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Abstract. Beginning from the Shallow Water Equations (SWE), a nonlinear self-similar analytic solution is derived for

barotropic flow over varying topography. We study conditions relevant to the ocean slope where the flow is dominated by

Earth’s rotation and topography. The solution is found to extend the topographic β-plume solution of Kuehl (2014) in two

ways: 1) The solution is valid for intensifying jets. 2) The influence of nonlinear advection is included. The SWE are scaled

to the case of a topographically controlled jet, then solved by introducing a similarity variable, η = cxnxyny . The nonlinear5

solution, valid for topographies h= h0−αxy3, takes the form of the Lambert W Function for pseudo velocity. The linear

solution, valid for topographies h= h0−αxy−γ , takes the form of the Error Function for transport. Kuehl’s results considered

the case −1≤ γ < 1 which admits expanding jets, while the new result consider the case γ <−1 which admits intensifying

jets and a nonlinear case with γ =−3.
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1 Introduction

Slope topography represents both a barrier to large scale geophysical fluid transport as well as an important location of

mesoscale feature generation. Standard quasi-geostrophic theory (Pedlosky 1987) indicates that large scale circulation fea-

tures act in such a way as to conserve their potential vorticity, leading to the standard result of flow along (as opposed to

across) topographic contours. Thus, slope topography creates a barrier between the open and coastal oceans, often inhibiting15

the transport of nutrient rich waters into the coastal zone and at the same time trapping pollutants in the coastal zone.

As both numerical and observational approaches have limitations with respect to modeling the slope region, the objective

of this brief communication is to provide an analytic framework for flow along slope topographies. Such a framework will

serve as an idealized backbone upon which observational, numerical, experimental and further theoretical work can build and

provide a point of comparison for better interpretation of the respective dynamics. In particular, the results presented have20

implications for cross-topography exchange as well as provide significant insight into the coupling between the slope bottom

boundary layer and interior water column dynamics.
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2 Problem Formulation

The problem formulation considered in this work follows that of Zavala & van Heijst (2002), Kuehl (2014) and Kuehl &

Sheremet (2014). A rotating, single fluid layer is considered which flows along a sloping bottom topography (ie along slope

barotropic flow). The momentum equations and continuity equation (1) for this situation are:

ut− (f +ω)v =−(p− e)x + ν∇2u5

vt + (f +ω)u=−(p− e)y + ν∇2v

ht + (hu)x + (hv)y +∇ ·ΠE = 0, (1)

where u,v are the across and along slope flow velocities, respectively, h is the fluid depth, p is the pressure anomaly divided

by water density (ρ), e is kinetic energy per unit mass, ν is the viscosity and f is the Coriolis parameter. The effect of the

viscous bottom boundary layer is accounted for by a small correction term ΠE =−hE k̂×u, the Ekman flux. Its divergence,10

div(ΠE) =−hEω, represents first-order Ekman suction at a solid boundary with Ekman layer depth, hE =
√

2ν/f . Taking

the curl of momentum equations, defining the vorticity as ω = vx−uy , defining a transport function ψ, where ψx = hv and

ψy =−hu, and simplifying by letting q = f+ω
h , gives us the vorticity-transport equation (2),

ωt + J(ψ,q) = ν∇2ω− he
2
qω. (2)

It is standard to expand the Jacobian, J (ψ,q) = 1
h (ψ,ω)− f

h2 (ψ,η) + β(x)

h ψy − β(y)

h ψx, where β(x) = (hxf)/h and β(y) =15

(hyf)/h are the average topographic beta-effects and η is a small free-surface displacement.

Kuehl (2014) provide a scaling analysis which justified that Ekman dissipation is the dominant dissipative term and that

relative vorticity is dominated by cross-stream shear, ω ≈ 1
hψxx. These assumptions are valid for flows which exhibit scale

separation between the along and cross flow (topography) directions and are thus valid for flow along the oceanic slope. These

assumptions, along with the steady flow assumption, truncating a Taylor expansion in 1
h at leading order (neglecting terms of20

O( 1
h2 ) ), and assuming f � ω are again made and result in a leading order governing equation of the form:

ψxψxxy −ψyψxxx + fhxψy − fhyψx =−fhE
2
ψxx. (3)

This equation (with appropriate boundary conditions) describes the linear and first-order nonlinear dynamics of a barotropic

flow along the oceanic slope. It is upon this equation that several analytic solutions will be presented.

3 Linear Solutions25

3.1 Expanding Jet

Kuehl (2014) considered the linear case of equation 3,

fhxψy − fhyψx =−fhE
2
ψxx. (4)
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Noting its similarity to the heat equation, which has been pointed out by others (in particular Csanady 1978), Kuehl attempted

to find a similarity solution. The solution derivation will be sketched through here for completeness (details in Kuehl 2014).

