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Abstract Spatial scaling laws of velocity kinetic energy spectra for the compressible
turbulence flow and the density-weighted counterparts are formulated in terms of the
wavenumber, dissipation rate, and Mach number by using a dimensional analysis. We
apply the Barenblatt’s incomplete similarity theory to both kinetic and density-weighted
energy spectra. It shows that, within the initial subrange, both energy spectra approach
the –5/3 and –2 power laws of the wavenumber when the Mach number tends to unity
and infinity, respectively.
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Nomenclature

u, flow velocity;
v, density-weighted velocity;
u′

i, fluctuation of flow velocity;
L, length dimension;
t, time dimension;
m, mass dimension;
k, wavenumber;
ν, kinematic viscosity;
ε, dissipation rate;
E, kinetic energy spectrum;
Eρ, density-weighted energy spectrum;
Ma, Mach number;
Re, Reynolds number;
c, speed of sound;
γ, ratio of specific heat;
η, Kolmogorov length;
CK, Kolmogorov constant;
C, coefficient constant;

Cρ, coefficient constant;
A, adjustable parameter;
σ, adjustable parameter;
β, adjustable parameter;
βρ, adjustable parameter;
Ec, compressible part of Eρ;
Es, solenoidal part of Eρ;
cc, compressible part constant;
cs, solenoidal part constant;
λ, constant;
d(Ma), exponent;
h(Ma), exponent;
α, exponent;
l, box size;
lν , box size of sequence ν;
ρ, mass density;
ρ0, local reservoir value of density.
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1 Introduction

Turbulence is considered to be one of the unsolved problems in classical physics[1–8]. There
are two kinds of turbulence, namely, incompressible and compressible. In recent years, com-
pressible turbulence has drawn a great deal of attention. Fully developed three-dimensional
homogenous incompressible turbulence has been studied by Kolmogorov[9–11], who showed that
its energy spectrum exhibits k− 5

3 power of the wavenumber k in the inertial subrange. However,
the basic processes, which occur in compressible turbulence, are less understood[1,12–22].

Kovasznay[23] pointed out that the compressible turbulence problem was characterized by
the existence of acoustic, vortical and entropy modes, which are in interaction with each other.
The systematic 2nd-approximation of these nonlinear interactions was shown by Chu and
Kovasznay[17]. Lighthill[24] argued that its energy is continually radiated away in the form
of sound waves, which are ultimately converted into heat by the various processes of acoustic
attenuation. Therefore, one may visualize the compressibility effects as acting like a source of
energy dissipation that is provided by viscosity and thermal conductivity[25]. As the nonlinear
effects become prominent, the sound waves in compressible fluid sharpen to form shock waves,
while the vortex formation behind the shock waves produces anisotropic shear turbulence. The
investigation showed that the passage of a shock wave also results in smaller parallels to the
shock and is compressed in the direction perpendicular to the shock. The shock formation
and the shock interaction process lead to another source of energy dissipation in compressible
turbulence.

Despite the anisotropy which is caused by the individual shock, Kadomtsev and
Petviashvili[26] argued that the random orientation of various shocks leads to the overall isotropy
of the turbulent field. Using a Burgers equation type model, they provided a spectrum for ki-
netic energy, E(k) ∼ εc−1k−2, where c is the speed of sound in fluid, k is the wavenumber, and
ε is the dissipation rate. Moiseev et al.[25] applied group-invariance principles to the Hopf-type
functional formulation of the compressible case, and gave the spectrum of the kinetic energy,

E(k) ∼ ρc
2

3γ−1 ε
2γ

3γ−1 k− 5γ−1

3γ−1 , where ρ is the density of fluid, and γ is the ratio of specific heats of
fluid. Shivamoggi[27] asserted that Moiseev’s spectrum is not completely correct and proposed

a revised spectrum, i.e., E(k) ∼ ρ
γ−1

3γ−1 c
2

3γ−1 ε
2γ

3γ−1 k−
5γ−1

3γ−1 .

However, it is easy to verify that the previous scaling laws[25–27] have a common problem,
that is, the speed of the sound c and the density ρ do not appear in the dimensionless format.
From our experience, they are supposed to be in the dimensionless form such as ρ0/ρ or v/c.
Therefore, the mentioned scaling laws of compressible turbulence might not be a proper format
and should be investigated further.

High resolution numerical simulations for supersonic isothermal turbulence showed the − 5
3

spectrum of both the velocity u and the density-weighted velocity v = ρ1/3u and proved that
kinetic energy cascades conservatively in compressible turbulence, provided that the pressure-
dilatation co-spectrum decays at a sufficiently rapid rate, which was supported once by numeri-
cal simulations[1,7,12–13,20]. Recently, for the Mach number Ma near 1, the numerical simulation
from Ref. [7] confirmed that fully developed three-dimensional compressible turbulence density-
weighted energy spectra exhibited Kolmogorov’s − 5

3 power law in the inertial range. Galtier

and Banerjee[21] derived a relationship for the scaling of compressible isothermal turbulence,
and showed that, only around the sonic scale, the density-weighted energy spectrum approached
the − 5

3 power law.

