿✿✿✿✿✿

crucial
✿✿✿

for

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿

of
✿✿✿✿✿✿✿✿

plate-like
✿✿✿✿✿✿✿✿

tectonics
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

convective
✿✿✿✿✿✿

system.
✿✿✿

We
✿✿✿✿✿✿

choose
✿✿✿

for
✿✿✿✿

µeff
✿

a
✿✿✿✿✿✿✿✿✿

composite
✿✿✿✿✿✿✿

rheology
✿✿✿✿

with
✿✿

a

✿✿✿✿✿✿

viscous
✿✿✿✿✿✿✿✿✿

Newtonian
✿✿✿✿✿✿✿✿✿✿

component µn and a pseudo-plastic behavior
✿✿✿✿✿✿✿✿✿✿

component,
✿✿✿✿✿✿✿✿✿✿✿

implemented with an equivalent “pseudo-plastic25

viscosity” µy ,
✿✿✿

such
✿✿✿✿

that

µeff =min(µn,µy). (5)

The Newtonian viscosity µn follows an Arrhenius law

µn = µ0 exp

(

EA

T +T1

)

(6)
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with µ0 = exp
(

−EA

2T1

)

, T1 the temperature at which
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

nondimensional µn = 1, and EA the
✿✿✿✿✿✿✿✿✿✿✿✿✿

nondimensional
✿

activation

energy. We
✿✿✿

This
✿✿✿

law
✿✿✿✿✿✿✿

reflects
✿✿✿

the
✿✿✿✿✿✿

thermal
✿✿✿✿✿✿✿✿✿

activation
✿✿

of
✿✿✿✿✿✿

crystal
✿✿✿✿✿✿✿✿✿✿✿

deformation,
✿✿✿

and
✿✿✿✿✿✿

creates
✿✿

a
✿✿✿✿✿

highly
✿✿✿✿✿✿✿

viscous
✿✿✿✿✿

upper
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

layer

✿✿✿

(the
✿✿✿✿✿✿✿✿✿✿✿

lithosphere),
✿✿✿✿✿

while
✿✿

the
✿✿✿✿

rest
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

mantle
✿✿

is
✿✿✿

less
✿✿✿✿✿✿✿

viscous.
✿✿✿

We
✿✿✿✿

also implement the decrease of viscosity in the asthenosphere

✿✿✿

(the
✿✿✿✿✿

layer
✿✿✿✿✿

below
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

lithosphere)
✿

by reducing by a factor of 10 the viscosity µn when the temperature is above a solidus

equation Ts = Ts0 +∇rTs(ra−r) with ra the surface value of r. The implementation
✿✿✿✿✿✿✿

presence
✿

of a weak asthenosphere tends5

to favor plate-like behavior (Tackley, 2000; Richards et al., 2001)
✿

,
✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿✿✿✿

compatible
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿

laboratory
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

observational
✿✿✿✿

data

✿✿✿✿✿✿✿✿✿✿

(King, 2016).

The pseudo-plastic part of the effective viscosity µy is defined by

µy =
σyield

2ǫ̇II

, (7)

where ǫ̇II is the second invariant of the strain rate tensor and σyield = σY +(ra− r)∇rσY , with σY and ∇rσY the yield stress10

at the surface and the depth-dependence of the yield stress, respectively.

✿✿✿✿

This
✿✿✿✿✿✿✿✿

composite
✿✿✿✿✿✿✿✿

rheology
✿✿✿✿✿✿

allows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

development
✿✿

of
✿✿✿✿✿✿

strong
✿✿✿✿✿

plates
✿✿✿✿✿✿✿✿

delimited
✿✿✿

by
✿✿✿✿✿✿

narrow
✿✿✿✿✿

weak
✿✿✿✿✿

zones
✿✿✿✿

(i.e.
✿✿✿✿

plate
✿✿✿✿✿✿✿✿✿✿✿

boundaries),

✿✿✿

and
✿✿

is
✿✿✿✿✿✿✿

currently
✿✿✿

the
✿✿✿✿

best
✿✿✿✿

way
✿✿

to
✿✿✿✿✿✿✿

generate
✿✿✿✿✿✿✿✿✿✿✿✿✿

self-consistently
✿✿✿✿✿✿✿✿

plate-like
✿✿✿✿✿✿✿✿

tectonics
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿

of
✿✿✿✿✿

global
✿✿✿✿✿✿

mantle
✿✿✿✿✿✿✿✿✿

convection
✿✿✿✿✿✿✿

models

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Coltice et al., 2017)
✿

.

The energy conservation equation is the only prognostic equation of the system15

DT

Dt
=∇2T +Rh

RaH
RaT
✿✿✿✿

., (8)

Rh is the non-dimensional internal heating rate defined as
✿✿✿

with
✿✿✿✿✿

RaH
✿✿✿

the
✿✿✿✿✿✿✿

Rayleigh
✿✿✿✿✿✿✿

number
✿✿✿✿✿

based
✿✿✿

on
✿✿✿✿✿✿

internal
✿✿✿✿✿✿✿

heating

RhRaH
✿✿✿

=
ρ0D

2H

k0∆T

ρ20g0α0Ha5

µ0k0κ0
✿✿✿✿✿✿✿✿✿✿

(9)

with H the dimensional heating rate and k0 the thermal conductivity. We set isothermal top and bottom boundaries with

temperatures Ta and Tb, respectively. The models presented here have 10% basal heating and 90% internal heating.20

These equations are solved using the finite volume, multigrid parallel code STAGYY (Tackley et al., 1993), on a spher-

ical annulus
✿✿✿✿✿✿✿✿

staggered
✿

grid. This geometry provides results closer to the spherical grid
✿✿✿✿✿✿✿

geometry
✿

than cylindrical geometry

(Hernlund and Tackley, 2008). In the following, the longitudinal coordinate of a point is φl, with l ∈ {1,2, ...,L} and its radial

coordinate is rm with m ∈ {1,2, ...,M}, r varying from rb to ra.

Note that this paper focuses on the methodology of ensemble data assimilation for a convecting system similar to that of25

the Earth’s mantle. Hence, we choose a rather simple model that can reproduce plate-like tectonics at the surface. We rely on

simplifications such as 2D geometry, incompressible and isochemical mantle and a rheology which does not take into account

the history of the material. Although some of the complexities we ignore may play a fundamental role in the reconstruction

of the Earth’s mantle evolution, we choose to focus in this manuscript on the data assimilation methodology. Moreover, we

choose to keep the same parameters as the test case of Bocher et al. (2016) in order to allow
✿✿✿✿✿

enable direct comparison between30

the methods. Table 1 lists the chosen parameter values.
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To ease the comparison with Earth’s mantle convection, we rescale the nondimensional
✿✿✿✿✿✿✿✿✿✿✿✿✿

non-dimensional
✿

time in the evolu-

tion, t, by the transit time of the convective system. By definition, the transit time of the Earth’s mantle is tEt = aE/vErms, with

aE the thickness of the mantle and vErms the root mean square of surface velocities of the Earth, as estimated by plate tectonic

reconstructions (Seton et al., 2012). We compute the same value
✿✿✿✿✿✿✿

quantity for the model tmt = a/vmrms. The scaled time ts is

then ts = t
tEt
tmt

.5

✿✿✿

The
✿✿✿✿✿✿✿✿

dynamics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

convective
✿✿✿✿✿✿

system
✿✿✿

we
✿✿✿✿

just
✿✿✿✿✿✿✿✿

described
✿✿✿✿✿✿✿

depends
✿✿✿

on
✿✿✿

the
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿✿✿

dimensionless
✿✿✿✿✿✿✿

numbers
✿✿✿✿✿

RaT
✿✿✿

and
✿✿✿✿✿

RaH.
✿✿✿

In

✿✿✿

our
✿✿✿✿✿✿

model,
✿✿✿✿✿✿✿✿✿✿

RaT = 106
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

RaH = 2.05 107.
✿✿✿✿✿

These
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿

one
✿✿

to
✿✿✿✿

two
✿✿✿✿✿✿

orders
✿✿

of
✿✿✿✿✿✿✿✿✿

magnitude
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿

current
✿✿✿✿✿

Earth

✿✿✿✿✿✿✿✿

estimates,
✿✿✿

but
✿✿✿✿

high
✿✿✿✿✿✿

enough
✿✿

to
✿✿✿✿✿✿

ensure
✿✿✿✿✿✿

chaotic
✿✿✿✿✿✿✿✿✿

convection
✿✿✿✿

with
✿✿✿✿✿✿

thermal
✿✿✿✿✿✿✿✿✿

turbulence
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Stewart and Turcotte, 1989; Travis and Olson, 1994)

✿

.
✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿

regime,
✿✿✿

the
✿✿✿

top
✿✿✿

and
✿✿✿✿✿✿✿

bottom
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿✿

layers
✿✿✿✿✿✿✿

develop
✿✿✿✿✿✿✿✿✿✿

instabilities
✿✿✿

that
✿✿✿✿

can
✿✿✿✿✿✿

trigger
✿✿✿✿✿✿✿

transient
✿✿✿✿✿✿✿✿✿✿

descending
✿✿✿

and
✿✿✿✿✿✿✿✿✿

ascending

✿✿✿✿✿✿✿

currents,
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿✿

This
✿✿✿✿✿

leads
✿✿

to
✿

a
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿✿✿✿✿

time-dependent
✿✿✿✿✿

flow,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

exponential
✿✿✿✿✿✿

growth
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

initial10

✿✿✿✿

state
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

system,
✿✿

as
✿✿✿✿✿✿

studied
✿✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bello et al. (2014),
✿✿

in
✿✿

a
✿✿✿✿✿

series
✿✿

of
✿✿✿✿

twin
✿✿✿✿✿✿✿✿✿✿✿

experiments
✿✿

in
✿✿✿

3D
✿✿✿✿✿✿✿✿

spherical
✿✿✿✿✿✿✿✿

geometry.
✿✿✿

We
✿✿✿✿✿✿✿✿✿

computed

✿✿

the
✿✿✿✿✿✿✿✿✿

Lyapunov
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿

over
✿✿✿✿✿

which
✿✿✿✿✿

initial
✿✿✿✿✿✿✿✿✿✿✿

perturbations
✿✿✿✿✿

grow
✿✿✿✿✿✿✿✿✿✿✿

exponentially
✿✿✿

by
✿✿

a
✿✿✿✿✿

factor
✿✿

of
✿✿

e,
✿✿✿

and
✿✿✿✿✿✿

found

✿✿

for
✿✿✿

our
✿✿✿✿✿✿✿

models
✿

a
✿✿✿✿✿✿✿✿

lyapunov
✿✿✿✿

time
✿✿

of
✿✿✿✿✿✿✿✿

140 Myr,
✿✿✿✿✿✿

similar
✿✿

to
✿✿✿

the
✿✿✿✿✿

times
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bello et al. (2014)
✿✿✿✿✿✿✿

estimated
✿✿✿

for
✿✿✿✿

their
✿✿✿✿✿

most
✿✿✿✿✿✿✿✿

Earth-like
✿✿✿✿✿✿

model.
✿

2.2 Observations of mantle circulation

The state of the Earth’s surface is the time integrated expression of mantle circulation. At a global scale, the main source of15

information for the last 100 Myr is the database of the localization and identification of magnetic anomalies on the seafloor,

translated into maps of seafloor ages (Müller et al., 2008; Seton et al., 2014). This information is complemented with regional

geological studies giving constraints on the timing and geometry of tectonic events as well as a synthesis of paleontologi-

cal, structural geology, stratigraphical, magnetic anomalies, gravity data and seismic studies. In addition, paleomagnetic data

provide constraints on the paleolatitude of continental blocks (Besse and Courtillot, 2002).20

Plate tectonic reconstructions use the geometric theory of plate tectonics to integrate all these observations. The result is a

time series of maps of seafloor ages, plate layout and kinematics. The continuously closed plate algorithm (Gurnis et al., 2012)

produces plate tectonic reconstruction maps continuous in space and time (Seton et al., 2012; Müller et al., 2016).

Although we are aware that these plate tectonic reconstruction maps are in themselves models and not direct observations,

we propose to develop an assimilation method that use them as data to assimilate in our mantle convection model. This solution25

is generally chosen in mantle circulation reconstructions (Bunge et al., 2002; Zhang et al., 2010; Bower et al., 2015), because

it provides continuous surface boundary conditions in space and time for the period of reconstruction. One advantage of the

technique we develop is that it is possible to consider errors on the data that are assimilated, another is that the reconstructions

do not need to be known at all times and at all points on the surface. Hence it is possible, in principle, to design a data

assimilation scheme using direct observations. However, this would require further developments both on the database design30

and on the data assimilation algorithm. Sequential data assimilation methods for mantle circulation are still in their infancy, so

we opt for a simpler structure of the data to be assimilated: a time series of maps of surface velocity and seafloor age, as given

by plate tectonic reconstructions.
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In this study, we limit ourselves to the test of data assimilation in synthetic experiments. In the model described in Sect. 2.1,

the absence of small scale convection at the base of the boundary layer makes the surface heat flux an excellent proxy for

the age of the seafloor (Coltice et al., 2012). Consequently, we consider surface heat flux and surface velocity as the data to

assimilate.

To our knowledge, the amplitude of the uncertainty on global plate tectonic reconstructions has not yet been assessed. For5

the synthetic tests we perform in Sect. 4, we choose an arbitrary value of 10% of the root mean square value of heat flux and

surface velocity, respectively. We further discuss this choice in Sect. 5.

2.3 Ensemble Kalman filtering framework: notations

Our aim is to assimilate a time series of observations (surface velocities and heat fluxes) into a mantle convection model to

estimate the evolution of the state of the mantle. We introduce here the general formulation of ensemble Kalman filtering and10

link them to our problem. We use the notation system recommended by Ide et al. (1997).

The time series of data is defined as a set of column vectors {yo
1,y

o
2, ...,y

o
K}, where the subscripts {1,2, ...,K} refer to

the times at which observations are available. As seen in the previous section, the data used for our experiments are surface

velocity and surface heat flux. The data vector at time k is thus defined as

yo
k =

[

qok(φ1), q
o
k(φ2), ..., q

o
k(φL),u

o
φk(φ1),u

o
φk(φ2), ...,u

o
φk(φL)

]T
, (10)15

where qok(φl) and uo
φk(φl) are the observed values of surface heat flux and surface horizontal velocity at the k-th timestep and

longitude φl, and (·)T means transpose. We model errors on observations by a random vector of zero mean and covariance

matrix Rk (we suppose unbiased observations). Although Rk is a diagonal matrix of constant value and size in our experiments,

it is not generally the case. Correlations between errors on observations could be specified in Rk.

The evolution of the state of the system is estimated sequentially during the period where observations are available. At each20

timestep k ∈ {1,2, ...,K}, we define two state vectors: the a priori state, or forecast state x
f
k and the analysis state xa

k, which is

the state corrected after having assimilated the observations yo
k. The system of equations developed in Sect. 2.1 shows that we

can compute velocity, viscosity and pressure values at each grid point from the temperature field. Nevertheless
✿✿✿

sole
✿✿✿✿✿✿✿✿✿✿

knowledge

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

field:
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

field
✿✿✿✿✿✿✿✿

describes
✿✿✿✿✿✿✿✿✿

completely
✿✿✿

the
✿✿✿✿✿

state
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

system.
✿✿✿✿✿✿✿✿

However, the relation between

surface velocities and the temperature field is nonlinear. We choose to include
✿✿

in
✿✿✿

the
✿✿✿✿✿

state the whole temperature fieldand25

✿

,
✿✿✿

but
✿✿✿✿

also
✿✿✿

add
✿

the surface velocities
✿

, to form an augmented state vector. This ,
✿✿✿✿✿✿✿✿✿

following
✿✿✿

the
✿✿✿✿✿✿✿✿✿

suggestion
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Evensen (2003)

✿

,
✿✿✿✿

Sect.
✿✿✿✿

4.5.
✿✿✿✿

This
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿✿✿✿✿✿✿✿

establishes
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿

state
✿✿✿

and
✿✿✿✿

data
✿✿✿✿

(see
✿✿✿✿

last
✿✿✿✿✿✿✿✿

paragraph
✿✿✿

of
✿✿✿

this
✿✿✿✿✿✿✿✿

section),

✿✿✿✿✿

which simplifies the computations thereafter. The state of the mantle at a timestep k ∈ [1,K] is defined as

xk = [Tk(φ1, r1),Tk(φ1, r2), ...,Tk(φL, rM ),uφk(φ1),uφk(φ2), ...,uφk(φL)]
T
, (11)

where Tk(φl, rm) and uφk(φl) are the values of temperature at the kth timestep, longitude φl and radius rm and surface30

horizontal velocity at the kth timestep and longitude φl.