Assuming

– topography of the form h= h0−αxy−γ ,

– similarity variable ζ = x(ky)n,5

– boundary conditions ψ(−∞,y) = 0 and ψ(∞,y) =Q,

– initial condition ψ(x,0) =Qsgn(x),

equation 4 reduces to −2ζg′ = g′′, where g = ψ/Q, with conditions n=− 1+γ
2 and k =

[
α

2hE
(1− γ)

] 1
2n

. This equation has a

well-know solution, ψ =Q
[

erf(ζ)+1
2

]
, and parameters α and γ may be set to mimic the desired topography. The “topographic

β-plume” solution is valid in the parameter range−1≤ γ < 1. For the solution to be real, we must have γ < 1 and for γ <−1,10

the jet would be compressing, which does not satisfy the initial conditions. Physically, the Ekman pumping in the bottom

boundary layer is relaxing the topographic vorticity control, allowing the jet to spread across isobaths.

3.2 Compressing Jet

In nature, compressing (or intensifying) jet are often observed and an analysis of ocean slope topography finds many locations

where γ <−1 is relevant (Ibanez 2016). To extend the above result to the case of compressing jets, the initial condition used15

above must be revisited. Similarity solutions require one point of reference to tether the solution. It is most common to place

this singularity at the origin, as is done above and in many other classical cases such as the Blasius boundary layer (Blasius

1908, Rogers 1992). However, in the present case, we choose to relocate the singularity to y =∞. Upon relocation, the solution

given above is still valid but the domain of physical relevance of the solution has a slightly altered interpretation.

For the expanding jet case, the analytical solution is valid over the domain y = [0 :∞]. However, the physical relevance20

of the solution demands the neglect of the region near y = 0, due to the singularity, as well as the region near y =∞, as this

region violates the across and along jet scale separation assumption. Though, the interior solution is indeed a physically relevant

description of geophysical systems. For the compressing jet case, the situation is simply reversed. In this case, the analytical

solution is still valid over the domain y = [0 :∞]. However, the physical relevance of the solution demands the neglect of the

region near y = 0, as this region violates the across and along jet scale separation assumption, and the region near y =∞,25

due to the singularity, but again the interior solution is a physically relevant description of geophysical systems. The region of

applicability is ultimately governed by the assumption ω ≈ 1
hψxx (ie ψxx� ψyy), which reasonable but should be check in

each particular application.
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4 Nonlinear Solution

Motivated by the success and utility of the linear solutions provided above, we seek a similarity solution for the nonlinear case

(eqn. 3). Again, consider the normalized transport function, g = ψ
Q , and introduce a similarity variable of the form η = cxnxyny ,

where c,nx,ny are constants. The relevant derivatives take the form:

gy = g′
∂η

∂y
= nycx

nxyny−1g′5

gx = g′
∂η

∂x
= nxcx

nx−1ynyg′

gxx =
∂

∂x

[
g′
∂η

∂x

]
= g′′

(
∂η

∂x

)2

+ g′
∂2η

∂x2

= n2
xc

2x2(nx−1)y2nyg′′+nx(nx− 1)cxnx−2ynyg′

gxxx = g′′′
(
n3
xc

3x3(nx−1)y3ny
)

+ 3g′′
(
nxcx

nx−1yny
)(
nx(nx− 1)cxnx−2yny

)
10

+ g′
(
nx(nx− 1)(nx− 2)cxnx−3yny

)

gxxy = g′′′
(
nycx

nxyny−1
)(
c2n2

xx
2(nx−1)y2ny

)

+ g′′
(
2nxcxnx−1yny

)(
nxnycx

nx−1yny−1
)

+ g′′
(
nycx

nxyny−1
)(
nx(nx− 1)xnx−2yny

)

+ g′
(
cnx(nx− 1)nyxnx−2yny−1

)
.15

In this work, we are interested in straight slope topographies. Upon setting nx = 1, it is seen that the nonlinear terms simplify

significantly. Specifically, all g′g′ terms are set to zero. Also, it is found that the g′g′′′ terms cancel. Thus, the only remaining

nonlinear term is the g′g′′ term, which in equation 3, takes the form Q2g′g′′c3nyy3ny−1. Ultimately, equation 3 becomes

Qg′
[
hxfcnyxy

ny−1−hyfcyny
]

︸ ︷︷ ︸
1

+Qg′′
[
fhe
2
c2y2ny

]

︸ ︷︷ ︸
2

+Q2g′g′′
[
c3nyy

3ny−1
]

︸ ︷︷ ︸
3

= 0. (5)20

It is now convenient to address the y dependences of the coefficients in terms 2 and 3 of equation 5. We require the y dependency

of terms 2 and 3 to balance, i.e. 2ny = 3ny − 1, which gives the condition ny = 1. Thus, the similarity variable has the form

η = cxy. Apply this condition, and upon division by the coefficient of term 2, yields

2
hec

g′
[
hxxy

−2−hyy−1
]

︸ ︷︷ ︸
1

+ g′′︸︷︷︸
2

+
2Qc
fhe

g′g′′

︸ ︷︷ ︸
3

= 0. (6)
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Next, the bracketed portion of equation 6 in term 1 is considered. Recall, h= h0−αxy−γ , hx =−αy−γ and hy = αγxy−γ−1.