Since the numerical results can only be obtained for a specific case, it is very hard to predict
the general scaling trends on the energy spectra by using limited numerical results, and it would
be a natural attempt to find an alternative way. The new approach should be able to answer
the following three questions: the first is how to predict scaling laws for an arbitrary Mach
number, the second relates to whether the velocity kinetic energy E(k, ε, Ma) can still be used
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to characterize the cascade of compressible turbulence, and the final question is in what form
the scaling laws of the density-weighted energy spectrum Eρ(k, ε, Ma) for an arbitrary Mach
number Ma will be.

Due to the complicated nature of compressible turbulence, the above questions may not be
fully answered by numerical simulations, and hence alternative ways should be sought. Although
the nature of compressible turbulence is still not fully understood, we believe that its physics
must satisfy the dimensional laws. The results in this article show that the dimensional analysis
can certainly capture the overall picture of the compressible turbulence cascade process, and
leads to fairly rich information on the phenomena.

One of the most successful applications of dimensional analysis was formulated by
Kolmogorov[9–11]. For homogenous incompressible turbulence, Kolmogorov introduced the
length, time, and velocity scales of the smallest eddies of turbulence, whereas the smallest scales
are given by the Kolmogorov’s length η = (ν3/ε)1/4, the energy-dissipation rate ε = 2νsijsij ,

sij = 1
2 (u′

i,j + u′
j,i)

2, and u′
i fluctuation of flow velocity. Kolmogorov stated that the large-scale

turbulence motion is roughly independent of viscosity. The small scale, however, is controlled
by viscosity. In the inertial range, turbulence is controlled solely by the dissipation rate ε and
the size of eddy k. It is found that the spatial energy spectrum E(k) can be formulated in terms

of the wavenumber k and the dissipation rate ε as E(k) = ε2/3k−5/3f((kη)
4/3

) = CKε2/3k−5/3,
which is the famous Kolmogorov’s − 5

3 power law of incompressible turbulence, where f(·) is a
dimensionless function, and the universal constant CK ≈ 1.5.

To make the paper self-contained, the paper is organized as follows. Following this intro-
duction, in Section 2, the spatial scaling law of the kinetic energy spectrum E of velocity u is
formulated by using the dimensional analysis, the scaling laws by using Barenblatt’s incomplete
similarity theory are presented, and some special cases of the laws are obtained. In Section 3,
the scaling laws of the density-weighted energy spectrum Eρ of ρ1/3u are given by the similar
way as in Section 2. In Section 4, the relationship between E and Eρ is discussed. In Section 5,
application to a von Weizsäcker’s simple compressible cascade model is presented. In Section 6,
the discussion on the obtained scaling laws is proposed. Finally, Section 7 concludes the paper
with some highlights.

2 Kinetic energy spectrum of compressible turbulence for velocity

In general, a compressible flow deals with the fluid density, which varies significantly in
response to a change in the pressure that is caused by a high flow speed. Compressibility effects
are typically considered to be significant if the Mach number Ma of the flow exceeds 0.3. For
incompressible fluid, there is no need to consider changes in the mass density. However, the
mass density change is the central concern for the compressible flow, which must be taken into
account in the formulation.

In order to formulate the compressible turbulence scaling law, Sun[22] extended Kolmogorov’s
assumption from incompressible turbulence to a compressible case. The idea of this extension
stemmed from the dimensional analysis of the lift of a wing, in which the lift force FL is a
function of the velocity V , the air density ρ, the wing cross-sectional area A, the angle of attack
α, the viscosity µ, and the speed of sound c, which will provide the lift FL = f(V, A, ρ, µ, c, α).
According to the dimensional analysis, the lift is FL = 1

2ρV 2Af(Re, Ma, α). This relationship
is still valid for any Reynolds number Re and Mach number Ma.

2.1 Dimensional analysis and choice of dimensional variables for compressible

turbulence

Any physical relationship can be expressed in a dimensionless form. The implication of this
statement is that all of the fundamental equations of physics, as well as all approximations of
these equations and, for that matter, all functional relationships between these variables, must
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be invariant under a dilation of the dimensions of the variables. This is because the variables
are subject to measurement by an observer in terms of units that are selected at the arbitrary
discretion of the observer. It is clear that a physical event cannot depend on the particular ruler.
This principle is the basis for a powerful method of reduction, which is called the dimensional
analysis and is useful for the investigation of complicated problems[28–32].

Often, the dimensional analysis is conducted without any explicit consideration for the
actual equations that may govern a physical phenomenon. Only the variables that affect the
problem are considered. In fact, this is a little deceiving. Inevitably, the choice of the variables
is intimately connected to the phenomenon itself. Therefore, it is always connected to the
governing equations. The most complex problems in the dimensional analysis tend to be filled
with ambiguity, particularly regarding the choice of variables that govern the phenomenon in
question. The success or failure of the dimensional analysis depends entirely on the choice of
dimensionally physical variables that are relevant to the problem. This constitutes the art of the
dimensional analysis. Applying the dimensional analysis intelligently with a deep knowledge of
the problem, may yield important and profound results. If applied blindly, dimensional analysis
can easily lead to nonsense[28–32].