The forecast and analyzed states are uncertain as well. Their uncertainties are represented by two random vectors of zero

expectancy
✿✿✿✿✿✿✿

expected
✿✿✿✿✿

value and covariance matrices P
f
k and P

a
k, respectively. In ensemble Kalman filtering, the covariance
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matrices are not explicitly computed.Instead,
✿✿

We
✿✿✿✿✿✿✿✿

compute
✿✿✿✿✿✿✿✿

explicitly
✿✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

matrices
✿✿✿✿

only
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

initialization
✿✿✿✿

step

✿✿✿

(see
✿✿✿✿✿

Sect.
✿✿✿✿

3.1).
✿✿✿✿✿✿✿✿✿✿

Otherwise,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

uncertainty
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿

and
✿✿✿✿✿✿✿

analyzed
✿✿✿✿✿✿

states
✿✿

is
✿✿✿✿✿✿✿✿✿

represented
✿✿✿

by
✿

two ensembles of N states

{xf
kn}n∈[1,N ] and {xa

kn}n∈[1,N ]are computed, such that their average equals x
f
k and xa

k, respectively, and their respective

sample covariance matrices approximate P
f
k and P

a
k. The ensemble of states {xf

kn}n∈[1,N ] and {xa
kn}n∈[1,N ] are stored in the

matrices X
f
k and X

a
k, where the nth column is the state of the nth ensemble member x

f
kn and xa

kn, respectively.5

Finally, we introduce the observation operator, which maps a given state vector xe
kn (e being f or a) to the corresponding

data ye
kn. If the

✿✿✿

The surface heat flux is approximated by a first order discretization of Fourier’s law, then the .
✿✿✿✿

The observation

operator is linear,
✿✿✿✿

then
✿✿✿✿✿

linear,
✿✿✿✿

with
✿✿✿

its
✿✿✿✿✿✿

velocity
✿✿✿✿

part
✿✿✿✿✿

being
✿✿✿✿✿✿

simply
✿✿✿

the
✿✿✿✿✿✿✿

identity, and can be represented by the matrix H such that

∀k ∈ {1,2, ...,K},∀n ∈ {1,2, ...,N}, ye
kn =Hxe

kn. (12)

Table 2 summarizes the dimensions of the vectors and matrices for our problem.10

3 Ensemble Kalman filter with localization and inflation

The ensemble Kalman filter (Evensen, 1994; Burgers et al., 1998) is a sequential data assimilation algorithm using the same

equations as the Kalman Filter for the analysis step, but Monte Carlo methods to forecast the error statistics on the state. We

explain here how we adapt the ensemble Kalman filter to our problem and justify the choice of the starting ensemble.

To implement the EnKF, we used the software environment Parallel Data Assimilation Framework (PDAF, Nerger et al.,15

2005; Nerger and Hiller, 2013).

3.1 Initialization: first analysis and generation of the starting ensemble

As in Bocher et al. (2016), we compute
✿✿✿

We
✿✿✿✿✿✿✿

compute
✿✿✿✿

the second order statistics
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

state from a series of

400 decorrelated snapshots of convection simulations . We obtain
✿✿

by
✿✿✿✿✿✿✿✿

following
✿✿✿

the
✿✿✿✿✿✿✿✿✿

procedure
✿✿✿✿✿✿✿

detailed
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Bocher et al. (2016)
✿

,

✿✿✿✿

Sect.
✿✿✿

4.1.
✿✿✿✿

The
✿✿✿✿✿

model
✿✿✿✿✿

setup
✿✿

is
✿✿✿✿✿✿✿✿✿

spherically
✿✿✿✿✿✿✿✿✿✿

symmetric,
✿✿

so
✿✿✿

the
✿✿✿✿✿✿✿

expected
✿✿✿✿✿

value
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿

covariance
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿✿✿

and20

✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

velocities
✿✿✿✿

must
✿✿✿✿✿✿

satisfy

∀(φ,r), 〈T (φ,r)〉= 〈T (0, r)〉,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(13)

∀(φ1,φ2, r1, r2), Cov(T (φ1, r1),T (φ2, r2)) = Cov(T (0, r1),T (φ1−φ2, r2)),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(14)

= Cov(T (0, r1),T (φ2−φ1, r2)),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(15)
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✿✿✿✿✿

where
✿✿

〈·〉
✿✿✿✿✿✿

stands
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

expectation
✿✿✿✿✿✿✿✿

operator
✿✿✿

and
✿✿✿✿✿✿✿

Cov(·, ·)
✿✿✿✿✿✿

stands
✿✿✿

for
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

operator.
✿✿✿✿✿✿✿✿

Likewise,
✿✿✿

we
✿✿✿✿✿

have

∀φ, 〈uφ(φ)〉= 〈uφ(0)〉,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(16)

∀(φ1,φ2), Cov(uφ(φ1),uφ(φ2)) = Cov(uφ(0),uφ(φ1−φ2)),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(17)

∀(φ1,φ2, r1), Cov(T (φ1, r1),uφ(φ2)) = Cov(T (0, r1),uφ(φ2−φ1)),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(18)

=−Cov(T (0, r1),uφ(φ1−φ2)).
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(19)5

✿✿✿

We
✿✿✿

use
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿

symmetries
✿✿

to
✿✿✿✿✿✿✿✿

compute

〈T (0, rm)〉, with m ∈ {1, ...,M}
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(20)

Cov(T (rm),T (φl′ , rm′)), with m ∈ {1, ...,M}, l′ ∈ {1, ...,L/2}, and m′ ∈ {1, ...,M}
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(21)

〈uφ(0)〉,
✿✿✿✿✿✿

(22)

Cov(uφ(0),uφ(φl)), with l ∈ {1, ...,L/2}
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(23)10

Cov(uφ(0),T (φl, rm)), with l ∈ {1, ...,L/2}, and m ∈ {1, ...,M},
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(24)

✿✿✿

and
✿✿✿✿✿

build
✿✿✿✿

with
✿✿✿✿✿

these
✿✿✿✿✿

values
✿

the first forecast state of average
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿

value x
f
1 and associated covariance matrix P

f
1 . The

background
✿✿✿

For
✿✿

the
✿✿✿✿✿✿

model
✿✿✿✿

used
✿✿

in
✿✿✿

this
✿✿✿✿✿

study
✿✿✿

(see
✿✿✿✿✿

Table
✿✿✿

1),
✿✿

the
✿

covariance matrix P
f
1✿✿✿

has
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(LM +L)2 = 18,8162 = 354,041,856

✿✿✿✿✿✿✿✿✿✿

components.
✿✿✿

By
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

symmetries
✿✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿

system,
✿✿✿

we
✿✿✿

are
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿

reduce
✿✿✿

the
✿✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

independant
✿✿✿✿✿✿✿✿✿✿

components
✿✿✿

in
✿✿✿

the

✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

L/2(M +1)2 = 3,557,400.
✿✿✿

P
f
1✿

is eigendecomposed and rank reduced into P
f
1r =VΛV

T , with Λ15

✿✿✿✿✿✿✿✿✿✿✿✿✿

P
f
1r =VΛV

T ,
✿✿✿✿

with
✿✿

Λ
✿

a diagonal matrix containing the 1928
✿✿✿✿✿✿✿✿

nr = 1928
✿

largest eigenvalues of P
f
1 (which accounts for

99.98% of its cumulative variance) and V a matrix of the corresponding
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿✿

matrix
✿✿✿

of eigenvectors.

The
✿✿

We
✿✿✿✿✿✿✿✿✿

assimilate
✿✿✿

the first set of observations yo
1 is assimilated to obtain

✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿✿✿

classical
✿✿✿✿

Best
✿✿✿✿✿

Linear
✿✿✿✿✿✿✿✿

Unbiased
✿✿✿✿✿✿✿✿✿

Estimator

✿✿✿✿✿✿✿✿

equations
✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ghil and Malanotte-Rizzoli (1991)
✿✿✿

for
✿✿✿✿✿✿✿✿

example).
✿✿✿✿✿

When
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

eigendecomposed
✿✿✿✿

and

✿✿✿✿

rank
✿✿✿✿✿✿✿

reduced,
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿

equations
✿✿✿

can
✿✿✿✿

take
✿✿✿

the
✿✿✿✿

form
✿

20

xa
1 = x

f
1 +VAV

T
H

T
R

−1(yo
1−Hx

f
1 ), (25)

P
a
1 =VAV

T , (26)

with

A=
[

Λ
−1 +V

T
H

T
R

−1
HV

]−1

. (27)

We
✿✿✿✿

After
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿✿✿✿

analysis,
✿✿✿

we generate an ensemble of N initial states using
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿✿✿

analyzed
✿✿✿✿✿

state
✿✿✿✿✿✿

average
✿✿✿

xa
1✿✿✿✿

and25

✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix
✿✿✿✿

P
a
1 .

✿✿✿

To
✿✿

do
✿✿✿

so,
✿✿✿

we
✿✿✿✿✿✿

follow the second order exact sampling method (Hoteit, 2001; Pham, 2001).

First, A is eigendecomposed

A=V
a
Λ

a
V

aT . (28)
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The ensemble members are then computed following

X
a
1 =









| |
xa
11 ... xa

1N

| |









=









| |
xa
1 ... xa

1

| |









+
√
N − 1VV

a
Λ

a1/2





Ω
T
N×(N−1)

0(nr−N)×N



 , (29)

where Ω
✿✿✿✿✿✿✿✿✿

ΩN×(N−1) is a random matrix whose columns are vectors forming an orthonormal basis and each of them is orthog-

onal to 1= [1, ...,1]T . Ω
✿✿✿

1N ,
✿✿✿

the
✿✿✿✿✿✿✿

column
✿✿✿✿✿

vector
✿✿✿

of
✿✿✿✿✿✿✿✿✿

dimension
✿✿

N
✿✿✿

full
✿✿✿

of
✿✿

1,
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

1N = [1, ...,1]T .
✿✿✿✿✿✿✿✿✿✿

0(nr−N)×N
✿✿

is
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿

(nr −N)×N

✿✿✿✿✿

matrix
✿✿✿✿

full
✿✿

of
✿✿

0.
✿✿✿✿✿✿✿✿✿✿

ΩN×(N−1) is generated through the algorithm described in the appendix of Nerger et al. (2012). The matrix5

Ω
✿✿✿✿✿✿✿✿✿

ΩN×(N−1)
✿

is designed so that the sample mean of the starting ensemble is equal to xa
1 and its sample covariance matrix is

equal to matrix P
a
1 reduced to its N largest eigenvalues.

This method of generating the starting ensemble takes advantage of the extensive knowledge we have on the background

statistics of the model. Several other methods have been tested to generate a starting ensemble, such as starting with random

decorrelated snapshots of mantle convection obtained from a very long run
✿✿✿✿✿✿✿✿✿

simulations, second order exact sampling from x
f
110

and P
f
1 , and several assimilations of the first observations yo

1. None of these solutions were as efficient for our problem as the

technique used here.
✿✿✿✿✿

These
✿✿✿✿✿✿✿✿✿

alternative
✿✿✿✿✿✿✿

solutions
✿✿✿✿✿✿✿

resulted
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

reconstructions
✿✿✿✿

with
✿✿✿✿✿

larger
✿✿✿✿✿

initial
✿✿✿✿✿✿

errors
✿✿✿

and
✿✿✿✿✿✿

slower
✿✿✿✿

error
✿✿✿✿✿✿✿✿

decrease

✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

window,
✿✿

if
✿✿✿✿

any.

3.2 Forecast

Between timesteps
✿✿✿✿✿✿✿

Between
✿✿✿✿

time
✿✿✿✿

steps
✿

k−1 and k, the forward numerical code STAGYY computes independently the evolu-15

tion of each of the analyzed states {xa
k−1,n}n∈[1,N ] to produce a forecast ensemble {xf

k,n}n∈[1,N ].

The forecast state is the average of the ensemble

x
f
k =

1

N
X

f
k1,N .

✿✿

(30)

and the
✿✿✿

The
✿

forecast error covariance matrix is given by the sample covariance matrix of the ensemble of forecast states

P
f
k =

1

N − 1
X

f
k

(

IN
✿

− 1

N
1N

✿

1N
✿

T

)(

IN
✿

− 1

N
1N

✿

1N
✿

T

)T

X
fT
k . (31)20

✿✿✿✿✿

where
✿✿✿

IN
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

identity
✿✿✿✿✿✿

matrix
✿✿

of
✿✿✿✿✿✿✿✿✿

dimension
✿✿✿✿✿✿✿

N ×N . After several assimilation cycles, the finite size of the ensemble induces

the underestimation of the error variance (van Leeuwen, 1999), and can lead to filter divergence. We observed this behavior in

our case, and to stabilize the filter we apply covariance inflation, as suggested in Anderson and Anderson (1999) and Hamill

et al. (2001).

We correct the forecast ensemble variance with an inflation factor γ according to25

X
f
k ←

1

N
X

f
k1N

✿

1N
✿

T +

[

X
f
k

(

IN
✿

− 1

N
1N

✿

1N
✿

T

)]√
γ, (32)

where← means that we replace the matrix on the left-hand side by the term on the right-hand side. γ is computed following

the same principles as in the suboptimal Kalman Filter developed in Bocher et al. (2016), i.e. by comparing the error on

10



observations and the standard deviation of the innovation dk defined as

dk = yo
k −

1

N
HX

f
k1N

✿

. (33)

The inflation factor is

γ =
V d−V o

V f
, (34)

with5

V d =Tr
(

dkd
T
k

)

, (35)

V o =Tr(Rk), (36)

V f =Tr

[

HX
f
k

(

IN
✿

− 1

N
1N

✿

1N
✿

T

)(

IN
✿

− 1

N
1N

✿

1N
✿

T

)T

X
fT
k H

T

]

, (37)

where Tr(·) means the trace. The inflation factor is then truncated between a minimum value of 1 (to prevent further contraction

of the ensemble spread) and a maximum value of γ+ = 1.25 (to prevent overspread). Several values of maximum inflation10

factor have been tested, from γ+ = 1.1 to γ+ = 2, and showed little impact on the efficiency of the assimilation. A constant

inflation factor was also tested, but the results with an adaptive inflation factor were substantially more accurate, especially for

the first assimilation times.

3.3 Analysis

The analyzed state xa
kn of the nth member of the ensemble is15

xa
kn = x

f
kn +Kk

(

yo
kn−Hx

f
kn

)

(38)

where Kk is the Kalman Gain. yo
kn is the observed data vector yo

k to which a random perturbation of zero expectation
✿✿✿✿✿✿✿

expected

✿✿✿✿

value
✿

and covariance matrix Rk is added, as is recommended in Burgers et al. (1998).

The Kalman Gain is defined as

Kk = (Pf
k ◦C)HT

[

H(Pf
k ◦C)HT +Rk

]−1

, (39)20

where the matrix P
f
k is the sample covariance matrix of the ensemble of forecast states {xf

kn}n∈[1,N ]. We use a limited

ensemble size (maximum 768) to estimate P
f
k . Spurious correlations ensue, especially between distant points. To counteract

✿✿✿✿✿✿✿

mitigate this effect, we implement direct forecast error localization
✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿✿

directly
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix

by Schur multiplying (symbol ◦) Pf
k by the localization matrix C, as introduced by Hamill et al. (2001) and Houtekamer and

Mitchell (2001). The matrix C is itself the Schur product of a vertical localization matrix Cv and a horizontal localization25

matrix Ch. The value of Cv(i, j) depends on the absolute radius difference of the i− th and the j− th components of the state

vector and on
✿✿

the
✿

vertical correlation length ℓv . The value of Ch(i, j) depends on the absolute angle difference of the i− th

11



and the j− th components of the state vector and on
✿✿✿

the vertical correlation length ℓh. Both values follow a Gaspari-Cohn

compactly supported fifth-order piecewise rational function (similar to a Gaussian but with a compact support, Eq. (4.10) of

Gaspari and Cohn, 1999).

We also tested the domain localization strategy as described in Janjic et al. (2011), since it is
✿✿

in
✿✿✿✿✿

some
✿✿✿✿

cases
✿

computationally

more efficient and already implemented in PDAF. However, it led to a systematic failure of the assimilation. This is due to the5

nature of our problem: all the observations are located at the surface of the model and we aim at estimating the temperature field

over the whole depth of the mantle. A vertical localization is as necessary as a horizontal localization:
✿

,
✿✿✿✿✿

hence the localization

has to be done in the state space
✿✿✿✿✿✿

directly
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

forecast
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix and not only in the data space.

3.4 Implementation of the ensemble Kalman filter

We used the software environment PDAF (Nerger et al., 2005; Nerger and Hiller, 2013) in combination with the mantle10

convection code STAGYY (Tackley, 2008) to develop an ensemble Kalman filter code for mantle convection . PDAF provides

a set of core routines computing in parallel the analysis steps for a range of ensemble based data assimilation techniques. It

provides as well a set of standard routines to adapt the parallelization of a preexisting parallel forward numerical model and

integrate the data assimilation routines. The final product is a highly scalable ensemble data assimilation code running both

forecasts and analyses in parallel.15

We modified the STAGYY code following the procedure recommended by PDAF (see the online documentation wiki at

Nerger, 2016). We also made a few modifications in PDAF routines to allow for direct forecast error localization with the

Ensemble
✿✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿✿

directly
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿

Kalman filter. Additionally, we designed a

basic observation database so as to load in a single step all the observations used in the data assimilation procedure.

4 A posteriori evaluation of the ensemble Kalman filter method20

We test the data assimilation scheme on twin experiments using the model described in Sect. 2.1. Throughout this section,

we compare the results of the ensemble Kalman filter for mantle circulation reconstructions to the results computed using the

method developed in Bocher et al. (2016), hereafter referred to as method 1.

After describing the setup used for twin experiments, we test the robustness of the EnKF method and compare it to that

of method 1. Then, we determine the range of data assimilation parameters which are suitable to conduct an ensemble data25

assimilation. Finally, we assess the ability of the scheme to actually reconstruct specific geodynamic structures.

4.1 Twin experiment setup

Twin experiments are a way to assess the accuracy of a data assimilation procedure in a controlled environment, where the true

evolution is perfectly known.