We anticipate that the x must be absorbed into an η term, so the bracketed terms become

−α
c
ηy−γ−3(1 + γ). (7)

The y dependence is removed with the condition γ =−3 and the terms in 7 reduce to 2αc η. It is then found that equation 6

reduces to5

4α
hec2

ηg′+ g′′+
2Qc
fhe

g′g′′ = 0. (8)

Note as expected, the limit of equation 8, as Q→ 0, recovers the linear solutions provided above with 4α
hec2

= 2.

Thus, for topography of the form h= h0−αxy3 and a similarity variable of the form η = cxy, the nonlinear PDE, equation

3, reduces to a nonlinear ODE the form

ηg′ =−(K1 +K2g
′)g′′, (9)10

with K1 = hec
2

4α and K2 = Qc3

2fα .

Equation 9 can be solved for g′ by using separation of variables. Let g′(η) = u(η) (the “sudo velocity”) so ηu=−(K1 +

K2u)dudη or ηdη =−(K1 +K2u)duu . Integrating both sides yields

η2

2
+m=−(K1 lnu+K2u), (10)

where m is an integration constant related to the total transport.15

It is possible to solve equation 10 for u, by using the Lambert W-Function (W ),

u(η) =
K1W

(
K2
K1
e−

2m+η2

2K1

)

K2
. (11)

The integral of u(η) is the analytic solution to the normalized transport equation, whose boundary conditions are g(−∞,y) = 0,

g(∞,y) = 1 and g(x,∞) =Qsgn(x). However, the solution to the derivative of the transport function (pseudo velocity, u) is

sufficient to calculate the flow field, as ψx =Qg′(η) dη∂x and ψy =Qg′(η) dη∂y .20

4.1 Calculation

It can be seen that m is related to total transport by taking the analytic limit of equation 11 as K2→ 0 (which is an Error

Function) and evaluating the transport boundary conditions. To complete the analytic solution in the nonlinear case, equation
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11 can be integrated and an iterative method can be employed to determine m based on the transport boundary condition.

Alternatively, equation 9 can be solved numerically. A fourth order Runge-Kutta method coupled with a shooting algorithm

was applied to iteratively meet the total transport boundary condition. It should be noted that the iterative numerical approach

is based on a very small and sensitive velocity boundary condition, which cannot be taken at −∞ but must be approximated at

a small finite value. In the linear and moderate nonlinear regime, the numerical and analytical solutions show good agreement5

(figure 1). However, as nonlinearity increases, the velocity boundary condition become extremely sensitive and difficult to

iterate on. Thus, the great advantage of an analytical solution is that it is easily applicable at any amplitude.

5 Discussion

The solutions presented above are relevant to barotropic, along-slope flow over generic topographies of the form h= h0−
αxy−γ . For the linear solution cases, the Ekman pumping relaxes the topographic vorticity control via the bottom boundary10

layer. When −1≤ γ < 1, the Ekman pumping out paces the topographic control and an expanding topographic β-plume solu-

tion is found. This represents cross-topographic transport due solely to bottom boundary layer processes. When γ <−1, the

Ekman pumping is not able to overcome the topographic influence and a compressing topographic β-plume solution is found.

Such compressing solutions result in intense currents, which may be subject to instability. For the special case, h= h0−αxy3,

a nonlinear solution is found. As seen in figure 1, the nonlinear solution broadens compared to the linear solution. At first this15

may seem to be a contradiction, however one must remember that in this case the topographic slope is rapidly increasing, with

the influence to compress the jet. The influence of the nonlinear terms is to resist this compression. This is consistent with the

expected tendency of flow inertia. The details of this nonlinear tendency are then relevant to the onset of barotropic instability

(or other forms of instability, analysis of which is ongoing work). Note also that the nonlinear solution limits to the linear

solution (both analytically and numerically) as it must.20

Code and data availability. This is an analytical paper, the codes described are standard and easily reproduce from explanations provided in

the text. Data availability is not applicable.
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Figure 1. Comparison between linear (open circles), nonlinear numerical (thick dashed) and nonlinear analytic (solid lines) normalized

transport functions. Plotted is the ratio K2/K1 (nonlinear coefficient over linear coefficient) of 0.001 (upper panel), 10 (middle panel) and

100 (lower panel) with K1 = 0.5.
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