From a physical point of view, the dimensional analysis is a universal method, which can, of
course, be used for the study of compressible turbulence. The difference between incompressible
turbulence and its compressible counterpart is that the flow mass density ρ will no longer
be a constant, because in the compressible case, the mass density changes as a result of a
high speed that will generate shock waves and some of the interactions mentioned in above.
Our belief is that no matter how complex the compressible turbulence is, as long as we can
capture all the primary variables of the problem, we can formulate it by use of dimensional
analysis.

Kolmogorov[9–11] provided some of the most important and most-often quoted results of the
incompressible homogeneous turbulence theory. These results comprised what is now referred
to as the Kolmogorov’s theory in 1941 (K41 theory), and represented a major success of the
statistical theories of turbulence. This theory provides a prediction for the energy spectrum
of a three-dimensional isotropic homogeneous turbulent flow. Kolmogorov proved that, even
though the velocity of an isotropic homogeneous turbulent flow fluctuates in an unpredictable
fashion, the energy spectrum (how much kinetic energy is present on average at a particular
scale), is predictable.

2.2 Extended Kolmogorov’s assumption

In the initial subrange, the K41 theory assumes that the spectrum E, at any particular
wavenumber k, depends only on the dissipation rate ε, namely, E = f(k, ε).

Due to the great success of the Kolmogorov’s theory, it would be natural to attempt to
extend the Kolmogorov’s idea to compressible turbulence. As we know, the basic difference
between incompressible and compressible flow concerns the compressibility of mass density ρ.
By taking into account the mass density ρ or the Mach number Ma, we can extend Kolmogorov’s
assumption to compressible turbulence as follows.

Extended Kolmogorov’s assumption In the inertial range, the compressible turbulence en-
ergy spectrum E is not only controlled by the dissipation rate ε and the wavenumber k, but
also by the fluid density ρ (or the Mach number Ma).

In the extended Kolmogorov’s assumption, there are two sets of equivalent variables in the
formulation, namely, one includes the mass density ρ, and the other has the Mach number Ma.

Set I For the first set, there are six variables, the energy spectrum E, the dissipation rate ε,
the wavenumber k, the kinematic viscosity ν, the current mass density ρ, and the local reservoir
values ρ0 of mass density or stagnation density[33].

All primary dimensions of Set I are listed in Table 1.
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Table 1 Primary dimension of Set I

E ν ε k ρ ρ0

L3t−2 L2t−1 L2t−3 L−1 mL−3 mL−3

From Ref. [33], in the case of normal shock, the density ratio ρ0

ρ and the velocity ratio
v
c ≡ Ma have a relationship ρ0

ρ = ((γ + 1)Ma2)/(2 + (γ − 1)Ma2), where γ =
cp

cv

is the ratio of

heat capacities. This means that the two ratios are dependent, and we can use either ρ0

ρ or v
c

in the formulation. Then, we have Set II of dimensional variables.
Set II For the 2nd set, there are six variables, the energy spectrum E, the dissipation rate

ε, the wavenumber k, the kinematic viscosity ν, and the mass density ρ, and its reservoir values
can be replaced by the fluid velocity v and the speed of sound c.

All primary dimensions of Set II are listed in Table 2.

Table 2 Primary dimension of Set II

E ν ε k c v

L3t−2 L2t−1 L2t−3 L−1 Lt−1 Lt−1

2.3 Scaling laws based on Set I of dimensional variables

According to the Buckingham Π theorem[28], the energy spectrum E can be expressed as
the function of (ν, ε, k, ρ0, ρ),

E = f(ν, ε, k, ρ0, ρ). (1)

Within the six variables, there are three basic units, namely, the time t, the mass m, and the
length L. We can choose three repeating variables, namely, the wavenumber k, the dissipation
rate ε, and the density ρ, and the dependent variables are the energy spectrum E, the kinematic
viscosity ν, and the local reservoir value of density ρ0.

From the Buckingham Π theorem of dimensional analysis, we can generate three dimension-
less variables, namely, Π1 = Eε−3/2k5/3, Π2 = νε−1/3k4/3, and Π3 = ρ0ρ

−1. Then, we have
the scaling law of the energy spectrum Π1 = f(Π2, Π3), that is,

E(k, ε, ρ) = ε2/3k−5/3f((kη)4/3, ρ0ρ
−1). (2)

2.4 Scaling laws based on Set II of dimensional variables

If we use the fluid velocity v and the sound speed c instead of the mass density, we have the
second set of variables (E, ν, ε, k, c, v), as well as another version of Eq. (1) as follows:

E = f(ν, ε, k, c, v). (3)

Hence, we can have a set of corresponding dimensionless Π which is Π1 = Eε−3/2k5/3,
Π2 = νε−1/3k4/3, and Π3 = v/c = Ma, where Ma = v/c is the Mach number, and the scaling
law of the energy spectrum can be expressed in terms of the Mach number as Π1 = f(Π2, Π3).
Therefore,

E(k, ε, Ma) = ε2/3k−5/3f((kη)4/3, Ma). (4)

E(k, ε, Ma) in Eq. (4) is actually equivalent to E(k, ε, ρ) in Eq. (2), because the ratio of
density in Eq. (2) can be expressed in terms of the Mach number. Hence, the energy spectrum
equation (2) can be rewritten as the function of Eq. (4).