First, we compute a reference
✿✿✿✿

state
✿

evolution using the forward numerical model, considered as the true
✿✿✿✿

state
✿

evolution,30

from which we extract the set of true states
✿✿✿✿

state
✿✿✿✿✿✿

vectors
✿

{xt
k}k∈[1,K]. Here, the timespan of the

✿✿✿✿

state
✿

evolution is 150 Myr

12



and we sample true states
✿✿✿✿

state
✿✿✿✿✿✿

vectors every 10 Myr. From these states
✿✿✿✿

state
✿✿✿✿✿✿

vectors, we compute a time series of surface heat

fluxes and surface velocities, following Equation 12. We noise these observations with
✿✿✿

Eq.
✿✿✿✿

(12).
✿✿✿

We
✿✿✿

add
✿✿✿

to
✿✿✿✿

these
✿✿✿✿✿✿✿✿✿✿✿

observations

a random Gaussian noise of standard deviation 10% of the root mean square of surface heat flux qrms and surface velocities

vrms , to
✿✿✿

(we
✿✿✿✿✿✿✿✿

compute
✿✿✿✿

qrms
✿✿✿✿

and
✿✿✿✿✿

vrms
✿✿✿✿

from
✿✿

a
✿✿✿✿

free
✿✿✿

run
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

dynamical
✿✿✿✿✿✿✿

model,
✿✿✿✿

they
✿✿✿✿✿✿✿✿

represent
✿✿✿✿

long
✿✿✿✿

term
✿✿✿✿✿✿✿✿

averages
✿✿✿✿

and
✿✿✿

are

✿✿✿✿✿✿✿✿✿✿✿

characteristic
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

system
✿✿✿✿✿✿✿✿✿

dynamics).
✿✿✿

We
✿

obtain the time series of observations to assimilate {yo
k}k∈[1,K]. It follows that the5

observation error covariance matrix R is diagonal and does not change with time
✿✿✿

and
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿✿

independent.

Then, we perform ensemble data assimilation for the data set {yo
k}k∈[1,K], with the observation error covariance matrix R.

We did not consider any model error in the filter we describe, so the parameters of the model used in the data assimilation

realizations are the same as those of the reference model.

We present here tests with different assimilation parameters, varying the number of members N , the vertical correlation10

length ℓv and the horizontal correlation angle ℓh. Table 3 details the range of parameters tested.

We compute four different
✿✿✿✿

state evolutions to test the accuracy of the ensemble Kalman filter for different cases. Fig.
✿✿✿✿✿✿✿✿

dynamical

✿✿✿✿

cases
✿✿✿✿

(the
✿✿✿✿

four
✿✿✿✿

state
✿✿✿✿✿✿✿✿

evolutions
✿✿✿

are
✿✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿

the
✿✿✿

next
✿✿✿✿✿✿✿✿

section).
✿✿✿✿✿

Figure 3 shows the initial and final states of these evolutions,

together with the result of global error evolution, and will be discussed in the next section.

4.2 Robustness of the assimilation algorithm15

The evolution
✿✿✿✿✿✿✿✿

evolutions of the global error
✿✿✿✿✿

errors on the estimated temperature field
✿✿✿

and
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿

field over

the time period {1, ...,K} is
✿✿

are
✿

[

ǫfT (1), ǫ
a
T (1), ǫ

f
T (2), ..., ǫ

f
T (K), ǫaT (K)

]

and
✿✿

[

ǫfuφ
(1), ǫauφ

(1), ǫfuφ
(2), ..., ǫfuφ

(K), ǫauφ
(K)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

]

, (40)

✿✿✿✿✿✿✿✿✿✿

respectively, where ǫeT (k) ✿✿✿

and
✿✿✿✿✿✿

ǫeuφ
(k), e standing for a (analysis) or f (forecast) is

✿✿✿

are

ǫeT (k) =

√

√

√

√

√

√

√

√

L
∑

l=1

M
∑

m=1

(

T
e

k(φl, rm)−T t
k(φl, rm)

)2

V(φl, rm)

L
∑

l=1

M
∑

m=1
T t
k(φl, rm)2V(φl, rm)

√

√

√

√

√

√

√

√

L
∑

l=1

M
∑

m=1

(

T
e

k(φl, rm)−T t
k(φl, rm)

)2

V(φl, rm)

L
∑

l=1

M
∑

m=1
V(φl, rm)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

and
✿✿

ǫeuφ
(k) =

√

√

√

√

√

√

√

√

L
∑

l=1

✿✿✿✿✿✿✿✿✿✿✿

(41)20

with V(φl, rm) the volume of the grid cell at longitude φl and radius rm, and T
e

k(φl, rm) the average temperature
✿✿✿

and
✿✿✿✿✿✿✿

ue
φk(φl)

✿✿

the
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿

of the estimated ensemble (either forecast or analysis) at longitude φl and radius rm
✿✿✿

and
✿✿✿

ra,

✿✿✿

and
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

superscript
✿✿

t
✿✿✿

still
✿✿✿✿✿

refers
✿✿

to
✿✿✿

the
✿✿✿✿

true
✿✿✿✿

state.

We test the EnKF on one evolution, with sizes of the ensemble N = 96, 288 and 768 and for each combination of the

following
✿✿✿✿✿

values
✿✿✿

of
✿✿✿

the data assimilation parametersvalues: vertical correlation length ℓv = 0.3, 0.5, 0.7 and 1 and horizontal25

correlation angle ℓh = π/10, π/8, π/6, π/4 and π/2 . We show in Fig. 1, for each ensemble size, the maximum and minimum

values of errors
✿✿

on
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

(Fig.
✿✿✿✿✿✿

1(a-c))
✿✿✿✿

and
✿✿

on
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿

(Fig.
✿✿✿✿✿✿✿

1(d-e)), obtained for all these parameters,
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as a function of time.
✿✿✿

We
✿✿✿✿

also
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿

on
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿

ǫbT (k) ✿✿✿

and
✿✿✿

on
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿

ǫbuφ
(k)

✿

ǫbT (k) =

√

√

√

√

√

√

√

√

L
∑

l=1

M
∑

m=1
(T b(rm)−T t

k(φl, rm))
2V(φl, rm)

L
∑

l=1

M
∑

m=1
V(φl, rm)

and ǫbuφ
(k) =

√

√

√

√

√

√

√

√

L
∑

l=1

(

ub
φ(ra)−ut

φk(φl, ra)
)2

V(φl, ra)

L
∑

l=1

V(φl, ra)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(42)

✿✿✿✿✿

where
✿✿✿

T b
✿✿✿

and
✿✿✿

ub
φ✿✿✿

are
✿✿✿✿

1D
✿✿✿✿✿✿

profiles
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿

velocity,
✿✿✿✿✿✿✿✿✿✿

respectively,
✿✿✿✿✿✿✿✿✿

computed

✿✿✿✿

from
✿

a
✿✿✿✿

long
✿✿✿✿

run.

To determine the best assimilation, we compute
✿✿

We
✿✿✿✿✿✿

choose
✿

the average error after analysis
✿✿

on
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

after
✿✿✿✿✿✿✿

analysis
✿

5

ǫaT =
1

K

K
∑

k=1

ǫaT (k). (43)

✿✿

as
✿✿✿

the
✿✿✿✿✿

global
✿✿✿✿✿✿✿

measure
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿

quality
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation. For each ensemble size, the error evolution of the best assimilation (in

the sense of minimum ǫaT✿✿✿

ǫaT ) is also shown in Fig. 1.

For
✿✿✿

The
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

evolutions
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

and
✿✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿

follow
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

analysis-forecast
✿✿✿✿✿✿✿✿✿

sequence:
✿✿

at
✿✿✿✿✿

each

✿✿✿✿✿✿

analysis
✿✿✿✿

time
✿✿✿✿✿✿

(every
✿✿✿

10
✿✿✿✿✿

Myrs),
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿✿

abruptly,
✿✿✿✿

and
✿✿✿✿✿✿

during
✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿✿

phases,
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿

increases.
✿

10

✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿

(Fig.
✿✿✿✿✿✿

1(d-f)),
✿✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿✿

evolutions
✿✿✿

are
✿✿✿✿✿

very
✿✿✿✿✿✿

similar
✿✿✿✿✿✿✿✿✿

regardless
✿✿

of
✿✿✿

the
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation

✿✿✿✿✿✿✿✿✿

parameters:
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿✿✿

decreases
✿✿✿✿✿✿✿✿✿

drastically
✿✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿

analysis
✿✿

to
✿

a
✿✿✿✿✿

value
✿✿

of
✿✿✿

25
✿✿

to
✿✿✿

50,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿✿✿✿

amplitude
✿✿

of
✿✿✿

the
✿✿✿✿✿

error
✿✿✿✿✿✿

growth

✿✿✿✿✿

during
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿

phase
✿✿✿✿✿✿✿

evolves
✿✿✿✿

from
✿✿✿✿✿✿

around
✿✿✿

200
✿✿✿

for
✿✿✿

the
✿✿✿✿

first
✿✿✿✿✿✿✿

forecasts
✿✿✿

to
✿✿✿✿✿✿

around
✿✿✿

100
✿✿

at
✿✿✿

the
✿✿✿

end
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation.
✿

✿✿

On
✿✿✿

the
✿✿✿✿✿✿✿✿

contrary,
✿✿✿

the
✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿

the
✿✿✿✿✿

error
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿

depends
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

parameters
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation.
✿✿✿

Fig.
✿✿✿✿✿

1(a-c)
✿✿✿✿✿✿

shows

✿✿✿

that,
✿✿✿

for
✿

any size of the ensemble, it is possible to find a set of parameters leading to a stabilization
✿✿✿✿✿

drastic
✿✿✿✿✿✿✿✿

reduction
✿

of the global15

error on the temperature field after a few analyses. The time after which the solution is stabilized
✿✿✿✿

This
✿✿✿

first
✿✿✿✿✿✿

phase,
✿✿✿✿✿

when
✿✿✿✿✿

errors

✿✿✿✿✿✿✿

decrease
✿✿✿✿✿✿✿

quickly,
✿✿✿✿

lasts
✿✿✿✿✿✿✿✿✿✿✿✿

approximately
✿✿✿

70
✿✿✿✿

Myr,
✿✿✿✿✿✿

which corresponds to the transit time of the physical model (70 Myr)
✿✿✿✿✿✿✿

dynamic

✿✿✿✿✿✿

system.
✿✿✿✿✿

After
✿✿✿

this
✿✿✿✿✿✿

phase,
✿✿✿

the
✿✿✿✿

error
✿✿

on
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

slowly
✿✿✿✿✿✿✿✿

increases
✿✿✿✿

with
✿✿✿✿✿

time,
✿✿✿✿✿

while
✿✿✿✿✿✿✿✿

remaining
✿✿✿✿

well
✿✿✿✿✿

below
✿✿✿

the
✿✿✿✿✿✿

errors
✿✿✿✿✿✿✿✿

measured

✿✿

for
✿✿✿✿

the
✿✿✿

first
✿✿✿✿✿✿✿✿

analyses. We can see that for N = 288 and N = 768, any combination of vertical and horizontal correlation

lengths leads to errors lower than the first analysis. Although the error is decreasing through time for any combination of20

data assimilation parameters
✿✿✿✿✿✿✿

However, the difference between the maximum and the minimum errors obtained is greater than

1%
✿✿✿

0.01, which is large given that the first analysis error is already below 8%.
✿✿✿✿✿✿✿✿✿✿

considering
✿✿✿

the
✿✿✿✿✿✿✿✿✿

background
✿✿✿✿✿

error
✿✿

is
✿✿✿✿

only
✿✿✿✿✿✿

around

✿✿✿

0.1.
✿

The best error evolutions for N = 288 and N = 768 are very similar, with a minimum error of 4.07% and 3.87%
✿✿✿✿✿✿

0.0318

✿✿✿

and
✿✿✿✿✿✿

0.0302
✿

after 90 Myr, and an average global error after analysis of 5.01% and 4.85%
✿✿✿✿✿✿

0.0391
✿✿✿

and
✿✿✿✿✿✿✿

0.0378, respectively.

During the assimilation of a dataset, most of the computational time is dedicated to the forecast step, so the data assimilation25

with 768 members is 2.7 times longer
✿✿✿✿

more
✿✿✿✿✿✿✿✿

expensive
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(computationally
✿✿✿✿✿✿✿✿

speaking)
✿

than the assimilation with 288 members, on

the account of the embarrassingly parallel nature of the forecast phase. Since we obtain very similar results for N = 288 and

N = 768, we favor the assimilation with 288 members.

We compute the error on the estimated temperature from
✿✿

by
✿✿✿✿✿✿✿✿✿✿

comparing
✿✿

it
✿✿

to
✿

the true temperature field. However, in a

realistic case, the true temperature is not known, and the evaluation of the data assimilation algorithm is based on the study of30
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Figure 1. Evolution
✿✿✿✿

Time
✿✿✿✿✿✿✿

evolution
✿

of the error as
✿✿✿✿✿

errors
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

field
✿✿✿✿✿✿

(panels
✿

(afunction of time for )
✿✿

to
✿✿✿

(c))
✿✿✿✿

and

✿✿

the
✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿

velocities
✿✿✿✿✿✿

(panels
✿✿✿✿

from
✿✿

(d)
✿✿

to
✿✿✿

(f))
✿✿✿✿✿✿✿

obtained
✿✿✿✿

from
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

asssimilations
✿✿✿✿

with
✿

the
✿✿✿✿

same
✿✿✿

150
✿✿✿✿

Myr
✿✿✿✿✿✿✿✿✿

observation
✿✿✿✿✿✿

dataset,
✿✿✿

but

✿✿✿✿✿✿

different
✿

assimilation of one evolution
✿✿✿✿✿✿✿✿

parameters. The size of the ensemble is A) N = 96 , B
✿✿

for
✿✿

(a)
✿✿

and
✿✿✿

(d),
✿

N = 288
✿✿

for
✿✿✿

(b) and C
✿

(e)
✿✿✿

and

N = 768
✿✿

for
✿✿✿

(c)
✿✿✿

and
✿✿✿

(f). The assimilations are computed for any combination of data assimilation parameters: γ+ = 1.25, ℓv = 0.3, 0.5,

0.7 and 1 and ℓh = π/10, π/8, π/6, π/4 and π/2. The black line represent the evolution of the error for the best assimilation A)
✿✿✿

with
✿✿✿

the

✿✿✿✿✿✿✿

minimum
✿✿✿✿✿✿

average
✿✿✿✿

error
✿✿

on
✿✿✿

the
✿✿✿✿✿✿

analyzed
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

field:
✿

N = 96, ℓz = 0.5, ℓh = π/6
✿

, and γ+ = 1.25 B
✿✿

for
✿✿

(a)
✿✿✿

and
✿✿

(d), N = 288, ℓz = 0.7,

ℓh = π/10 and γ+ = 1.25
✿✿

for
✿✿

(b)
✿

and C
✿

(e),
✿

N = 768, ℓz = 0.5, ℓh = π/4 and γ+ = 1.25
✿✿

for
✿✿✿

(c)
✿✿✿

and
✿✿

(f). The Grey
✿✿✿

gray
✿

area is delimited by

the maximum and minimum values of errors at each time, for all data assimilations.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

background
✿✿✿

error
✿✿

is
✿✿✿✿✿✿✿✿✿

represented
✿✿

in
✿✿✿

red,
✿✿

for
✿✿✿✿✿✿✿✿

reference.
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the statistics of the innovation vector dk at analysis
✿✿✿✿✿✿✿

forecast
✿✿✿✿✿✿

number
✿

k

dk = yo
k −Hx

f
k . (44)

At each analysis time
✿✿✿✿✿

After
✿✿✿✿

each
✿✿✿✿✿✿✿

forecast
✿✿✿

and
✿✿✿✿

just
✿✿✿✿✿

before
✿✿✿✿✿✿✿

analysis, we compute the Euclidean norm of the instantaneous inno-

vation dk
✿✿

dik✿

and the Euclidean norm of the cumulative mean innovation dk
✿✿

dck✿

dik =‖ dk ‖ and dc
✿

k =

∥

∥

∥

∥

∥

1

k

k
∑

i=1

di

∥

∥

∥

∥

∥

(45)5

Before computing these norms, we normalize the part of the innovation corresponding to surface heat flux and velocities by

their respective root mean square values .
✿✿✿✿

qrms
✿✿✿

and
✿✿✿✿✿

vrms
✿✿✿✿✿✿✿✿✿✿✿✿

(corresponding
✿✿

to
✿✿✿✿

time
✿✿✿✿✿✿✿✿

averages,
✿✿✿✿✿✿✿✿✿✿✿

characteristic
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

dynamic
✿✿✿✿✿✿

system

✿✿

we
✿✿✿

are
✿✿✿✿✿✿✿✿✿

studying).