It should be pointed out that the dimensionless function f(x, y) cannot be completely de-
termined by only the dimensional analysis, which should be finalized by other ways such as
numerical simulations or experiments.
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2.5 Scaling laws based on incomplete similarity

For incompressible turbulence, we can further simplify Eq. (4). According to the Kol-
mogorov’s assumption, in the inertial subrange, the term kη → 0, for the finite value of the
Mach number Ma, the function is f((kη)4/3, Ma) → f(0, Ma). Kolmogorov assumed that in
the limit kη → 0, the function f(0, x) simply assumes the constant value of CK. In other
words, there is complete similarity with respect to the variable kη → 0, and hence we have
E(k) = CKε2/3k−5/3. This is the famous Kolmogorov’s − 5

3 power spectrum, which is one
of the cornerstones of the turbulence theory. CK is a universal constant, the Kolmogorov’s
constant, experimentally found to be approximately 1.5.

However, for the compressible turbulence, the existence of the limit of f(x, Ma) as x → 0
is a question owing to intermittency, the fluctuations of the energy-dissipation rate about its
mean value ε. According to Barenblatt[30], the incomplete similarity in the variable kη would
require the nonexistence of a finite and nonzero limit of f(x, Ma) as x → 0.

To obtain more information from Eq. (4), let us use Barenblatt’s incomplete similarity
theory[30] to simplify the function f(x, y). For this purpose, we propose two hypotheses for
compressible turbulence, as shown below.

Hypothesis . There is incomplete similarity regarding the energy spectrum E(k, ε, Ma)
in the parameter kη and no similarity in the Mach number Ma.

Hypothesis / The energy spectrum E(k, ε, Ma) tends to a well-defined limit as the vis-
cosity tends to be very small but not zero.

In terms of the first hypothesis, for a large Ma, the function f(x, y) could be assumed to be
the power function of its argument kη, while there is no kind of similarity in Ma, as follows:

f(kη, Ma) = A(Ma)((kη)4/3)B(Ma). (5)

Then, we arrive at the energy spectrum relationship,

E(k, ε, Ma) = ε2/3k−5/3A(Ma)((kη)4/3)B(Ma), (6)

where A(Ma) and B(Ma) are functions of the Mach number Ma.
Using a similar approach proposed by Barenblatt[30], the B(Ma) can be further simplified to

a linear form B(Ma) = σ + βǫ, where σ and β are adjustable parameters, and the asymptotic
parameter ǫ is a function of the Mach number vanishing when Ma → ∞. Then, we have

E(k, ε, Ma) = ε2/3k−5/3A((kη)4/3)b+βǫ. (7)

By applying the second hypothesis, a well-defined limit of E(k, ε, Ma) exists only if σ = 0.
Applying the mathematical identity xa = ea lnx to Eq. (7), we have

E(k, ε, Ma) = ε2/3k−5/3Ae4(βǫ ln(kη))/3. (8)

From the limit analysis of Eq. (8) when the viscosity vanishes kη → 0, Sun[22] proposed ǫ =
1

ln Ma , which can be viewed as the extension of similar result that was firstly obtained by

Barenblatt[30] for the boundary turbulence flow, where the small perturbation parameter is
ǫ = 1

ln Re , in which Re is the Reynolds number.

However, at Ma = 1, the proposed ǫ = 1
ln Ma has a singularity[22], which should be avoided.

In the following, we will try to find another option by taking into account some recent numerical
simulations.

It is clear that the parameter ǫ must be a function of the Mach number, let’s say, ǫ = ξ(Ma).
Equation (8) would be in the form of

E(k, ε, Ma) = Aε2/3k−5/3((kη)4/3)βξ(Ma). (9)
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Substituting the Kolmogorov’s length η = (ν3/ε)1/4 into Eq. (9), we have

E(k, ε, Ma) = Aε2/3k−5/3((k(ν3/ε)1/4)4/3)βξ(Ma)

= Aε2/3k−5/3((k(ν3/ε)1/3)βξ(Ma)

= Aε2/3k−5/3(kνε−1/3)βξ(Ma), (10)

which can be rewritten as a compact form,

E(k, ε, Ma) = Cε( 2

3
− 1

3
βξ(Ma))k(− 5

3
+βξ(Ma)), (11)

where the coefficient C = Aνβξ(Ma), which appears to be proportional to βξ(Ma).

2.6 Determination of β, ξ(Ma), and C

In Eq. (11), there are two unknowns β and ξ(Ma). The choice of the unknown function ξ(Ma)
has some possibilities. From physics of compressible turbulence, we guess that ξ(Ma) should
be linked to the shock wave, and it means that the energy spectrum should be affected by the
shock wave[1]. In the spirit of the shock wave analysis[33], ξ(Ma) is proposed as ξ = ln(ρ0/ρ),
namely,

ξ(Ma) = ln
(γ + 1)Ma2

2 + (γ − 1)Ma2
, 1 6 Ma < ∞. (12)

Equation (12) gives

ξ(Ma) =























ln
γ + 1

γ + 1
= 0, Ma = 1,

ln
γ + 1

γ − 1
, Ma → ∞.

(13)

Numerical simulations[1,7–8] predicted that the energy spectrum E ∼ kh(Ma) tends to be h =
−5/3 at Ma = 1 and tends to be h = −2 when Ma → ∞.

It is easy to verify that, at Ma = 1, we have h(Ma) = − 5
3 + β ln γ+1

γ+1 = − 5
3 , which is

compatible with the numerical predication. At Ma → ∞, if we set h(Ma) = − 5
3 +β ln γ+1

γ−1 = −2,
then we obtain the adjustable parameter β as follows:

β = −
1

3

1

ln γ+1
γ−1

. (14)

Within the inertial range, the coefficient C must be independent of the kinematic viscosity ν
and Ma, and from numerical simulations[1,7–8], the coefficient C is determined as C = 1.5.

With Eqs. (12) and (14), the energy spectrum equation (11) can be expressed as

E(k, ε, Ma) = 1.5εd(Ma)kh(Ma), (15)

where the exponents are

d(Ma) =
2

3
+

1

9
ξ(Ma)

(

ln
γ + 1

γ − 1

)−1

=
2

3
+

1

9

(

ln
γ + 1

γ − 1

)−1

ln
(γ + 1)Ma2

2 + (γ − 1)Ma2
, (16)

h(Ma) = −
5

3
−

1

3
ξ(Ma)

(

ln
γ + 1

γ − 1

)−1

= −
5

3
−

1

3

(

ln
γ + 1

γ − 1

)−1

ln
(γ + 1)Ma2

2 + (γ − 1)Ma2
. (17)

Equation (15) is the Barenblatt-type incomplete scaling law for compressible turbulence. The
formulations, which are presented in this section, provide answers to the first and second ques-
tions mentioned in Section 1.
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2.7 Scaling laws of some special cases and generalization of Kritsuk’s scaling laws

With the modified scaling law in Eq. (11) and/or Eq. (15), we can obtain scaling laws for
the following two scenarios: (i) sonic turbulence Ma = 1; (ii) hypersonic turbulence Ma → ∞.

(i) For sonic turbulence Ma = 1, ξ(Ma) = ln γ+1
γ+1 = ln 1 = 0, and Eq. (15) is reduced to the

− 5
3 power law as follows:

E(k, ε, Ma)|Ma=1 = E(k, ε, 1) = 1.5ε2/3k−5/3. (18)

(ii) In the case of hypersonic turbulence Ma → ∞, ξ(Ma) → ln γ+1
γ−1 , then, 2

3 + 1
9ξ(Ma)

(ln γ+1
γ−1 )−1 → 7

9 and − 5
3 − 1

3ξ(Ma)(ln γ+1
γ−1)−1 → −2, Eq. (15) can be reduced to

E(k, ε) = 1.5ε7/9k−2. (19)

k−2 is very close to k−1.97 numerically obtained by Kritsuk et al.[1] in the case of Ma = 6.
To compare with Ref. [1], let Ma = 6 in h(Ma). We obtain

h(Ma)Ma=6 = h(6) = −
5

3
−

1

3

(

ln
γ + 1

γ − 1

)−1

ln
γ + 1

γ − 17/18
≈ −

5

3
−

1

3
= −2. (20)

It means that the proposed ξ(Ma) in Eq. (12) makes the exponent h(Ma) tend to its limit −2
rapidly.

The expression (15) can be viewed as a generalization of Ref. [1]. To appreciate their great
contributions, we call the formula (15) Kritsuk’s scaling laws.

3 Kinetic energy spectrum of compressible turbulence for density-weighted

velocity

Due to the density change of compressible turbulence, as a tradition, the numerical simula-
tions usually use the density-weighted velocity v = ρ1/3u instead of the velocity u, where ρ is
the density, and u is the velocity.

The corresponding density-weighted energy spectrum Eρ can be expressed as

Eρ = F (ν, ε, k, ρ, Ma). (21)

All primary dimensions are listed in Table 3.

Table 3 Primary dimension list

Eρ ν ε k ρ Ma

m1/3L2t−2 L2t−1 L2t−3 L−1 mL−3 1

The problem has six parameters and three primary dimensions (m, L, t), and according to
the Buckingham Π theorem of dimensional analysis, we will have Π1 = Eρρ

−1/3ε−2/3k5/3,
Π2 = (kη)4/3, and Π3 = Ma, and their relationship is Π1 = f(Π2, Ma), i.e.,

Eρ(k, ε, Ma) = ρ1/3ε2/3k−5/3F ((kη)4/3, Ma). (22)

Equation (22) shows that the density-weighted energy spectrum Eρ has the same power expo-
nents as E.