The norm of the instantaneous innovation dk measures the distance between the forecast data
✿✿✿✿✿

Figure
✿

2
✿✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution

✿✿

of
✿✿

dik✿and the observation, and therefore gives indications on the success or failure of the assimilation.
✿✿

dck ✿✿

as
✿

a
✿✿✿✿✿✿✿✿

function
✿✿

of
✿✿✿

the10

✿✿✿✿✿✿

number
✿✿

of
✿✿✿✿✿✿✿✿

forecasts
✿✿✿

for
✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilations
✿✿✿✿

with
✿✿✿✿✿✿✿

different
✿✿✿✿✿

sizes
✿✿

of
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

and
✿✿✿✿

their
✿✿✿✿✿✿✿✿✿

respective
✿✿✿✿✿✿✿

optimum
✿✿✿✿✿✿✿

vertical
✿✿✿

and
✿✿✿✿✿✿✿✿✿

horizontal

✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿

lengths.
✿

The evolution of the cumulative mean of the innovation dk
✿✿

dck✿allows us to check
✿✿✿✿

some
✿✿✿✿✿✿

aspects
✿✿

of
✿

the consistency of the data

assimilation algorithmat first order. Indeed, the derivation of the EnKF equations assumes that the error on observations yo

and the error on the forecast data Hxf are unbiased. Such hypotheses imply that the statistically expected value of d is zero,15

which means that the norm of the cumulative innovation should converge to zero as the number of analyses increases.
✿✿✿✿✿✿✿

forecasts

✿✿✿✿✿✿✿✿

increases.
✿✿✿✿✿✿

Figure
✿✿✿✿

2(a)
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

cumulative
✿✿✿✿✿✿✿✿✿

innovation
✿✿✿✿✿✿✿✿✿

constantly
✿✿✿✿✿✿✿✿✿

decreasing
✿✿✿✿✿✿✿✿✿✿

throughout
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

assimilation,
✿✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

comparable

✿✿✿✿✿

values
✿✿✿

for
✿✿✿✿✿✿✿✿

N = 288
✿✿✿

and
✿✿✿✿✿✿✿✿

N = 768,
✿✿✿✿

and
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿

higher
✿✿✿✿✿

values
✿✿✿

for
✿✿✿✿✿✿✿

N = 96.
✿

Fig. 2shows the evolution of dk and dk as a function of the number of analyses for data assimilations with different sizes of

ensemble and their respective optimum vertical and horizontal correlation lengths. The norm of the instantaneous innovation20

(
✿✿

dik ✿✿✿✿✿✿✿✿

measures
✿✿✿

the
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿

forecast
✿✿✿✿

data
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation,
✿✿✿✿

and
✿✿✿✿✿✿✿✿

therefore
✿✿✿✿✿

allows
✿✿✿

us
✿✿

to
✿✿✿✿✿✿✿

monitor
✿✿✿

the
✿✿✿✿✿✿✿

success
✿✿✿

(or

✿✿✿✿✿✿

failure)
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation.
✿✿

In Fig. 2B)first
✿✿✿

(b),
✿✿✿

we
✿✿✿

can
✿✿✿

see
✿✿✿

that
✿✿✿

the
✿✿✿✿✿

norm
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿✿✿✿✿✿✿

innovation decreases during the

first 8 analyses, which correspond to one transit time (
✿✿✿✿✿✿✿✿

forecasts,
✿✿✿

i.e. 70 My), and then oscillates for the rest of the assimilation.

We observe the same behavior for the evolution of the error on temperature ǫeT (k): the norm of
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿

comparison
✿✿

of
✿✿✿✿

Fig.
✿✿

1

✿✿✿

and
✿✿✿✿

Fig.
✿

2
✿✿✿✿✿✿✿

reveals
✿✿✿

one
✿✿✿✿✿✿✿✿✿

important
✿✿✿✿✿

pitfall
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

application
✿✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿

to
✿✿✿✿

our
✿✿✿✿✿✿✿✿

problem.
✿✿✿✿

After
✿✿✿✿

the
✿✿✿✿

10th
✿✿✿✿✿✿✿✿✿✿✿

assimilation,25

the instantaneous innovation for ensemble sizes of
✿✿✿✿

(Fig.
✿✿✿✿✿

2(b))
✿✿

is
✿✿✿✿✿✿

almost
✿✿✿

the
✿✿✿✿✿

same
✿✿✿

for
✿✿✿✿✿✿✿✿

N = 96,
✿

N = 288 and 768 are very

similar, and lower than that obtained with N = 96.
✿✿✿✿✿✿✿

N = 768,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿

error
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimated
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

field
✿

(Fig. 2A

shows the cumulative innovation constantly decreasing throughout the assimilation, with comparable values for N = 288

and N = 768, and slightly higher values for
✿✿

1)
✿✿

is
✿✿✿✿✿✿

clearly
✿✿✿✿✿✿

higher
✿✿✿

for N = 96
✿✿✿✿

than
✿✿✿

for
✿✿✿✿✿✿✿✿

N = 288
✿✿

or
✿✿✿✿

768.
✿✿✿✿✿

This
✿✿

is
✿✿✿✿✿✿✿

because
✿✿✿

the

✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿✿✿✿✿✿✿

innovation
✿✿✿✿✿✿✿✿

measures
✿✿✿

the
✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿✿

observed
✿✿✿✿

and
✿✿✿✿✿✿✿

forecast
✿✿✿

data
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

surface,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿

error
✿✿✿✿✿✿✿✿

measures
✿✿✿

the30

✿✿✿✿✿✿✿

distance
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿

estimated
✿✿✿

and
✿✿✿✿

true
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

field,
✿✿✿

not
✿✿✿✿

only
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

surface
✿✿✿

but
✿✿✿

also
✿✿

in
✿✿✿✿✿✿

depth.
✿✿✿✿

This
✿✿✿✿✿

means
✿✿✿✿

that
✿✿✿

for
✿

a
✿✿✿✿✿

same

✿✿✿✿✿✿✿✿

innovation
✿✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface,
✿✿✿

the
✿✿✿✿✿

error
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

field
✿✿

at
✿✿✿✿✿

depth
✿✿✿

can
✿✿✿✿

vary
✿✿✿✿✿✿✿✿✿✿✿

substantially.
✿✿✿

In
✿✿✿✿

other
✿✿✿✿✿✿

words,
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

instantaneous

✿✿✿✿✿✿✿✿

innovation
✿✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿✿✿✿

necessarily
✿✿✿✿

vary
✿✿✿

the
✿✿✿✿✿

same
✿✿✿

way
✿✿✿

the
✿✿✿✿

true
✿✿✿✿

error
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

field
✿✿✿✿

does.
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Figure 2. Evolution of A
✿

(a) the cumulative mean innovation and B
✿✿

(b) the norm of the instantaneous innovation, as a function of
✿✿

the number

of analyses
✿✿✿✿✿✿

forecasts
✿✿✿✿✿✿✿✿✿

performed,
✿

and for different ensemble sizes. For each size of the ensemble, the evolutions correspond to the best

combinations of correlation length parameters: N = 96, ℓz = 0.5, ℓh = π/6 and γ+ = 1.25 ; N = 288, ℓz = 0.7, ℓh = π/10 and γ+ = 1.25

and N = 768, ℓz = 0.5, ℓh = π/4 and γ+ = 1.25.
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Figure 3. Evolution of the error
✿✿✿

(ǫeT ,
✿✿✿

red)
✿

as a function of time for 4 different evolutions with N = 288, γ+ = 1.25, ℓv = 0.7 and ℓh = π/10,

compared to the evolution of the spread of the ensemble and
✿✿✿

(σe

T ,
✿✿✿✿✿

blue), the evolution of the error with the technique of Bocher et al. (2016)

✿✿✿

(ǫeT
✿✿✿✿✿

method
✿✿

1,
✿✿✿✿✿✿

yellow)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

error
✿✿✿

(ǫbT ,
✿✿✿✿✿✿

purple). The initial and final states of the true evolutions are represented on the left of

each corresponding graph.

We also tested the assimilation algorithm for 4 different
✿✿✿

state
✿

evolutions, with the optimal parameters for an ensemble size

of N = 288 members (ℓv = 0.7 and ℓh = π/10). Fig.
✿✿✿✿✿

Figure 3 shows the initial and final temperature fields of the evolutions,

together with the evolution of the global error, the spread of the ensemble,
✿✿

the
✿✿✿✿✿✿✿✿✿✿

background
✿✿✿✿

error
✿

and the error evolution for the

✿✿✿✿

using
✿

method 1.

The spread of the ensemble is an estimation of the error
✿✿✿✿✿✿✿✿✿

uncertainty on the state. We compare the evolution of ǫeT to the5

global standard deviation of the temperature field of the ensemble:

[

σf
T (1),σ

a
T (1),σ

f
T (2), ...,σ

f
T (K),σa

T (K)
]

(46)

with σe
T (k) defined as

σe
T (k) =

√

√

√

√

√

√

√

√

N
∑

n=1

L
∑

l=1

M
∑

m=1

(

T e
kn(φl, rm)−T

e

k(φl, rm)
)2

V(φl, rm)

(N − 1)
L
∑

l=1

M
∑

m=1
T

e

k(φl, rm)2V(φl, rm)

√

√

√

√

√

√

√

√

N
∑

n=1

L
∑

l=1

M
∑

m=1

(

T e
kn(φl, rm)−T

e

k(φl, rm)
)2

V(φl, rm)

(N − 1)
L
∑

l=1

M
∑

m=1
V(φl, rm)

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

.
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(47)

We compute the error for an estimated evolution with the
✿✿✿✿

state
✿✿✿✿✿✿✿✿

evolution
✿✿✿✿

with method 1 using Equation 42
✿✿✿

Eq.
✿✿✿

(42).

Although we ran the four evolutions
✿✿✿✿✿✿✿✿

computed
✿✿✿

the
✿✿✿✿

four
✿✿✿✿✿

state
✿✿✿✿✿✿✿✿✿

evolutions
✿✿✿✿✿

using
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿

forward
✿✿✿✿✿✿✿✿✿

modeling
✿✿✿✿

code
✿✿✿✿

and with

the same values of physical parameters (as described in Table 1), they show different
✿✿✿✿✿✿✿✿✿✿

geodynamic configurations: Evolution A

has a shorter wavelength of convection, with the persistence of 4 subductions, 3 ridges and 5 upwellings, the death of one5

ridge and creation of two. Evolutions B, C and D have longer wavelengths of convection, with two major downwellings, stable

throughout the evolutions. In evolution B, one of these downwellings has a very large negative temperature anomaly at the

bottom of the domain. In evolution C, the remnant of a subduction merges with a larger subduction into a single downwelling.

In the 4 cases, the errors on the estimated temperature field systematically decrease during the analysis step for the EnKF

algorithm. The errors stay below the first analysis error for evolutions A, B and C, while they reach slightly higher values for10

evolution D. The error of the EnKF is always lower than that obtained with method 1 for the first 50 My. The average error is

lower for the EnKF than for method 1 in 3 out of 4 cases. The average standard deviation of the ensemble (ensemble spread)

is of the same order of magnitude as the true error. However, its evolution is not the same as the true error, with differences

between both of more than 2%
✿✿✿✿

0.02 for some part of evolution C, for example.
✿✿✿✿✿✿✿✿

Moreover,
✿✿

in
✿✿✿✿✿

three
✿✿✿

out
✿✿

of
✿✿✿✿

four
✿✿✿✿✿

cases
✿✿✿✿✿

(cases
✿✿✿

B,

✿

C
✿✿✿✿

and
✿✿✿

D),
✿✿✿

the
✿✿✿✿✿

spread
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿

is
✿✿✿✿✿

much
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿

error. For evolutions C and D, the results of the two methods15

are comparable whereas the assimilation with EnKF performs better than method 1 for evolutions A and B.

For evolution B, method 1 fails to reconstruct accurately the evolution, with the error reaching values greater than 10%
✿✿✿✿

0.08 at

the end of the assimilation. This case is further investigated on Figures
✿✿✿

Fig. 4 and 5. Fig.
✿✿✿✿✿✿

Figure 4 compares the true temperature

field evolution with the analyzed temperature field of method 1 and of the Ensemble
✿✿✿✿✿✿✿✿

ensemble Kalman filter with N = 288,

ℓv = 0.7 and ℓh = π/10. The sudden increase in the error of the estimated temperature field for method 1 seen on Fig. 3B20

✿✿

(b)
✿

happens after around 80 Myr of assimilation, when the direction of bending at the bottom of the domain changes for the

downwelling on the left side (see Fig. 4, second row). The analyzed temperature field of Method 1 does not predict this change

of direction (see Fig. 4, first row), while the analyzed temperature field of the ENKF predicts it (see Fig. 4, third row). Method

1 computes only the evolution of the best estimate of the system. The computation of only one estimate ignores that, in this

case, a slight perturbation of the estimated state could lead to a totally different dynamics. On the contrary, the EnKF method25

computes the evolution of an ensemble of perturbed solutions and thus takes into account the nonlinearity of the solution, at

least for the forecast stage. Fig.
✿✿✿✿✿

Figure 5 shows examples of the analyzed temperature fields of different ensemble members

for evolution B, after 80 Myr of assimilation. Although the average temperature fields displays a downwelling bending to the

right, the ensemble members show a wide variety of downwelling geometries.

4.3
✿✿✿✿✿✿✿✿

Reliability
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble30

✿✿

On
✿✿✿✿

Fig.
✿✿

3,
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble,
✿✿✿✿

σe
T ,

✿✿

is
✿✿✿✿✿

lower
✿✿✿✿

than
✿✿✿

the
✿✿✿✿

error
✿✿

on
✿✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿

ǫeT ,
✿✿✿

for
✿✿✿✿✿

some

✿✿✿✿

state
✿✿✿✿✿✿✿✿✿

evolutions.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

indicates
✿✿✿

that
✿✿✿

we
✿✿✿✿✿✿

cannot
✿✿✿✿

rely
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

spread
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

to
✿✿✿✿✿✿✿

estimate
✿✿✿✿✿✿✿✿✿

accurately
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿✿✿

the
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Figure 4. Comparison of temperature field evolutions for evolution B. The first row depicts the evolution of the analyzed temperature field

with method 1. The second row is the true evolution of the temperature field. The third row is the evolution of the analyzed temperature field

with ensemble Kalman filter, N = 288, ℓv = 0.7 and ℓh = π/10.

✿✿✿✿✿

global
✿✿✿✿

error
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

field.
✿✿✿

To
✿✿✿✿✿✿✿✿✿

investigate
✿✿✿

the
✿✿✿✿✿✿✿✿

reliability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

in
✿✿✿✿

more
✿✿✿✿✿✿

details,
✿✿✿

we
✿✿✿✿✿✿✿✿

compute
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms

✿✿

for
✿✿✿✿✿✿✿

surface
✿✿✿

heat
✿✿✿✿

flux
✿✿✿

and
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿

(Fig.
✿✿

6),
✿✿✿✿

and
✿✿✿

for
✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿

at
✿✿✿

the
✿✿✿✿✿✿✿

surface,
✿✿✿✿✿✿✿✿✿✿

mid-domain
✿✿✿✿

and
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

bottom
✿✿✿✿

(Fig.
✿✿✿

7).

✿✿✿✿

Rank
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿

were
✿✿✿✿

first
✿✿✿✿✿✿✿✿

described
✿✿✿✿✿✿✿✿✿✿✿✿

independently
✿✿

by
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson (1996),
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Hamill and Colucci (1996, 1997)
✿

,
✿✿✿

and
✿✿✿✿✿✿✿✿✿

Talagrand

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Harrison et al., 1995; Talagrand et al., 1997)
✿

.
✿✿✿✿

They
✿✿✿

are
✿

a
✿✿✿✿

tool
✿✿

to
✿✿✿✿✿✿✿

diagnose
✿✿✿✿✿✿✿✿✿

systematic
✿✿✿✿✿

biases
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

misestimations
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

uncertainty

✿✿

in
✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿✿

forecasts
✿✿✿✿✿✿✿✿✿✿✿✿

(Hamill, 2001)
✿

.
✿✿

To
✿✿✿✿✿✿

obtain
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿

of
✿✿✿✿

Fig.
✿

6
✿✿✿✿

and
✿✿

7,
✿✿✿

we
✿✿✿✿✿✿

proceed
✿✿✿

as
✿✿✿✿✿✿

follows.
✿

5

1.
✿✿✿✿✿✿✿

Selection
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

variable
✿✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

verification.
✿✿✿

We
✿✿✿✿✿✿✿

compute
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

for
✿✿✿✿✿✿✿

surface
✿✿✿

heat
✿✿✿✿✿✿

fluxes
✿✿✿✿

(Fig.
✿✿✿✿✿✿✿

6(a,c,e)),
✿✿✿✿✿✿✿

surface

✿✿✿✿✿✿✿✿

velocities
✿✿✿✿

(Fig.
✿✿✿✿✿✿✿✿

6(b,d,f)),
✿✿✿✿

and
✿✿✿✿✿✿✿

surface,
✿✿✿✿✿✿✿✿✿✿

mid-mantle
✿✿✿✿

and
✿✿✿✿✿✿

bottom
✿✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

(Fig.
✿✿✿

7).
✿✿✿✿

For
✿✿✿✿

Fig.
✿✿✿✿✿

6(a,b)
✿✿✿✿

and
✿✿✿✿

Fig.
✿✿

7,
✿✿✿✿

the

✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿✿✿✿✿

checked
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿

value
✿✿✿✿✿

while
✿✿✿

for
✿✿✿✿

Fig.
✿✿✿✿✿✿✿✿✿

6(c,d,e,f),
✿✿

it
✿✿

is
✿✿✿✿✿✿✿

checked
✿✿✿✿✿✿

against
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

value.
✿✿

In
✿✿✿✿

this

✿✿✿✿✿✿

context,
✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿

for
✿✿✿✿

Fig.
✿✿✿✿✿

6(a,b)
✿✿✿✿

and
✿✿✿

Fig.
✿✿✿

7,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿

values
✿✿✿

are
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

verification
✿✿✿

for

✿✿✿

Fig.
✿✿✿✿✿✿✿✿

6(c,d,e,f),
✿✿✿✿✿✿✿✿✿✿✿

respectively.10
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Figure 5.
✿✿✿✿✿✿✿

Example
✿

of
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

fields
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

members
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

ensemble.
✿✿✿✿

This
✿✿✿✿✿✿

example
✿✿

is
✿✿✿✿

taken
✿✿✿✿

after
✿✿

80
✿✿✿✿

Myr,
✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿

assimilation
✿✿

of
✿✿✿✿✿✿✿

evolution

✿✿

B,
✿✿✿

with
✿✿✿✿✿

ENKF
✿✿✿✿✿✿✿✿

N = 288,
✿✿✿✿✿✿✿

ℓv = 0.7
✿✿✿

and
✿✿✿✿✿✿✿✿✿

ℓh = π/10.

2.
✿✿✿✿✿✿✿

Selection
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿

points.
✿✿✿

To
✿✿

be
✿✿✿✿

able
✿✿

to
✿✿✿✿✿✿✿

interpret
✿✿✿

our
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms,
✿✿

we
✿✿✿✿✿

need
✿✿

to
✿✿✿✿✿✿✿

populate
✿✿✿✿

them
✿✿✿✿

with
✿✿✿✿✿✿✿

samples
✿✿✿✿

that

✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

independent.
✿✿✿

To
✿✿

do
✿✿✿

so,
✿✿✿

we
✿✿✿

use
✿✿✿

the
✿✿✿✿

four
✿✿✿✿✿✿✿✿

evolutions
✿✿✿✿✿✿✿✿✿

presented
✿✿

in
✿✿✿✿✿

figure
✿✿

2,
✿✿✿✿

and,
✿✿

for
✿✿✿✿✿

each
✿✿✿✿✿✿✿✿

evolution,
✿✿✿

we
✿✿✿✿✿

select
✿✿✿✿✿

points
✿✿✿✿

that

✿✿

are
✿✿✿✿✿✿

spaced
✿✿✿✿✿

from
✿✿✿✿

each
✿✿✿✿✿✿

others
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿

angle
✿✿✿✿✿✿✿✿✿

ℓh = π/10,
✿✿✿✿

and
✿✿✿✿✿

taken
✿✿✿✿

after
✿✿✿

10,
✿✿✿

80
✿✿✿

and
✿✿✿✿

150
✿✿✿✿✿

Myrs
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

assimilation.

✿✿✿

We
✿✿✿✿✿

obtain
✿✿✿✿

120
✿✿✿✿✿✿✿

sampling
✿✿✿✿✿✿

points
✿✿✿

per
✿✿✿✿✿✿✿✿✿

histogram.

3.
✿✿✿✿✿✿✿✿✿✿✿✿

Determination
✿✿

of
✿✿✿

the
✿✿✿✿

rank
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

verification.
✿✿✿

At
✿✿✿✿

each
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿✿

point,
✿✿✿✿

we
✿✿✿✿✿✿✿✿

determine
✿✿✿

the
✿✿✿✿✿

rank
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

verification
✿✿

in
✿✿

a5

✿✿✿✿✿

vector
✿✿✿✿✿✿✿✿✿

composed
✿✿

of
✿✿

all
✿✿✿

the
✿✿✿✿✿✿

values
✿✿✿✿✿

taken
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

plus
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

verification,
✿✿

in
✿✿✿✿✿✿✿✿

ascending
✿✿✿✿✿✿

order.

4.
✿✿✿✿✿✿✿✿✿✿

Computation
✿✿✿

of
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histogram.
✿✿

In
✿✿✿✿✿

order
✿✿✿

to
✿✿✿✿

have
✿✿✿✿

bins
✿✿✿

of
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿

width,
✿✿✿

we
✿✿✿✿✿✿

choose
✿✿✿

17
✿✿✿✿✿

ranks
✿✿✿

as
✿✿✿

the
✿✿✿

bin
✿✿✿✿✿✿

width

✿✿✿✿✿✿✿✿✿✿

(289 = 172).
✿

✿

If
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

statistics
✿✿

is
✿✿✿✿✿✿✿

reliable,
✿✿✿✿

then
✿✿✿

the
✿✿✿

true
✿✿✿✿✿

value
✿✿

of
✿✿

a
✿✿✿✿✿

given
✿✿✿✿✿✿✿

variable
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿

values
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿✿✿✿✿

forecasts
✿✿✿

can
✿✿✿

be

✿✿✿✿✿✿✿✿✿

considered
✿✿

as
✿✿✿✿✿✿

random
✿✿✿✿✿

draws
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

distribution.
✿✿

In
✿✿✿✿

this
✿✿✿✿✿✿✿✿✿

hypothesis,
✿✿✿

the
✿✿✿✿

rank
✿✿

of
✿✿✿

the
✿✿✿

true
✿✿✿✿✿

value
✿✿✿✿✿✿✿

follows
✿

a
✿✿✿✿✿✿✿

uniform
✿✿✿

law,
✿✿✿✿

and10
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Figure 6. Example of temperature fields
✿✿✿✿

Rank
✿✿✿✿✿✿✿✿

histograms of the members of
✿✿✿✿✿

surface
✿✿✿

true
✿✿✿

heat
✿✿✿

flux
✿✿✿

(a)
✿✿✿

and
✿✿✿✿✿✿

velocity
✿✿

(b)
✿✿

as
✿✿✿✿

well
✿✿

as the ensemble.

This example is taken after 80 Myr
✿✿✿✿✿

surface
✿✿✿✿✿✿✿

observed
✿✿✿

heat
✿✿✿

flux
✿✿✿

(c)
✿✿

and
✿✿✿✿✿✿✿

velocity
✿✿

(d), for
✿✿✿✿✿✿✿

computed
✿✿✿✿

from
✿

the assimilation
✿

4
✿✿✿✿✿✿✿✿

evolutions of evolution

B, with ENKF N = 288, ℓv = 0.7 and ℓh = π/10
✿✿✿✿

figure
✿✿

2.
✿✿✿

The
✿✿✿✿✿✿

dashed
✿✿✿

lines
✿✿✿✿✿✿✿✿

represent
✿✿

the
✿✿✿✿✿

count
✿✿

for
✿✿✿✿

each
✿✿✿

bin
✿

if
✿✿✿

the
✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿

were
✿✿

flat.

✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram
✿✿✿✿✿✿

should
✿✿

be
✿✿✿

flat.
✿✿✿

We
✿✿✿✿✿✿✿✿✿✿

represented
✿✿✿

the
✿✿✿✿✿✿✿

expected
✿✿✿✿

rank
✿✿✿✿✿✿

counts
✿✿✿

for
✿

a
✿✿✿

flat
✿✿✿✿✿✿✿✿

histogram
✿✿

as
✿✿

a
✿✿✿✿✿

dashed
✿✿✿✿

line
✿✿

in
✿✿✿

Fig.
✿✿

6
✿✿✿

and
✿✿

7.
✿✿

If

✿✿✿

this
✿✿

is
✿✿✿

not
✿✿

the
✿✿✿✿✿

case,
✿✿✿

the
✿✿✿✿✿

shape
✿✿

of
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿

histogram
✿✿✿✿✿✿✿

provides
✿✿✿✿✿✿✿✿✿

indications
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

existence
✿✿

of
✿✿✿✿✿

biases
✿✿✿

and
✿✿✿✿✿✿

under-
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿✿

over-dispersion

✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(even though the shape of a rank histogram can also be affected by other factors, see e.g. Hamill, 2001).
✿

✿✿

To
✿✿✿✿✿

guide
✿✿✿

our
✿✿✿✿✿✿✿✿✿✿✿✿

interpretations,
✿✿✿

we
✿✿✿✿✿✿✿

perform
✿✿✿

the
✿✿✿

χ2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

goodness-of-fit-test
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(see e.g. Wilks, 2006, Sect. 5.2.5 and 7.7.2)
✿✿

to
✿✿✿

test
✿✿

if
✿✿✿

our

✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿

non
✿✿✿✿✿✿✿

uniform.
✿✿✿

We
✿✿✿✿✿✿✿✿

compute
✿✿✿

the
✿✿✿✿

value
✿

5

χ2 =

17
∑

i=1

(#oi−#ei)
2

#ei
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(48)

✿✿✿✿✿

where
✿✿✿✿

#oi
✿✿

is
✿✿✿

the
✿✿✿

bin
✿✿✿✿✿✿

count
✿✿

in
✿✿✿

the
✿✿✿✿✿

i−th
✿✿✿

bin
✿✿✿✿

and
✿✿✿✿

#ei
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿

expected
✿✿✿✿✿

count
✿✿✿

for
✿✿

a
✿✿✿✿✿✿✿

uniform
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿✿✿✿✿✿✿

120/17≈ 7.06.
✿✿✿✿

The

✿✿✿✿✿

values
✿✿

of
✿✿✿

χ2
✿✿✿

are
✿✿✿✿✿✿

written
✿✿✿

on
✿✿✿✿

each
✿✿✿✿✿✿✿✿✿

histogram
✿✿

of
✿✿✿✿

Fig.
✿✿

6
✿✿✿

and
✿✿

7.
✿✿

If
✿✿✿

the
✿✿✿✿✿

ranks
✿✿✿

we
✿✿✿✿✿✿✿

sampled
✿✿✿✿✿

come
✿✿✿✿✿

from
✿

a
✿✿✿✿✿✿✿

uniform
✿✿✿✿✿✿✿✿✿✿✿

distribution,
✿✿✿✿

then

✿✿

χ2
✿✿✿✿✿✿✿

follows
✿

a
✿✿✿✿✿✿✿✿✿

chi-square
✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿

law
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿✿✿✿

17− 1− 1 = 15
✿✿✿✿✿✿✿

degrees
✿✿

of
✿✿✿✿✿✿✿✿

freedom.
✿✿

In
✿✿✿

this
✿✿✿✿✿✿✿✿✿✿

hypothesis,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

probability
✿✿

to
✿✿✿✿✿✿

obtain

✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

χ2 ≥ χ2
c = 24.996

✿✿

is
✿✿✿✿✿

0.05.
✿✿✿

We
✿✿✿✿

take
✿✿✿

this
✿✿✿✿✿

value
✿✿✿

of
✿✿

χ2
c✿✿✿

as
✿✿✿

the
✿✿✿✿✿✿

critical
✿✿✿✿✿

value
✿✿✿✿

over
✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿✿✿✿

consider
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram
✿✿

is10

✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿✿

non-uniform.

4.4 Effect of the data assimilation parameters on the quality of the estimation

✿✿✿

The
✿✿✿✿

left
✿✿✿✿✿✿

column
✿✿✿

of
✿✿✿✿

Fig.
✿✿

6
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

of
✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿✿

surface
✿✿✿✿✿

heat
✿✿✿✿

flux,
✿✿✿✿

Fig.
✿✿✿✿

6(a)
✿✿✿✿

and
✿✿✿✿✿✿✿

velocity
✿✿✿✿

Fig.
✿✿✿✿✿

6(b).

✿✿✿✿✿✿✿✿

Histogram
✿✿✿✿

6(a)
✿✿✿✿✿

shows
✿✿

a
✿✿✿✿✿✿

slightly
✿✿✿✿✿✿

higher
✿✿✿✿✿✿✿✿✿

occurrence
✿✿

of
✿✿✿

the
✿✿✿

true
✿✿✿✿

heat
✿✿✿✿

flux
✿✿

in
✿✿✿✿✿

higher
✿✿✿✿✿

ranks
✿✿✿✿✿✿

within
✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble.
✿✿✿✿

This
✿✿✿✿✿

would
✿✿✿✿✿✿✿

suggest

22
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Figure 7.
✿✿✿✿

Rank
✿✿✿✿✿✿✿✿

histograms
✿✿✿

for
✿✿✿✿✿✿✿✿✿

temperature
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿

(a),
✿✿✿✿✿✿✿✿✿

mid-mantle
✿✿

(b)
✿✿✿✿

and
✿✿

at
✿✿

the
✿✿✿✿✿✿

bottom
✿✿

of
✿✿✿

the
✿✿✿✿✿

model
✿✿✿

(c),
✿✿✿✿✿✿✿✿

computed
✿✿✿✿

from
✿✿✿

the
✿✿

4

✿✿✿✿✿✿✿

evolutions
✿✿

of
✿✿✿✿✿

figure
✿✿

2.
✿✿✿

The
✿✿✿✿✿✿

dashed
✿✿✿

lines
✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿✿

count
✿✿

for
✿✿✿✿

each
✿✿✿

bin
✿

if
✿✿✿

the
✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿

were
✿✿✿

flat.

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿✿✿

surface
✿✿✿✿

heat
✿✿✿

flux
✿✿

is
✿✿✿✿✿✿

biased
✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿

lower
✿✿✿✿✿✿

values.
✿✿✿✿✿✿✿✿

However
✿✿✿

the
✿✿

χ2
✿✿✿✿✿

value
✿✿✿

for
✿✿✿✿✿✿✿✿

histogram
✿✿✿✿

6(a)
✿✿

is

✿✿✿

well
✿✿✿✿✿✿

below
✿✿✿

the
✿✿✿✿✿✿

critical
✿✿✿✿

value
✿✿✿

χ2
c ,
✿✿✿

so
✿✿✿

that
✿✿✿

we
✿✿✿✿✿✿

cannot
✿✿✿

say
✿✿✿

that
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿

histogram
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿✿

non-uniform.
✿✿

On
✿✿✿

the
✿✿✿✿✿✿✿✿

contrary,
✿✿✿

the

✿✿✿✿

rank
✿✿✿✿✿✿✿✿

histogram
✿✿

of
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿

velocities
✿✿✿✿

(Fig.
✿✿✿✿

6(b))
✿✿✿✿

has
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

χ2 = 26.43> χ2
c :

✿

it
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿✿

non-uniform.
✿✿✿✿

This
✿✿✿✿✿✿✿✿

histogram
✿✿

is
✿✿✿✿✿

more

✿✿✿✿✿✿✿✿

populated
✿✿

in
✿✿✿

the
✿✿✿✿

bins
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿

lowest
✿✿✿

and
✿✿✿✿✿✿✿

highest
✿✿✿✿✿

ranks
✿✿✿✿✿✿

(1− 17
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

255− 289).
✿✿✿✿

This
✿✿✿✿✿✿

would
✿✿✿✿✿✿

suggest
✿✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

under-dispersion,
✿✿✿✿

even
✿✿✿✿✿✿✿

though
✿✿✿

the
✿✿✿✿✿

shape
✿✿

of
✿✿✿

the
✿✿✿✿✿

rank
✿✿✿✿✿✿✿✿

histogram
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

complex
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿

classical
✿✿

U
✿✿✿✿✿✿

shape
✿✿✿✿✿✿✿✿

associated
✿✿✿✿✿

with5

✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿✿✿✿✿

under-dispersion
✿✿✿

(in
✿✿✿✿✿✿✿✿✿

particular,
✿✿✿

the
✿✿✿✿✿

midle
✿✿✿✿✿

ranks
✿✿✿✿✿✿✿✿✿✿

(137− 153)
✿✿✿

are
✿✿✿

also
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿

populated).
✿

✿✿

In
✿✿

an
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿

with
✿✿✿✿✿

Earth
✿✿✿✿

data,
✿✿✿

the
✿✿✿✿✿

truth
✿✿

is
✿✿✿

not
✿✿✿✿✿✿

known,
✿✿✿

and
✿✿✿

we
✿✿✿✿✿✿

would
✿✿✿✿

have
✿✿

to
✿✿✿✿

draw
✿✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿✿

using
✿✿✿✿✿✿✿

observed
✿✿✿✿✿

data.

✿✿✿

The
✿✿✿✿✿✿✿

question
✿✿✿

is:
✿✿✿✿✿✿

would
✿✿✿

we
✿✿✿✿

come
✿✿✿

to
✿✿✿

the
✿✿✿✿

same
✿✿✿✿✿✿✿✿✿✿

conclusion
✿✿✿✿✿

about
✿✿✿

the
✿✿✿✿✿✿✿✿

reliability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

as
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿✿✿

6(a,b)?