In the same way, the Barenblatt’s incomplete similarity[30] can also be applied to Eq. (22),
which will lead to similar results as before, namely,

Eρ(k, ε, Ma) = Cρρ
1/3εd(Ma)kh(Ma). (23)
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Wang[19] numerically confirmed that Cρ ≈ 1.5, which will be applied to the following formula-
tions. For different values of the Mach number Ma, we can derive some scaling laws as follows:

(i) For sonic turbulence Ma = 1 and ξ(Ma) = ln 1 = 0, Eq. (23) is reduced to the − 5
3 power

law as follows:
Eρ(k, ε, Ma)|Ma=1 = Eρ(k, ε, 1) = 1.5ρ1/3ε2/3k−5/3. (24)

(ii) In the case of highly compressible (Ma → ∞), we have d(Ma) → 7
9 and h(Ma) → −2,

and Eq. (23) can be simplified to

Eρ(k, ε, Ma) = 1.5ρ1/3ε7/9k−2. (25)

The scaling law demonstrated in Eq. (24) was confirmed by the numerical simulations by Wang
et al.[7] and Wang[19] as illustrated in Fig. 1. The data of Fig. 1 are taken from Ref. [19] and
reformatted, where Eρ = E(k, ρ) is the total kinetic energy, Ec

ρ = Ec(k, ρ) and Es
ρ = Es(k, ρ)

are compressible and solenoidal parts of E(k, ρ), respectively, and their relationship is E(k, ρ) =
Ec(k, ρ) + Es(k, ρ).

Equation (24) indicates that, with the Mach number close to 1, a density-weighted energy
spectrum Eρ in k−5/3 may still be preserved at the small scale (kη → 0) if the density-weighted
fluid velocity v = ρ1/3u is used. However, for a very large Ma, the energy spectrum Eρ tends
to −2 power laws as stated in Eq. (25). Those have been mentioned by Wang et al.[7].

Fig. 1 Density-weighted energy spectrum of compressible turbulence[19]

4 Relationship between E and Eρ

It might be worth noting that the relationship between the kinetic energy spectrum
E(k, ε, Ma) and its density-weighted counterpart Eρ(k, ε, Ma) can be established from Eqs. (2),
(4), and (22) as

Eρ(k, ε, Ma)

E(k, ε, Ma)
= ρ1/3 F ((kη)4/3, Ma)

f((kη)4/3, Ma)
, (26)

where the functions F ((kη)4/3, Ma) and f((kη)4/3, Ma) are different from each other, and in
general, their ratio is not a constant.

At the small scale (kη → 0) and in a limited case of complete compressibility, Ma → ∞, if
the ratio in Eq. (26) does exist, then

Eρ(k, ε, Ma)

E(k, ε, Ma)
→ λρ1/3. (27)

From the numerical simulation[19] with the Mach number close to 1, the coefficient λ can be
estimated as λ ≃ 1.
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The relationship (27) answers the question in Section 1. The compressible turbulence can
be characterized by the ρ1/3u density-weighted kinetic energy spectrum Eρ(k, ε, Ma), as well
as by the u kinetic energy spectrum E(k, ε, Ma).

The formulation in this section shows that the density-weighted kinetic energy spectrum can
also be obtained by the dimensional analysis.

5 Application to von Weizsäcker’s simple compressible cascade model

In 1951, von Weizsäcker[34] proposed a phenomenological model for three-dimensional com-
pressible turbulence with an intermittent, scale-invariant hierarchy of density fluctuations de-
scribed by a simple equation that relates the mass density at two successive levels to the
corresponding scales through a universal measure of the degree of compression α,

ρν

ρν−1
=

( lν
lν−1

)−3α

. (28)

Here, lν is a box size of a sequence ν, and their definition can be found in Ref. [1].
The only free parameter of the model is the geometrical factor α, which takes the value of 1

in a special case of isotropic compression in three dimensions, 1/3 for a perfect one-dimensional
compression, and zero in the incompressible limit. The kinetic energy supplied to the system at
the large scale is being transferred through the hierarchy by nonlinear interactions. Lighthill[24]

pointed out that, in compressible fluid, the mean volume energy transfer rate ρu2u/l is constant
in a statistical steady state, so that

u ∼ (l/ρ)1/3. (29)

From these two equations, assuming mass conservation, Fleck[35] derived a set of scaling rela-
tionships for the velocity, specific kinetic energy, and density,

u ∼ l1/3+α, (30)

E(k) ∼ kh ∼ k−5/3−2α, (31)

ρ ∼ l−3α, (32)

where all the exponents depend on the compression measure α.
If we compare E(k) ∼ kh ∼ k−5/3−2α with our formulation, we can get a relationship

−5/3− 2α = h(Ma), then, we obtain the compression measure α as follows:

α(Ma) = −
1

6
ξ(Ma)

(

ln
γ + 1

γ − 1

)−1

= −
1

6

(

ln
γ + 1

γ − 1

)−1

ln
(γ + 1)Ma2

2 + (γ − 1)Ma2
. (33)

From this formula, we can get

α =















0, Ma = 1,

1

6
, Ma → ∞.

(34)

α = 1/6 ≈ 0.166 7 is close to α = 0.15 numerically predicted by Kritsuk et al.[1], which is
compatible with his own scaling laws E(k) ∼ k−1.97. Meneveau and Sreenivasan[36] proposed
α = 1/6. Equation (33) agrees with all previous predictions.
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6 Discussion

This article proposes spatial scaling laws of the kinetic energy spectrum E(k, ε, Ma) of
compressible turbulence flow and its density-weighted counterpart Eρ(k, ε, Ma) in terms of the
wavenumber k, dissipation rate ε, and Mach number Ma. The study shows that the compressible
turbulence kinetic energy spectrum and the density-weighted energy spectrum do not behave in
complete similarity, but rather in incomplete similarity, as in Eqs. (11) and (22), which shows
that, within the initial subrange, both energy spectra approach the –5/3 and –2 power law of
the wavenumber, when the Mach number tends to unity and infinity, respectively.

Why can the energy spectrum in k−5/3 still be preserved for Ma = 1? As we know, there
are nonlinear interactions between solenoidal and compressive modes of velocity fluctuations.
The numerical simulations show that the compressive kinetic energy Ec and its solenoidal
counterpart Es follow different cascade scaling laws[7,19]. The total kinetic energy spectrum
can be decomposed into compressible and solenoidal parts, E = Ec + Es = cck−2 + csk−5/3 =
k−5/3(cck−8/9 + cs), in which the compressible energy spectrum Ec = cck−2 and the solenoidal
energy spectrum Es = csk−5/3, and cc and cs are constants.

The compressible kinetic energy Ec cascade follows the k−2 power law of the wavenumber,
and the solenoidal kinetic energy Es follows the k−5/3 power laws. For the case of Ma = 1, the
solenoidal Es dominates the energy spectrum, which leads to E = Ec + Es = k−5/3(cck−8/9 +
cs) ≈ csk−5/3, and will overall lead the total kinetic energy spectrum E to exhibit a − 5

3 scaling

law as stated by Wang[7]. However, in the case of the large Mach number, the compressive
kinetic energy Ec will dominate the process of cascade. Then, it will lead to E = Ec + Es =
k−2(cc + csk1/3) ≈ csk−2.

As stated in the extended Kolmogorov’s assumption, all formulations in the paper are only
valid within the inertial range. In other words, the limitation to all of the proposed spatial en-
ergy spectra is that the formulations of the energy spectra deduced by the dimensional analysis
and Barenblatt’s incomplete similarity theory can only apply to the inertial scale ranges rather
than the whole range of small scales (especially when kη tends to zero). The pivotal results
obtained in this article, i.e., the several “general” expressions of the energy spectrum, namely,
Eqs. (15), (23) and others can at most apply to the inertial range rather than the dissipation
range because the spectrum decays more rapidly or even at an exponential rate in the smaller
dissipation scales, i.e., evidently this fact cannot be covered in those formulae of the spatial
energy spectrum.

7 Conclusions

Theoretically, this paper proposes the scaling laws for compressible turbulence flow by us-
ing Barenblatt’s incomplete similarity theory. The spatial scaling laws of velocity kinetic en-
ergy spectrum for compressible turbulence flow and its density-weighted counterpart have been
formulated in terms of the wavenumber, dissipation rate, and Mach number by using the di-
mensional analysis. The results show that, within the initial subrange, both energy spectra
approach the –5/3 and –2 power law of the wavenumber, when the Mach number tends to unity
and infinity, respectively.

The predicted relationships may benefit the understanding of compressible turbulence. It
might be worth mentioning that the scaling laws proposed in this article should be verified
again by experiments and numerical simulations. The methodology proposed in this paper can
be used for other problems, such as the temporal scaling laws of turbulence[37].

For easy using purpose, the main results are highlighted in Table 4.
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Table 4 Kinetic spectrum scaling law of compressible turbulence

Item Description

u spectrum E E = E(k, ε, Ma) = 1.5εd(Ma)kh(Ma)

ρ1/3
u spectrum Eρ Eρ = 1.5ρ1/3E(k, ε, Ma) = 1.5ρ1/3εd(Ma)kh(Ma)

d(Ma), Ma ∈ [0, 1]
2

3

h(Ma), Ma ∈ [0, 1] −
5

3

d(Ma), Ma ∈ [1,∞)
2

3
+

1

9

“

ln
γ + 1

γ − 1

”

−1
ln

(γ + 1)Ma2

2 + (γ − 1)Ma2

h(Ma), Ma ∈ [1,∞) −
5

3
−

1

3

“

ln
γ + 1

γ − 1

”

−1
ln

(γ + 1)Ma2

2 + (γ − 1)Ma2

Limitation Inertial range

Acknowledgements This paper commemorates my beloved father, Zhongchuan SUN. Supports
from the South Africa National Research Foundation (NRF), Cape Peninsula University of Technology
(CPUT), and the State Key Laboratory for Turbulence and Complex Systems at Peking University
are gratefully acknowledged. The author would like to express his most sincere thanks to reviewers
for their high level academic comments and corrections, and their professionalism inspires me deeply.
The author wishes to take this opportunity to appreciate the general discussion on turbulence with
Professors Shiyi CHEN, Zhensu SHE, Cunbiao LEE, Yipeng SHI, and Jiancun WANG.