✿✿✿

The
✿✿✿✿✿✿

middle
✿✿✿✿✿✿✿

column
✿✿

of
✿✿✿✿

Fig.
✿✿

6
✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

heat
✿✿✿✿

flux
✿✿

on
✿✿✿✿

Fig.
✿✿✿✿

6(c)
✿✿✿

and
✿✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿

velocity
✿✿✿

on

✿✿✿

Fig.
✿✿✿✿

6(d).
✿✿✿✿✿

Both
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿

6(c)
✿✿✿

and
✿✿✿

(d)
✿✿✿✿

have
✿✿

a
✿✿✿✿✿✿

distinct
✿✿

U
✿✿✿✿✿

shape,
✿✿✿✿

with
✿✿✿

χ2
✿✿

of
✿✿✿✿✿✿

310.14
✿✿✿✿

and
✿✿✿✿✿

26.14,
✿✿✿✿✿✿✿✿✿✿✿

respectively.
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿

heat10

✿✿✿✿

flux,
✿✿✿

the
✿✿✿✿✿✿✿✿

difference
✿✿✿✿✿✿✿✿

between
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿

of
✿✿✿✿

the
✿✿✿✿

truth
✿✿✿

and
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿

observation
✿✿

is
✿✿✿✿✿✿✿✿

dramatic
✿✿✿✿

(the
✿✿

χ2
✿✿✿✿✿

value
✿✿✿✿✿✿

jumps
✿✿✿✿

from
✿✿✿✿✿✿

12.14
✿✿

to

✿✿✿✿✿✿✿

310.14).
✿✿✿

For
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

velocity,
✿✿✿

the
✿✿✿✿✿✿✿✿✿

difference
✿✿

is
✿✿✿

less
✿✿✿✿✿✿✿

striking,
✿✿✿✿

even
✿✿✿✿✿✿

though
✿✿✿

the
✿✿

U
✿✿✿✿✿

shape
✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿✿

clearer
✿✿

on
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram

✿✿

of
✿✿✿✿✿✿✿

observed
✿✿✿✿✿✿✿✿✿✿✿✿

velocities.The
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿✿

pronounced
✿✿

U
✿✿✿✿✿

shape
✿✿

for
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿

of
✿✿✿✿

both
✿✿✿✿✿✿✿

observed
✿✿✿✿

heat
✿✿✿✿

flux
✿✿✿

and
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿✿✿✿

indicates

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿

not
✿✿

as
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

under-dispersed
✿✿✿✿✿✿

around
✿✿✿

the
✿✿✿✿

truth
✿✿✿

as
✿✿✿✿

what
✿✿✿✿✿

could
✿✿✿

be
✿✿✿✿✿✿✿

deduced
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿✿✿

with
✿✿✿✿✿✿

noised

✿✿✿✿✿✿✿✿✿✿✿

observations.
✿✿

In
✿✿✿✿

other
✿✿✿✿✿✿

words,
✿✿✿✿✿

noise
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

observation
✿✿✿

has
✿

a
✿✿✿✿✿✿

major
✿✿✿✿✿

effect
✿✿

on
✿✿✿

the
✿✿✿✿✿

shape
✿✿

of
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram,
✿✿✿

so
✿✿✿

that
✿✿✿

we
✿✿✿✿✿✿

cannot15

✿✿✿✿✿✿✿

interpret
✿✿✿

the
✿✿✿✿✿✿✿✿

reliability
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

by
✿✿✿✿✿✿

looking
✿✿✿✿✿✿✿

directly
✿✿

at
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations.
✿

✿✿✿✿

Since
✿✿✿

the
✿✿✿✿✿

noise
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

observations
✿✿✿✿✿✿

largely
✿✿✿✿✿✿

affects
✿✿✿

the
✿✿✿✿✿

shape
✿✿✿

of
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms,
✿✿✿

we
✿✿✿✿

need
✿✿

to
✿✿✿✿

add
✿✿✿✿

noise
✿✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble

✿✿✿✿✿✿✿

members
✿✿✿✿✿✿

before
✿✿✿✿✿✿✿✿✿

computing
✿✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms,
✿✿

as
✿✿✿✿✿✿✿✿✿

explained
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson (1996)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿

Hamill (2001).
✿✿✿✿

The
✿✿✿✿✿

noise
✿✿✿

we
✿✿✿

add
✿✿✿

to

✿✿✿✿

each
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

member
✿✿✿

has
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

as
✿✿✿

the
✿✿✿✿

noise
✿✿✿✿✿✿✿✿

affecting
✿✿✿

the
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

data.
✿✿✿✿

The
✿✿✿✿

right
✿✿✿✿✿✿✿

column
✿✿

of
✿✿✿✿

Fig.
✿✿

6

✿✿✿✿✿✿✿✿

represents
✿✿✿✿

such
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

for
✿✿✿✿

heat
✿✿✿✿

flux
✿✿

on
✿✿✿✿

Fig.
✿✿✿

6(e)
✿✿✿✿

and
✿✿✿✿✿✿

velocity
✿✿✿

on
✿✿✿

Fig.
✿✿✿✿

6(f).
✿✿✿✿✿

Both
✿✿

χ2
✿✿✿✿✿

score
✿✿✿

are
✿✿✿✿

well
✿✿✿✿✿

below
✿✿✿

χ2
c :

✿✿✿

we
✿✿✿✿✿✿

cannot20

✿✿✿

say
✿✿✿

that
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿✿

non-uniform.
✿✿

It
✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿

possible
✿✿

to
✿✿✿✿✿

detect
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

under-dispersion
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿

for

✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿

velocity
✿✿✿✿✿

using
✿✿✿✿

only
✿✿✿✿✿✿✿

observed
✿✿✿✿✿

data.
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✿✿✿✿✿

Figure
✿✿

7
✿✿✿✿✿

shows
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

at
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿

depth.
✿✿

At
✿✿✿

the
✿✿✿✿✿✿✿

surface
✿✿✿✿

(Fig.
✿✿✿✿✿

7(a)),
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram
✿✿

is
✿✿✿

the

✿✿✿✿

same
✿✿

as
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram
✿✿✿

for
✿✿✿

the
✿✿✿

true
✿✿✿✿

heat
✿✿✿✿

flux
✿✿✿

Fig.
✿✿✿✿✿

6(a),
✿✿✿✿

since
✿✿✿✿✿

there
✿

is
✿✿

a
✿✿✿✿✿

linear
✿✿✿✿✿✿✿✿✿✿

relationship
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

and

✿✿✿✿✿✿

surface
✿✿✿✿

heat
✿✿✿✿

flux.
✿✿

It
✿✿✿✿✿✿✿

follows
✿✿✿

that
✿✿✿

the
✿✿✿✿✿

rank
✿✿✿✿✿✿✿✿

histogram
✿✿✿

of
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿✿

non-uniform.
✿✿✿

At
✿✿✿✿✿✿✿✿✿✿

mid-mantle

✿✿✿✿

(Fig.
✿✿✿✿✿

7(b)),
✿✿✿

the
✿✿✿✿✿

rank
✿✿✿✿✿✿✿✿

histogram
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿✿

non-uniform,
✿✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

χ2 = 36.43≥ χ2
c .

✿✿

It
✿✿

is
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

populated

✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿✿

higher
✿✿✿✿✿✿

values,
✿✿✿✿✿✿

which
✿✿✿✿✿

could
✿✿✿✿✿✿

indicate
✿✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿

ensemble
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

mid-mantle
✿✿

is
✿✿✿✿✿✿

biased
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿

lower5

✿✿✿✿✿✿

values.
✿✿

At
✿✿✿

the
✿✿✿✿✿✿

bottom
✿✿✿✿

(Fig.
✿✿✿✿✿

7(c)),
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram
✿✿

of
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

is
✿✿✿

also
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿✿

non-uniform,
✿✿✿✿

with
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

χ2 = 37.29≥ χ2
c .

✿✿✿

The
✿✿✿✿

first
✿✿✿

bin
✿✿

of
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram
✿✿

is
✿✿✿✿✿✿

highly
✿✿✿✿✿✿✿✿✿

populated,
✿✿✿✿✿

while
✿✿✿

the
✿✿✿

rest
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

histogram
✿✿

is
✿✿✿✿✿✿✿

roughly
✿✿✿✿

flat.
✿✿✿✿

This
✿✿✿✿✿✿✿

suggests
✿✿✿✿

that
✿✿✿

the

✿✿✿✿✿✿✿✿

ensemble
✿

is
✿✿✿✿✿✿

biased
✿✿✿✿✿✿✿

towards
✿✿✿

the
✿✿✿✿✿

hotter
✿✿✿✿✿✿✿✿✿✿✿

temperatures
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

bottom
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

model.

✿✿

In
✿✿✿✿✿✿✿✿✿

conclusion,
✿✿✿✿

Fig.
✿✿

7
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

is
✿✿✿✿✿✿

reliable
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

surface
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿

but
✿✿✿✿✿✿✿

becomes
✿✿✿✿✿✿✿✿✿

unreliable
✿✿

at
✿✿✿✿✿✿

depth.

✿✿✿

The
✿✿✿✿✿

lower
✿✿✿✿✿

value
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿✿

deviation
✿✿✿

σe
T ✿✿✿✿✿✿✿✿

compared
✿✿

to
✿✿✿

the
✿✿✿✿

true
✿✿✿✿

error
✿✿✿

ǫeT✿✿✿✿✿✿✿✿

observed
✿✿

in
✿✿✿✿

Fig.
✿

3
✿✿

in
✿✿

3
✿✿✿

out
✿✿

of
✿✿

4
✿✿✿✿✿

cases
✿✿

is
✿✿✿

due
✿✿

to
✿✿

a10

✿✿✿✿✿✿✿✿✿✿✿

misestimation
✿✿

of
✿✿✿

the
✿✿✿✿✿

error
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

at
✿✿✿✿✿

depth
✿✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble.
✿✿✿

We
✿✿✿✿✿✿

discuss
✿✿✿✿

this
✿✿✿✿

point
✿✿✿

in
✿✿✿✿

more
✿✿✿✿✿✿

details
✿✿

in
✿✿✿✿

Sect.
✿✿

5.

4.4
✿✿✿✿✿

Effect
✿✿

of
✿✿✿

the
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

parameters
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿

quality
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimation

As shown in Fig. 1, the choice of N , ℓv and ℓh is critical to minimize errors in the assimilation, with errors on the estimated

temperature field varying from 4%
✿✿✿✿

0.03 to more than 10% according to
✿✿✿

0.1
✿✿✿✿✿✿✿✿

depending
✿✿✿

on the choice of parameters. We investi-

gate further the effect of these parameters by comparing the average global errors after analyses, ǫaT , for different combinations15

of N , ℓv and ℓh. Fig.
✿✿✿✿✿

Figure 8 displays the values of ǫaT for sizes of ensemble N = 96, 288 and 768 (Figures 8A, B and C

✿✿✿

Fig.
✿✿✿✿

8(a),
✿✿✿

(b)
✿✿✿✿

and
✿✿

(c)
✿

respectively) with ℓv varying between 0.3 and 1, and ℓh between π/10 and π/2. As in Fig. 1, we observe

a dichotomy between assimilations with N = 96 members, with higher errors, and assimilations with N = 288 and 768, with

lower errors.

For each size of ensemble N we identify the pair (ℓv, ℓh) that leads to the assimilation with the lowest error ǫaTmin(N).20

From this minimum value ǫaTmin(N), we select all the pairs (ℓv, ℓh) that lead to data assimilation with global errors less

than ǫaTmin(N)+ 0.2%
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ǫaTmin(N)+ 0.002. As the size of the ensemble increases, the optimal lengths of correlations (ℓv, ℓh)

tend to increase. This is a classical effect (Houtekamer and Mitchell, 1998), observed in ensemble Kalman filters for various

dynamical systems. As N increases, the amplitude of noise in the sample correlation matrix P
f decreases, and small, yet

real, correlations between distant points can be taken into account (Hamill et al., 2001). Between ensemble sizes of N = 9625

and N = 288 the zone of optimal correlations is displaced towards the greater vertical correlation lengths. When we increase

the size of the ensemble from N = 288 to N = 768, the zone of optimal correlations is displaced towards greater horizontal

correlation angles. So the accurate estimation of correlations between points on the same vertical level needs less samples than

between points on the same horizontal level. This is due to the specifics of mantle convection dynamics. The highly nonlinear

rheology produces plates at the surface with values of velocity and temperature that may vary substantially (by one or two30

orders of magnitude) on short distances in the horizontal direction, especially because of pseudoplasticity. On the contrary,

highly viscous cold downwellings establish a strong continuity in the vertical direction.

Value of the mean analyzed error for the same evolution and different vertical and horizontal correlation lengths. A) for 96

ensemble members, B) for 288 ensemble members, C) 768 ensemble members. The dashed lines delimit the zones for which
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Figure 8.
✿✿✿✿

Value
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

average
✿✿✿✿✿✿✿

analyzed
✿✿✿✿

error
✿✿

for
✿✿✿✿✿✿✿✿✿✿

assimilations
✿✿✿✿✿✿✿✿

performed
✿✿✿✿

using
✿✿✿

the
✿✿✿✿✿

dataset
✿✿✿✿✿✿✿✿

generated
✿✿

by
✿✿✿✿✿✿✿

evolution
✿✿

A
✿✿

of
✿✿✿

Fig.
✿✿

3,
✿✿✿

with
✿✿✿✿✿✿✿

different

✿✿✿

sizes
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble,
✿✿✿

and
✿✿✿✿✿✿

vertical
✿✿✿

and
✿✿✿✿✿✿✿✿

horizontal
✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿

lengths.
✿✿

(a)
✿✿✿

for
✿✿

96
✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

members,
✿✿

(b)
✿✿✿

for
✿✿✿

288
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

members,
✿✿

(c)
✿✿✿✿

768

✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

members.
✿✿✿✿

The
✿✿✿✿✿

dashed
✿✿✿✿

lines
✿✿✿✿✿

delimit
✿✿✿

the
✿✿✿✿✿

zones
✿✿

for
✿✿✿✿✿

which
✿✿✿✿✿

errors
✿✿

are
✿✿✿

less
✿✿✿✿

than
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ǫaTmin(N)+ 0.002.

errors are less than ǫaTmin(N)+ 0.2%.
✿✿✿✿

Given
✿✿✿✿

that
✿

a
✿✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿

perturbation
✿✿✿✿

can
✿✿✿✿✿✿

trigger
✿✿✿

the
✿✿✿✿✿✿✿✿

formation
✿✿

of
✿✿

a
✿✿✿

new
✿✿✿✿✿

plate
✿✿✿✿✿✿✿✿

boundary
✿✿✿✿

(see

✿✿✿✿

Sect.
✿✿✿✿

2.1),
✿✿✿✿✿

those
✿✿✿✿✿

scales
✿✿

of
✿✿✿✿✿✿✿✿✿

variability
✿✿✿✿✿✿✿✿✿

reverberate
✿✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿

matrix.
✿

For the ensemble size N = 288 and all the values of (ℓv, ℓh), we additionally evaluate the average global ensemble spread

σa
T =

1

K

K
∑

k=1

σa
T (k), (49)

the average forecast error on data5

ǫfy =
1

K

K
∑

k=1

dk
‖ yo

k ‖

and the norm of the cumulative innovation for
✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿✿✿✿✿✿✿

innovation
✿

di =
1

K

K
∑

k=1

‖ yo
k −Hx

f
k ‖

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(50)

✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿

cumulative
✿✿✿✿✿

mean
✿✿✿✿✿✿✿✿✿

innovation
✿✿✿✿

after
✿

K analyses:
✿✿✿✿✿✿✿

forecasts:
✿

dc
✿

K =

∥

∥

∥

∥

∥

1

K

K
∑

k=1

(

yo
k −Hx

f
k

)

∥

∥

∥

∥

∥

. (51)10

These three values are indicators of the accuracy of the assimilation and can be computed in the case of an assimilation with

real
✿✿✿✿✿

Earth data, unlike ǫaT .
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Figure 9. Value of A
✿✿

(a) mean analyzed error, B
✿

(b) mean ensemble spread, C
✿

(c) average forecast error on data
✿✿✿✿

norm
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

instantaneous

✿✿✿✿✿✿✿✿

innovation, D
✿✿

(d) norm of cumulative innovation after K analyses
✿✿✿✿✿

K = 16
✿✿✿✿✿✿✿✿

forecasts for N = 288, and different vertical and horizontal

correlation lengths. The dashed line delimits the zone for which errors are less than ǫaTmin(288)+ 0.2%
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ǫaTmin(288)+ 0.002.
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Fig.
✿✿✿✿✿

Figure 9 represents these results along with the true error ǫaT . The ensemble of optimal data assimilation parameters is

also outlined (ǫaT < ǫaTmin(N)+ 0.2%
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ǫaT < ǫaTmin(N)+ 0.002).

Overall, the average ensemble spread σa
T (Fig. 9B

✿✿

(b)) decreases when ℓh and ℓv increase, with a minimum for ℓh = π/2 and

ℓv = 1. The higher the correlation lengths, the more covariances will be taken into account in the analysis, and the analyzed

members will be closer to each others and σa
T lower. The average ensemble spread σa

T is of the same order of magnitude as5

the true error ǫaT . Moreover, there is a local minimum of σa
T at ℓv = 0.7 and ℓh = π/10. These parameters correspond to the

minimum true error ǫaT .

The average forecast errors
✿✿✿✿

norm
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿✿✿✿✿✿✿✿

innovations and the norm of the cumulative innovations display the same

behavior: they decrease with increasing vertical and horizontal correlation lengths. The longer the correlations lengths, the

closer the forecast data are to the observations, and the less biased the assimilation. This means that a better fit to the obser-10

vations does not necessarily imply a better fit to the true temperature field. In a realistic context, the result of the assimilation

should be checked against independent data to evaluate its accuracy. In the case of the Earth’s mantle, independent data could

be for example the geoid or tomographic models.

4.5 Accuracy of the reconstruction of geodynamic structures

We focus on three key flow structures: 1) downwelling slabs (subduction) 2) ridges, i.e. shallow structures resulting from15

divergent plates at the surface, 3) plumes, hot upwellings raising
✿✿✿✿✿

rising from the base of the model.

Fig.
✿✿✿✿✿

Figure 10 shows the final state of the assimilation after 150 My for the evolution A of Fig. 3. We selected 3 assimilations:

EnKF96, an ensemble Kalman filter with N = 96, ℓv = 0.5 and ℓh = π/6 (first row), EnKF288 an EnKF with N = 288,

ℓv = 0.7 and ℓh = π/10 (second row) and the assimilation with method 1 (third row). We do not show the ensemble Kalman

filter with 768 members since the resulting temperature field is almost indistinguishable from that of EnKF288. The first column20

represents the true temperature field, which is the same for all assimilations. The second column is the analyzed temperature

field, i.e. the average of the temperature fields of the analyzed ensemble members. The third column is the absolute temperature

error, and the fourth column is the standard deviation of the ensemble spread, which is an estimate of the error on the analyzed

temperature field.

Globally, the EnKF288 and EnKF96 solutions for the temperature field are smoother than the solution of method 1. We25

observe this difference especially in the asthenosphere, the part of the mantle below the top boundary layer. For method 1, the

asthenosphere shows short wavelength temperature variations. These variations are absent from the true temperature field and

are inconsistent with convection solutions with the chosen parameters. They stem from the amplification of the noise in the

observations during the analysis. Moreover, the asthenosphere of the analyzed temperature field of method 1 is hotter than the

true temperature.30

Both EnKF96 and EnKF288 reconstruct successfully the ridges locations and structures, as testified by their error fields.