References

[1] Kritsuk, A. G., Norman, M. L., Padoan, P., and Wagner, R. The statistics of supersonic isothermal

turbulence. The Astrophysical Journal, 665, 416–431 (2007)

[2] Frisch, U. Turbulence: The Legacy of A.N. Kolmogorov, Cambridge University Press, Cambridge

(2008)

[3] Lee, C. B. and Wu, J. Z. Transition in wall-bounded flows. Applied Mechanics Reviews, 61, 030802

(2008)

[4] She, Z. S., Chen, X., Wu, Y., and Hussain, F. New perspective in statistical modeling of wall-

bounded turbulence. Acta Mechanica Sinica, 26, 847–861 (2010)

[5] Zhang, Y. S., Bi, W. T., Hussain, F., Li, X. L., and She, Z. S. Mach-number-invariant mean-

velocity profile of compressible turbulent boundary layers. Physical Review Letters, 109, 054502

(2012)

[6] Zhou, H. and Zhang, H. X. What is the essence of the so-called century lasting difficult problem in

classic physics, the “problem of turbulence”? Scienta Sinica: Physica, Mechanica and Astronomica,

42, 1–5 (2012)

[7] Wang, J., Yang, Y., Shi, Y., Xiao, Z., He, X. T., and Chen, S. Cascade of kinetic energy in

three-dimensional compressible turbulence. Physical Review Letters, 110, 214505 (2013)

[8] Chen, S. Y., Xia, Z. H., Wang, J. C., and Yang, Y. T. Recent progress in compressible turbulence.

Acta Mechanica Sinica, 31, 275–291 (2015)

[9] Kolmogorov, A. N. The local structure of turbulence in incompressible viscous fluid for very large

Reynolds number. Proceedings of the Royal Society of London, 434, 9–13 (1991)

[10] Kolmogorov, A. N. On degeneration (decay) of isotropic turbulence in an incompressible visous

liquid. Doklady Akademii Nauk SSSR, 31, 538–540 (1941)



Scaling laws of compressible turbulence 777

[11] Kolmogorov, A. N. Dissipation of energy in locally isotropic turbulence. Proceedings of the Royal

Society of London, 434, 15–17 (1991)

[12] Aluie, H. Compressible turbulence: the cascade and its locality. Physical Review Letters, 106,

174502 (2011)

[13] Aluie, H., Li, S., and Li, H. Conservative cascade of kinetic energy in compressible turbulence.

Astrophysical Journal Letters, 751, L29 (2012)

[14] Aluie, H. Scale decomposition in compressible turbulence. Physica D: Nonlinear Phenomena, 247,

54–65 (2013)

[15] Armstrong, J. W., Spangler, S. R., and Rickett, B. J. Electron density power spectrum in the

local interstellar medium. The Astrophysical Journal, 443, 209–221 (1995)

[16] Cardy, J., Falkovich, G., and Gawedzki, K. Nonequilibrium Statistical Mechanics and Turbulence,

Cambridge University Press, Cambridge (2008)

[17] Chu, B. T. and Kovasznay, L. S. G. Non-linear interactions in a viscous heatconducting compress-

ible gas. Journal of Fluid Mechanics, 3, 494–514 (1958)

[18] Federrath, C., Roman-Duval, J., Klessen, R. S., Schmidt, W., and Mac Low, M. M. Comparing the

statistics of interstellar turbulence in simulations and observations: solenoidal versus compressive

turbulence forcing. Astronomy and Astrophysics, 512, A81 (2010)

[19] Wang, J. Cascade of Kinetic Energy and Thermodynamic Process in Compressible Turbulence (in

Chinese), Post-Doctoral Research Report, Peking University (2014)

[20] Schmidt, W., Federrath, C., and Klessen, R. Is the scaling of supersonic turbulence universal?

Physical Review Letters, 101, 194505 (2008)

[21] Galtier, S. and Banerjee, S. Exact relation for correlation functions in compressible isothermal

turbulence. Physical Review Letters, 107, 134501 (2011)

[22] Sun, B. H. The spatial scaling laws of compressible turbulence. https://arxiv.org/

abs/1502.02815v5 (2016)

[23] Kovasznay, L. S. G. Turbulence in supersonic flow. Journal of the Aeronautical Sciences, 20,

657–674 (1953)

[24] Lighthill, M. J. The effect of compressibility on turbulence. Proceedings from the 2nd International

Astronomical Union Symposium on Gas Dynamics of Cosmic Clouds, North Holland Publishing

Company, Amsterdam (1955)

[25] Moiseev, S. S., Toor, A. V., and Yanovsky, V. V. The decay of turbulence in the Burgers model.

Physica D: Nonlinear Phenomena, 2, 187–193 (1981)

[26] Kadomtsev, B. B. and Petviashvili, V. I. Acoustic turbulence. Soviet Physics Doklady, 18, 115–118

(1973)

[27] Shivamoggi, B. K. Multifractal aspects of the scaling laws in fully developed compressible turbu-

lence. Annals of Physics, 243, 169–176 (1995)

[28] Bridgman, P. W. Dimensional Analysis, Yale University Press, New Haven (1922)

[29] Sedov, L. I. Similarity and Dimensional Analysis in Mechanics, Academic Press, New York (1959)

[30] Barenblatt, G. I. Similarity, Self-similarity and Intermediate Asymptotics, Cambridge University

Press, Cambridge (1996)

[31] Cantwell, B. J. Introduction to Symmetry Analysis, Cambridge University Press, Cambridge (2002)

[32] Sun, B. H. Dimensional Analysis and Lie Group (in Chinese), China High Education Press, Bejing

(2016)

[33] Liepmann, H. W. and Roshko, A. Elements of Gasdynamics, Dover Publications, New York (1993)



778 Bohua SUN
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