On the contrary, method 1 fails to reconstruct the ridge on the top right of the domain. It also predicts a ridge that does not

exist in the true state (in the top left quadrant). On the right of the domain, another ridge is associated with a vertical positive

temperature anomaly underneath. This pattern is found regularly under ridges when applying method 1. This is due to the use
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Figure 10. Comparison of estimated states after 150 Myr for the evolution A of Fig. 3. First row: ensemble Kalman filter with N = 96,

ℓv = 0.5 and ℓh = π/6; second row: N = 288, ℓv = 0.7 and ℓh = π/10
✿✿✿✿

(these
✿✿✿✿✿✿✿✿✿

localization
✿✿✿✿✿✿

length
✿✿✿✿✿✿✿✿

correspond
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

optimal
✿✿✿✿✿✿✿✿✿

parameters

✿✿✿✿✿✿✿✿

determined
✿✿✿✿✿✿✿✿✿

previously.); third row for method 1 (third row). The first column represents the true temperature field at 150 Myr, the second

column is the analyzed temperature field, the third is the absolute error on temperature value and the fourth is the estimated error on the

analyzed field (spread of the ensemble). On the true temperature field of EnKF288 we framed the location of the subduction (A
✿

a), plume

(B
✿

b), ridge initiation (C
✿

c) and stable ridge (D
✿

d) studied in Fig. 11.
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of a constant forecast error covariance matrix, P
f
0 for the analysis. This constant matrix does not take into account the specifics

of the dynamics under a ridge, where the positive anomaly is generally shallow. We do not observe this detrimental effect in

the EnKF assimilations, where we compute the forecast error covariance matrix P
f
k at each analysis time from the forecast

ensemble.

All three assimilations reconstruct the subductions and predict accurately the bending direction of slabs at the base of the5

model. Method 1 tends to underestimate the amplitude of the negative temperature anomalies whereas both EnKF assimilations

overestimate them. This is especially noteworthy for the bottom left subduction. Moreover, the estimated slabs are wider than

the true slabs. However, we note two arguments in favor of the EnKF: first, the estimation of the slab improves when the size

of the ensemble increases and second, the local standard deviations of the ensemble indicates that the estimation in this part of

the domain is less accurate.10

Both EnKF288 and EnKF96 solutions do not show any plume at the base of the mantle. However, the ensemble spread

shows a greater uncertainty on the places where plumes occur. Method 1 predicts the approximate location of all plumes, but

their geometry is not accurate. Method 1 provides only one estimate of the temperature field. In this evolution, the plumes are

allowed to develop. EnKF96 and EnKF288 provide an ensemble of states. Each state develops plumes at different locations

and their averages show only a slightly hotter anomaly over a wide area of possible location for the plumes, as we showed15

earlier in Fig. 5 for another assimilation.

To illustrate how different flow structures are reconstructed, we represent
✿✿✿

plot
✿

on Fig. 11 the evolution of temperature

through time of the ensemble members of
✿✿✿✿

time
✿✿✿✿✿✿✿✿

evolution
✿✿

of
✿✿✿

the EnKF288 at points on the same vertical for
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

surface,

✿✿✿✿✿✿✿✿✿✿

mid-domain
✿✿✿

and
✿✿✿✿✿✿✿

bottom
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

at
✿✿✿✿

the
✿✿✿✿✿✿✿✿

longitude
✿✿

of
✿✿✿

a) a subduction,
✿✿

b)
✿

a plume,
✿✿

c)
✿

a ridge initiation and
✿✿

d) a stable

ridge. Fig.
✿✿✿✿✿✿

Figure 10 shows the location of these geodynamical features on the true temperature field. We plot the temperature20

evolutions at the surface, mid-mantle and at the bottom of the domain. Note that the surface and bottom values of temperature

actually correspond to the values of the first points below the surface and above the bottom of the domain, respectively.

At the surface, the temperature is corrected accurately at each analysis, with a difference between the true temperature and

the analyzed temperature of less than 0.01
✿✿✿

0.01. The correction associated with the analysis gradually decreases with depth due

to both covariance localization and the dynamics of the system. After 70 My (i.e. one transit time), the true value of temperature25

falls within the range of values predicted by the ensemble for all geodynamical contexts and all depths.

For the subduction, the correction is first done on the surface, and then propagates gradually in depth. The reconstruction

of mid-mantle temperature becomes accurate after 40 My, and at the bottom of the model after 70 My, which is the value of

the transit time. At the surface, the spread of the ensemble decreases as more data are assimilated. On the contrary, the spread

of the ensemble remains steady for mid-mantle depths and at the bottom of the domain. For these depths, only the average30

temperature varies.

At the surface for the plume, the spread of the ensemble is very low except for a peak at 40 My, which corresponds to an

instability, corrected after one analysis. We note that this instability affects greatly method 1 since it leads to the false prediction

of the ridge seen in Fig. 10. At mid-mantle, the ensemble average is slowly converging to the true temperature. At the bottom,

the estimated temperature is lower than the true temperature, although it slightly increases throughout the assimilation.35
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Figure 11. Evolution
✿✿✿✿✿✿

Detailed
✿✿✿✿✿✿

results of the temperature value during assimilation at the surface (first row),
✿✿✿✿✿✿

depicted
✿

in the mid mantle

(
✿✿

Fig.
✿✿✿

10,
✿

second row ) and at
✿✿✿

Fig.
✿✿✿✿

3(a).
✿✿✿✿✿

Each
✿✿✿✿

graph
✿✿✿✿✿✿✿✿

represents
✿

the bottom
✿✿✿✿

time
✿✿✿✿✿✿✿

evolution
✿

of the domain (third row)
✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿

value
✿✿

at

✿✿✿✿

points
✿✿✿

on
✿✿✿

four
✿✿✿✿✿✿

profiles, for
✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿

to
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿✿

geodynamic
✿✿✿✿✿✿✿

contexts: aridge initiation
✿

)
✿

a
✿✿✿✿✿✿✿✿

subduction
✿

(first column), a subduction
✿✿

b)
✿✿

an

✿✿✿✿✿✿✿

upwelling
✿

(second column), an upwelling
✿✿

c)
✿

a
✿✿✿✿

ridge
✿✿✿✿✿✿✿

initiation (third column), and
✿✿

d) a stable ridge (fourth column).
✿✿✿

The
✿✿✿

first
✿✿✿✿

row
✿✿✿✿✿✿✿✿✿

corresponds

✿

to
✿✿✿✿✿

points
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

domain,
✿✿

the
✿✿✿✿✿✿

second
✿✿✿

row
✿✿

to
✿✿✿✿✿

points
✿✿

in
✿✿✿

the
✿✿✿

mid
✿✿✿✿✿✿

mantle
✿✿✿

and
✿✿

the
✿✿✿✿

third
✿✿✿✿

row
✿

to
✿✿✿✿✿

points
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

bottom
✿✿

of
✿✿

the
✿✿✿✿✿✿✿

domain.

✿✿✿

The
✿✿✿✿✿

lateral
✿✿✿✿✿✿✿✿✿

coordinates
✿

of
✿✿✿

the
✿✿✿✿✿

points
✿✿✿

are
✿✿✿✿✿

shown
✿✿

in
✿✿✿

Fig.
✿✿✿

10,
✿✿✿✿✿

second
✿✿✿

row
✿✿✿✿

first
✿✿✿✿✿✿

column.
✿✿✿

The
✿✿✿

red
✿✿✿

line
✿✿

is
✿✿

the
✿✿✿✿

true
✿✿✿✿✿✿✿✿✿

temperature,
✿✿✿

the
✿✿✿✿

black
✿✿✿

line
✿✿

is
✿✿✿

the

✿✿✿✿✿✿

average
✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

ensemble,
✿✿✿

the
✿✿✿✿

dark
✿✿✿

grey
✿✿✿✿

area
✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿✿✿

average
✿✿✿

plus
✿✿

or
✿✿✿✿✿

minus
✿✿✿

the
✿✿✿✿✿✿✿

standard
✿✿✿✿✿✿✿

deviation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

ensemble,
✿✿✿

and
✿✿✿

the
✿✿✿✿

light
✿✿✿✿

gray

✿✿✿

area
✿✿

is
✿✿

the
✿✿✿✿

area
✿✿✿✿✿✿

spanned
✿✿

by
✿✿✿

the
✿✿✿✿✿✿✿

minimum
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

maximum
✿✿✿✿

value
✿✿✿✿✿

taken
✿✿

by
✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿

288
✿✿✿✿✿✿✿

members.30



The ridge initiation shows how new observations affect the spread of the ensemble. At the surface, the spread of the ensemble

remains low until 100 My, the time of initiation of the ridge. From then on, the estimated temperature increases and the

ensemble members follow the cycle of increasing spread during forecast and dramatic decrease of spread during analysis. The

temperature in the mid-mantle is estimated with a very good accuracy after 50 My. On the contrary, the assimilation does not

predict the evolution of the temperature at the bottom of the domain, although the true temperature falls within the zone defined5

by the standard deviation of the ensemble after 50 My.

For the stable ridge, the spread of the ensemble at the surface is increasing during forecast and decreasing dramatically

during the analysis. At mid-mantle, the estimated temperature becomes accurate after 100 My. At the bottom of the domain

the temperature is underestimated although it follows the variations of the true temperature: increase of temperature at the

beginning of the assimilation and slight decrease at the end of the assimilation.10

5 Discussion

We chose the ensemble Kalman filter method for its ease of implementation and flexibility to adapt to different forward nu-

merical models. Indeed, as long as the nature of the state and observations does not change, the computation of the analysis

step remains the same regardless of the convection code used. On the contrary, the alternative method, variational data assim-

ilation, requires the development of an adjoint code that needs further development for each additional complexity added to15

the forward model (see Kalnay et al., 2007, for a comparison of EnKF and 4D variational methods). For the mantle circulation

problem, this results in a series of derivation of the adjoint
✿✿✿✿✿

model
✿

considering different approximations (Ismail-Zadeh et al.,

2003; Bunge et al., 2003; Ghelichkhan and Bunge, 2016; Worthen et al., 2014). The ability of a data assimilation scheme to

adapt to different numerical codes is a particularly important issue for mantle convection since models are in constant evolu-

tion, with current developments including the implementation of chemistry, nonlinear rheologies, elasticity, phase transition20

and compressibility (see e.g. Zhong et al., 2015, for a review of recent developments of mantle convection codes). In particular,

this ease of implementation allows us to work on models producing self-consistently plate-like tectonics at their surface, and

hence to obtain forecasts whose data can be ultimately compared with plate reconstructions.

The application of the ensemble Kalman filter to the mantle circulation problem is the continuation of the simpler sequential

filter that we developed in an earlier work (Bocher et al., 2016). The main difference between the two filters is that the EnKF25

evaluates the state covariance matrix with an ensemble of members. This ensemble approach allows the nonlinear evolution of

errors during the forecast stage. This leads to a higher precision in the reconstruction, but also to a more robust scheme, able

to reconstruct evolutions which could not be reconstructed with the former method
✿✿

(as
✿✿✿✿✿✿✿✿✿

illustrated
✿✿✿

by
✿✿✿

Fig.
✿✿

4
✿✿✿

and
✿✿

5). Moreover,

the ensemble assimilation provides an estimate of the errors
✿✿✿✿✿✿✿✿✿

uncertainty
✿

on the reconstruction at each point of the domain. The

estimation of errors
✿✿✿✿✿✿✿✿✿✿

uncertainties
✿

could be a valuable information for plate tectonic reconstructions
✿

,
✿✿✿✿✿✿✿✿

especially
✿

for regions and30

times where data are scarce, by showing the possible alternative
✿✿✿✿✿✿

because
✿✿✿✿

they
✿✿✿✿✿

show
✿✿✿

the
✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿

possible
✿

scenarios supported

by the ensemble.
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This gain in information and quality for reconstructions comes with a computational price. While we could perform the

former assimilation method in one core hour, the method developed here requires several hundreds to several thousands of

core hours. However, an efficient parallelization using the PDAF software (Nerger and Hiller, 2013) in combination with the

parallel code STAGYY produces a highly parallel ensemble filter, able to perform the assimilations on 768 cores in 20 min for

an ensemble of 96 members and 3 hours for an ensemble of 768 members.5

The important computational cost of the EnKF limited us in the number of assimilations we could test. After checking the

stability of the assimilation results on four different evolutions, we chose to focus on studying the effect of the parameters

of the Ensemble
✿✿✿✿✿✿✿

ensemble
✿

data assimilation: the size of the ensemble and the vertical and horizontal correlation lengths. The

optimum size of the ensemble for our problem is of the order of 300 members
✿✿

We
✿✿✿✿✿

found
✿✿✿✿

that
✿✿✿

the
✿✿✿✿

best
✿✿✿✿✿✿✿✿✿✿

compromise
✿✿✿✿✿✿✿✿

between

✿✿

the
✿✿✿✿✿✿✿✿

accuracy
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿

cost
✿✿✿

was
✿✿✿

an
✿✿✿✿✿✿✿✿

ensemble
✿✿

of
✿✿✿✿

288
✿✿✿✿✿✿✿✿

members
✿✿✿✿✿✿

(among
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

sizes
✿✿✿

we10

✿✿✿✿✿

tested,
✿✿✿

i.e.
✿✿✿

96,
✿✿✿✿

288
✿✿✿✿

and
✿✿✿✿

768). Indeed, almost tripling the number of membersleads to a decrease of the average error of less

than 0.2%, and on
✿✿✿✿✿✿✿

between
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

assimilations
✿✿✿✿

with
✿✿✿

288
✿✿✿✿

and
✿✿✿

768
✿✿✿✿✿✿✿✿✿

members,
✿✿✿

the
✿✿✿✿✿

global
✿✿✿✿✿✿✿

average
✿✿✿✿

error
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

field
✿✿✿

(as

✿✿✿✿✿✿

defined
✿✿

in
✿✿✿

Eq.
✿✿✿

43)
✿✿✿✿✿✿✿✿

decreases
✿✿✿

by
✿✿✿✿✿✿

0.0013
✿✿✿✿✿

while
✿✿✿

the
✿✿✿✿

size
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿

(and
✿✿✿✿✿

hence
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

computational
✿✿✿✿

cost)
✿✿

is
✿✿✿✿✿✿✿✿✿

multiplied
✿✿

by
✿✿✿✿

2.7.

✿✿

On
✿

the contrary, dividing the size of the ensemble by 3
✿✿✿✿

(from
✿✿✿✿✿✿✿✿

N = 288
✿✿

to
✿✿✿✿

96) leads to an increase of the
✿✿✿✿✿

global average error

of more than 1%. Although these
✿✿✿✿✿✿

0.0086.
✿✿✿✿✿

These
✿

differences in errors appear to be small,
✿✿✿✿✿✿✿

however
✿

they affect the quality of15

the reconstruction of thermal structures, as is illustrated .
✿✿✿

We
✿✿✿✿

can
✿✿✿

see
✿✿✿✿

this in Fig. 10 . The average errors on the temperature

field for the estimates shown in Fig. 10 range between 4.8 and 5.8%
✿✿

for
✿✿✿✿✿✿✿✿

example:
✿✿✿

the
✿✿✿✿✿✿

global
✿✿✿✿✿

errors
✿✿

on
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿

(as
✿✿✿✿✿✿✿

defined

✿✿

in
✿✿✿

Eq.
✿✿✿

42)
✿✿✿✿✿✿

range
✿✿✿✿✿✿✿

between
✿✿✿✿✿✿

0.0367
✿✿✿✿

and
✿✿✿✿✿✿

0.0461, so the difference in errors are less than 1%
✿✿✿✿✿

global
✿✿✿✿✿

errors
✿✿

is
✿✿

at
✿✿✿✿✿

most
✿✿✿✿✿✿

0.0094.

Locally, this translates into the presence (or absence) of
✿✿✿✿✿✿✿✿✿

artifactual geodynamic structures (like ridges and upwellings) which

are artefacts. ,
✿✿✿✿✿✿

visible
✿✿

in
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿

column
✿✿

of
✿✿✿✿

Fig.
✿✿✿✿

10). Covariance localization proved to be important to minimize the error20

in the reconstruction of mantle structure:
✿✿

as
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿

Fig
✿✿

9,
✿

for 288 members, the difference in the average error is of 0.85%

✿✿✿✿✿✿

0.0065 between the optimal correlation length and the least favorable one. We also investigated the statistics of the cumulative

innovation and of the average forecast error for different ensemble sizes and correlation lengths.In a realistic case, these are the

only variables availableto evaluate

✿✿✿✿✿✿

During
✿✿✿✿

these
✿✿✿✿✿

tests,
✿✿✿

we
✿✿✿✿

also
✿✿✿✿✿✿✿✿

evaluated
✿✿✿✿

how
✿✿✿✿✿✿✿

accurate
✿✿✿

the
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿

uncertainties
✿✿✿✿

(i.e.
✿✿✿

the
✿✿✿✿✿✿

spread
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble)
✿✿

is
✿✿✿✿

with25

✿✿✿✿✿✿

respect
✿✿

to
✿✿

the
✿✿✿✿

true
✿✿✿✿✿

error,
✿✿✿

and
✿✿✿✿

more
✿✿✿✿✿✿✿✿✿

generally,
✿✿✿

how
✿✿✿✿✿✿✿

reliable
✿✿✿

the
✿✿✿✿✿✿

forecast
✿✿✿✿

(i.e.
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble)
✿✿✿

is.
✿

If
✿✿✿

we
✿✿✿✿✿✿✿

consider
✿✿✿

the
✿✿✿✿

four
✿✿✿✿✿✿✿✿✿✿✿

assimilations

✿✿✿✿

with
✿✿✿✿✿✿✿

different
✿✿✿✿

data
✿✿✿✿

time
✿✿✿✿✿

series
✿✿✿✿✿✿✿✿

presented
✿✿✿

in
✿✿✿

Fig.
✿✿

3,
✿✿✿

the
✿✿✿✿

true
✿✿✿✿✿✿

global
✿✿✿✿

error
✿✿✿

on
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

is
✿✿✿✿✿✿

higher
✿✿✿✿

than
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

spread
✿✿

in

✿✿✿✿

three
✿✿✿✿✿

cases.
✿✿✿✿

This
✿✿✿✿✿✿

would
✿✿✿✿✿✿✿

indicate
✿✿✿

that
✿✿✿

we
✿✿✿

are
✿✿

on
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿✿✿✿

overconfident
✿✿

in
✿✿✿

our
✿✿✿✿✿✿✿✿

forecasts.
✿✿✿

To
✿✿✿

test
✿✿

in
✿✿✿✿✿

more
✿✿✿✿✿

details
✿✿✿

the
✿✿✿✿✿✿✿✿✿

reliability
✿✿

of

✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble,
✿✿✿

we
✿✿✿✿✿✿✿✿

produced
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

surface,
✿✿✿✿✿✿✿✿✿

mid-depth
✿✿✿

and
✿✿

at
✿✿✿

the
✿✿✿✿✿✿

bottom
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿

domain
✿✿✿✿

(Fig.
✿✿✿

7).

✿✿✿

The
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿

histogram
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿

to
✿✿✿✿✿✿

surface
✿✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿

does
✿✿✿

not
✿✿✿✿✿✿

detect
✿✿✿

any
✿✿✿✿✿✿

biases
✿✿

or
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

over/underspread
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble.
✿✿✿

On30

✿✿

the
✿✿✿✿✿✿✿✿

contrary,
✿✿✿

the
✿✿✿✿

rank
✿✿✿✿✿✿✿✿✿✿

histograms
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿✿

significantly
✿✿✿✿✿✿✿✿✿✿

nonuniform
✿✿

at
✿✿✿✿✿

depth.
✿✿✿✿

Our
✿✿✿✿✿✿✿✿✿✿✿✿

interpretation
✿✿

is
✿✿✿

that
✿✿✿✿

this
✿✿✿✿✿✿✿✿

tendency
✿✿

is
✿✿✿✿✿

linked
✿✿✿

to

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

configuration
✿✿

of
✿✿✿

the
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿

problem,
✿✿✿✿✿✿✿✿✿

combined
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

simple
✿✿✿✿✿✿

scheme
✿✿✿✿

used
✿✿✿

for
✿✿✿✿✿✿✿✿✿

covariance
✿✿✿✿✿✿✿

inflation
✿✿✿✿✿✿

(Sect.
✿✿✿✿

3.2).

✿✿✿✿✿✿

Indeed,
✿✿✿

the
✿✿✿✿✿✿✿

inflation
✿✿✿✿✿

factor
✿✿✿✿✿

which
✿✿✿

we
✿✿✿✿✿✿✿

propose
✿✿

is
✿✿✿✿✿✿

directly
✿✿✿✿✿✿

linked
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿

innovation
✿✿✿✿✿✿✿

statistics,
✿✿✿✿

and
✿

it
✿✿

is
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿✿

uniform.
✿

It
✿✿✿✿✿✿✿

follows

✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿

inflation
✿✿✿✿✿

factor
✿✿✿✿

will
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿✿✿✿

adequately
✿✿✿

the
✿✿✿✿✿✿

spread
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

surface,
✿✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿

data
✿✿✿

are
✿✿✿✿✿✿✿

located,
✿✿✿✿

but

✿✿✿

not
✿✿✿✿✿✿✿✿✿

necessarily
✿✿

at
✿✿✿✿✿✿

depth,
✿✿✿✿✿✿

where
✿✿

no
✿✿✿✿✿✿✿✿✿✿

observation
✿✿

is
✿✿✿✿✿✿✿✿✿

available.
✿✿

To
✿✿✿✿✿✿✿✿

improve
✿✿✿

the
✿✿✿✿✿✿✿✿

reliability
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿

at
✿✿✿✿✿✿

depth,
✿✿

a
✿✿✿✿✿✿✿

solution35
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✿✿✿✿

could
✿✿✿

be
✿✿

to
✿✿✿✿✿✿✿✿✿

implement
✿

a
✿✿✿✿✿

more
✿✿✿✿✿✿✿✿

complex
✿✿✿✿✿✿✿✿

algorithm
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿

inflation
✿✿✿✿✿

factor,
✿✿✿✿✿✿✿✿✿

especially
✿✿✿✿✿✿✿

spatially
✿✿✿✿✿✿✿

varying
✿✿✿✿✿✿✿

inflation
✿✿

as
✿✿✿✿✿✿✿✿

proposed
✿✿✿

by

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Anderson (2009)
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿✿✿✿

Miyoshi (2011)
✿✿✿

for
✿✿✿✿✿✿✿✿

example.

✿✿✿✿✿✿✿

Another
✿✿✿✿✿✿✿✿

important
✿✿✿✿✿✿✿

question
✿✿✿

for
✿✿✿✿✿

future
✿✿✿✿✿✿✿✿✿✿

applications
✿✿✿✿

with
✿✿✿✿✿

Earth
✿✿✿✿

data
✿✿

is:
✿✿✿✿

how
✿✿✿✿

well
✿✿✿

can
✿✿✿

we
✿✿✿✿✿✿

assess the quality of the assimilation

✿✿

an
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿

when
✿✿✿✿

only
✿✿✿✿✿✿✿✿

observed
✿✿✿✿

data
✿✿✿

are
✿✿✿✿✿✿✿✿

available,
✿✿✿

i.e
✿✿✿✿✿✿

without
✿✿✿✿

any
✿✿✿✿✿✿✿✿✿

knowledge
✿✿✿

on
✿✿✿

the
✿✿✿

true
✿✿✿✿✿✿

state?
✿✿

To
✿✿✿✿✿✿

answer
✿✿✿✿

this
✿✿✿✿✿✿✿✿

question,

✿✿

we
✿✿✿✿✿✿✿✿✿✿✿

investigated
✿✿✿

the
✿✿✿✿✿✿✿

statistics
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

cumulative
✿✿✿✿✿✿✿✿✿

innovation
✿✿✿✿

and
✿✿

of
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿✿✿✿✿✿✿

innovation
✿✿✿

for
✿✿✿✿✿✿✿✿

different
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿

sizes5

✿✿✿

and
✿✿✿✿✿✿✿✿✿

correlation
✿✿✿✿✿✿

lengths. The variation of both cumulative innovation and average forecast error
✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿✿✿✿✿✿✿

innovation
✿

as a

function of ensemble size show the same tendency as the
✿✿✿✿✿

global average error on the temperature field:
✿✿✿

the
✿✿✿✿✿

larger
✿✿✿

the
✿✿✿✿✿✿✿✿✿

ensemble,

✿✿

the
✿✿✿✿✿✿

lower
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

instantaneous
✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

cumulative
✿✿✿✿✿✿✿✿✿✿

innovations,
✿✿✿✿

and
✿✿✿✿✿

results
✿✿✿

for
✿✿✿✿✿✿✿✿

N = 288
✿✿✿✿

and
✿✿✿

768
✿✿✿

are
✿✿✿✿

very
✿✿✿✿✿

close,
✿✿✿✿

(see
✿✿✿✿

Fig.
✿✿

2). On the

contrary, the correlation lengths minimizing the norm of the cumulative innovation and the average forecast error
✿✿✿✿✿✿✿✿✿✿✿

instantaneous

✿✿✿✿✿✿✿✿

innovation
✿

were different from the ones minimizing the error on the temperature field. This shows the limits of these indicators10

to determine the optimal parameters for the assimilation. In a realistic case, rigorous a posteriori evaluation of a data assim-

ilation result would require comparison of the prediction made with independent observations (Talagrand, 2014). For mantle

circulation, seismic tomography, topography, true polar wander or the geoid could play this role.

By construction, sequential data assimilation methods do not propagate new information back in time. In the case of the

reconstruction of mantle circulation, this is a clear disadvantage since the information on the Earth’s surface tectonics tends15

to become more reliable as we get closer to present-day. Consequently, a natural extension of the present work would be to

implement an Ensemble Kalman Smoother
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿✿✿✿

smoother
✿

(Evensen and Van Leeuwen, 2000; Van Leeuwen,

2001). In the same way as the EnKF uses sample spatial correlations of the ensemble to update the state of the system with new

observations, the Ensemble
✿✿✿✿✿✿✿

ensemble
✿

Kalman smoother uses sample time and space correlations of successive ensembles to

update former states with the new observations. Evensen (2003) shows how an Ensemble Kalman Smoother
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

Kalman20

✿✿✿✿✿✿✿

smoother
✿

can be implemented with a minimal computational cost alongside a preexisting EnKF. Moreover, Nerger et al. (2014)

shows that such algorithm is efficient for nonlinear models, and that in their test case, optimal localization parameters for the

Ensemble Kalman Smoother
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿

Kalman
✿✿✿✿✿✿✿✿

smoother coincide with optimal localization parameters for the EnKF.

As a first approach to test the EnKF for mantle circulation reconstructions, we chose a fairly simple convection model. As

already discussed in Sect. 2.1, a more realistic mantle model would have, among other things, a 3D-spherical shell geometry25

and a higher Rayleigh number. This would substantially increase the size of the data assimilation problem. However, we

followed the procedure as described in Nerger and Hiller (2013) to implement the EnKF. This results in a highly scalable filter,

enabling the computation of the EnKF assimilation in a reasonable time. An increase in the Rayleigh number also implies

thiner boundary layers, slabs and plumes. This could translate into lower optimum correlation lengths for the EnKF. A more

realistic model would additionally include a viscosity increase in the lower mantle (Ricard et al., 1993), and the presence of30

continents. This would tend to lengthen the wavelength of convection in the lower mantle and therefore might ease the mantle

circulation reconstruction (see for example Ricard, 2015, Sect. 7.02.6.3.2 and 7.02.6.7 for a discussion of both effects on

mantle convection).

In the synthetic experiments of Sect. 4, the convection model used to produce the series of data is the same as the forward

model used during the assimilation. For an application with Earth data, this will not be the case. The equations solved in models35
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of mantle convection still hold some shortcomings (Ricard, 2015). Moreover, theories, observations and experiments do not yet

fully constrain parameters, especially rheological ones (King, 2016), and variations in rheology affect the reconstructions of

mantle circulation (Bello et al., 2015). Hence it could be fundamental to take into account model errors. A first order solution

is to increase the inflation parameter γ in Eq. (32): this would overall increase the a priori uncertainty on the mantle estimation.

Performing experiments where the model used to compute the observation is different from the model used for the assimilation5

would provide us with more information on how to implement model errors. Another solution would be to consider the joint

assimilation of the state and model parameters. Although it is in principle possible for the EnKF (Evensen, 2009b), it could

be computationally not tractable. Indeed, the response of mantle dynamics to different rheological parametrization is highly

nonlinear, and their inversion calls for the development of techniques focusing on rheology, such as adjoint based inversions

of rheological parameters (Worthen et al., 2014; Ratnaswamy et al., 2015) or further applications of the recently developed10

pattern recognition techniques for mantle convection (Atkins et al., 2016).

The choice of the synthetic experiments assimilation window of 150 Myr is a compromise between having the possibility to

compute assimilations for various cases and having an assimilation window covering most part of the timespan of plate tectonic

reconstructions (Seton et al., 2012; Müller et al., 2016; Torsvik et al., 2010). A real assimilation could take into account a longer

timespan and therefore improve the assimilation results. However, the structure of the dataset used for the synthetic experiments15

is a very idealized version of the actual plate reconstruction models. We already discuss this issue in Bocher et al. (2016). In

the following, we supplement and update this discussion in the light of research that has recently come to the fore.

First, we set a time series of data covering the whole surface of the domain and regularly available, every 10 Myr. Plate

tectonic reconstructions data are more complex. They are based on the estimation of finite relative rotations between individual

plates, structured into a hierarchy describing global relative motions and anchored in an absolute reference frame. The span20

of each finite relative rotation is determined depending on the amount and quality of information available for a specific

context and therefore varies depending on plate pairs and times. The average span of finite rotations of recent plate models

is of the order of 10 Myr (Torsvik et al., 2010) to 5 Myr (Müller et al., 2016), but varies over time with for example 1 Myr

resolution for the last 20 Myr in some regions (Merkouriev and DeMets, 2014), or some gaps in the data such as during the

cretaceous superchron from 121 to 83 Myr ago (Granot et al., 2012). The continuously closed plate algorithm (Gurnis et al.,25

2012) produces plate tectonic reconstruction maps continuous in space and time which allows the creation of a series of global

plate reconstructions at regular intervals. Nonetheless, creating such a regularized time series of reconstruction might miss

tectonic events. Instead, we could adapt the frequency of analyses to the varying plate reconstruction resolution. Additional

synthetic experiments with a time-series of data whose frequency evolves through time are necessary to explore the limits of

such method.30

Second, the observations were perturbed independently with a Gaussian noise of 10% of the respective root mean square

value of surface heat flux and surface velocities. The estimation of uncertainties on absolute plate motion models involves esti-

mation of both uncertainties in relative plate motion and on the absolute reference frame (Müller and Wessel, 2015). The main

source of information on the motion of plates comes from the map of seafloor magnetic anomalies. Hellinger (1981) developed

a method to compute relative motion of plates and associated uncertainties inferred from magnetic anomaly identifications. Re-35
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cently, Seton et al. (2014) built an open source community database. It gathers seafloor magnetic anomaly identifications, and

estimation with Hellinger (1981) method of plates relative motion and associated uncertainties. This database could be used in

the future as a basis to automatically produce global plate motion histories and assess their uncertainties. To our knowledge,

this has not been done so far at a global scale. On a regional scale and for recent time (5 to 20 Myr), Iaffaldano et al. (2012)

applied the trans-dimensional hierarchical Bayesian method to reduce noise in finite rotation data and produce time series of5

high resolution plate relative motions. More recently, Iaffaldano and Bunge (2015) applied this technique to the relative motion

of the pacific plate with North America for the last 75 Myr. The uncertainties on relative plates velocities ranges from 5 to 40%

of the root mean square surface velocity. As we go further back in time, the quantification of relative plate motion uncertain-

ties becomes hazardous: most of the seafloor created before 150 Myr has been destroyed by subduction. These plate tectonic

reconstructions involve interpretation of different types of data, with a limited spatial coverage and relies heavily on human10

expertise. For these epochs, maintaining very high uncertainties on the regions where few data supports the reconstructions

would be a solution.

6 Conclusions

We applied the ensemble Kalman filter algorithm to the reconstruction of mantle circulation through time. We chose a formu-

lation with covariance inflation and localization to minimize the effect of sampling errors in the estimation of the forecast error15

covariance matrix. Synthetic "twin" experiments with different evolutions and for different parameters allowed us to assess the

efficiency of the algorithm and to determine the optimal parameters for the assimilation.

This work builds on the developments of a first approach to sequential data assimilation for mantle circulation made in

Bocher et al. (2016). The EnKF is more robust and on average more accurate than the former method. Additionally, the

ensemble Kalman filter provides not only an estimate of mantle circulation, but also detailed maps of uncertainties on this20

estimation.

We evaluate the accuracy of the EnKF as a function of three main parameters: the size of the ensemble, and two covariance

localization parameters, namely the vertical correlation length and horizontal correlation angle. We find that the optimal
✿

a
✿

size

of the ensemble is of the order of 300 members
✿✿

is
✿✿✿✿✿✿✿✿

sufficient
✿✿

to
✿✿✿✿

have
✿✿✿

an
✿✿✿✿✿✿✿

accurate
✿✿✿✿✿✿✿✿✿

estimation
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

evolution
✿✿✿

of
✿✿✿

the
✿✿✿✿

state. For

this ensemble size, the optimal vertical correlation length corresponds to two thirds of the domain thickness, and the optimal25

horizontal correlation angle is of π/10
✿✿✿✿✿✿

(around
✿✿✿✿✿

2000
✿✿✿

km). These values should be reevaluated as the dynamical model becomes

more realistic.

The EnKF was implemented using the parallel data assimilation framework PDAF in a preexisting mantle convection code,

STAGYY. The resulting code is highly scalable, which means that the application of the EnKF to realistic data assimilation

with plate reconstructions and a 3D spherical mantle model is within reach in a foreseeable future.30
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Table 1. Values of the parameters of the forward model

Symbol Meaning value

Ra
✿✿✿✿

RaT Rayleigh number
✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿✿✿✿

temperature
✿✿✿✿✿✿✿✿

difference 106

Rh
✿✿✿

RaH Non-dimensional internal heatingrate
✿✿✿✿✿✿✿

Rayleigh
✿✿✿✿✿✿

number
✿✿✿✿

based
✿✿

on
✿✿✿✿✿✿

internal
✿✿✿✿✿✿

heating 20.5
✿✿✿✿✿✿✿

2.05 107

L number of grid points in longitude 384

M number of grid points in radius 48

ra Radius of the top of the domain 2.2

rb Radius of the bottom of the domain 1.2

Ta Temperature at the top of the domain 0

Tb Temperature at the bottom of the domain 0.9

EA Activation Energy 23.03

T1 Temperature at which µT = 1 1

β Factor of viscosity reduction for partial melting 10

Ts0 Solidus Temperature at r = ra 0.6

∇rTs Radial gradient of the solidus temperature 2

σY Yield Stress 104

∇rσY Radial gradient of the yield stress 2 105

Table 2. Notations and dimensions of data assimilation variables

Symbol Meaning Size (Literal) Size (Value)

x state LM +L 18 816

y data L+L 768

H observation matrix operator (L+L)× (LM +L) 768× 18 816

R observation error covariance matrix (L+L)× (L+L) 768× 768

P state error covariance matrix (LM +L)× (LM +L) 18 816× 18 816

X ensemble state (LM +L)×N 18 816×N ,

(N = 96,288 or 768)
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Table 3. Notations and range of values tested for data assimilation parameters

Symbol Meaning value

N number of ensemble members 96 to 768

K number of observation times 16

γ+ maximum inflation factor 1.25

ℓv vertical correlation length 0.3 to 1

ℓh horizontal correlation angle π/10 to π/2
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