
Review Response 2: “Brief Communication: A nonlinear
self-similar solution to barotropic flow over varying topography”

Thank you for addition comments. We have clarified the manuscript,
address the reviewers concerns, as described below.

1) We have included definitions of kinetic energy and the Jacobian.

2) The RHS of equation 2 has been verified against Zavala & van Heijst
(2002).

3) The definitions of h (fluid depth of at rest state) has been clarified.

4) A statement has been added to clarify the use of η as both surface dis-
placement and similarity variable.

5) A statement that the “total water column depth is h+η” has been added.

6) The reader has been directed to Pedlosky’s GFD book as well as Cushman-
Roisin Intro to GFD book for background and scalings that lead to the shal-
low water equations (equation 1). The authors feel that as this is covered
in well-know textbooks, it is not necessary to repeat here (particularly in a
brief communication).

1



Brief Communication: A nonlinear self-similar solution to
barotropic flow over varying topography
Ruy Ibanez1, Joseph Kuehl2, Kalyan Shrestha3, and William Anderson3

1Mechanical Engineering Department, University of Rochester, Rochester, NY 14627, United States
2Mechanical Engineering Department, University of Delaware, Newark, DE 19716, United States
3Mechanical Engineering Department, University of Texas Dallas, Dallas, TX 75080, United States

Correspondence to: Joseph Kuehl (jkuehl@udel.edu)

Abstract. Beginning from the Shallow Water Equations
(SWE), a nonlinear self-similar analytic solution is derived
for barotropic flow over varying topography. We study con-
ditions relevant to the ocean slope where the flow is dom-
inated by Earth’s rotation and topography. The solution is5

found to extend the topographic β-plume solution of Kuehl
(2014) in two ways: 1) The solution is valid for intensify-
ing jets. 2) The influence of nonlinear advection is included.
The SWE are scaled to the case of a topographically con-
trolled jet, then solved by introducing a similarity variable,10

η = cxnxyny . The nonlinear solution, valid for topographies
h= h0−αxy3, takes the form of the Lambert W Function
for pseudo velocity. The linear solution, valid for topogra-
phies h= h0−αxy−γ , takes the form of the Error Function
for transport. Kuehl’s results considered the case−1≤ γ < 115

which admits expanding jets, while the new result consider
the case γ <−1 which admits intensifying jets and a nonlin-
ear case with γ =−3.
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1 Introduction20

Slope topography represents both a barrier to large scale
geophysical fluid transport as well as an important location
of mesoscale feature generation. Standard quasi-geostrophic
theory (Pedlosky 1987) indicates that large scale circulation
features act in such a way as to conserve their potential vor-25

ticity, leading to the standard result of flow along (as opposed
to across) topographic contours. Thus, slope topography cre-
ates a barrier between the open and coastal oceans, often in-

hibiting the transport of nutrient rich waters into the coastal
zone and at the same time trapping pollutants in the coastal 30

zone.
As both numerical and observational approaches have lim-

itations with respect to modeling the slope region, the ob-
jective of this brief communication is to provide an analytic
framework for flow along slope topographies. Such a frame- 35

work will serve as an idealized backbone upon which ob-
servational, numerical, experimental and further theoretical
work can build and provide a point of comparison for better
interpretation of the respective dynamics. In particular, the
results presented have implications for cross-topography ex- 40

change as well as provide significant insight into the coupling
between the slope bottom boundary layer and interior water
column dynamics.

2 Problem Formulation

The problem formulation considered in this work follows 45

that of Zavala & van Heijst (2002), Kuehl (2014) and Kuehl
& Sheremet (2014). A rotating, single fluid layer is con-
sidered which flows along a sloping bottom topography (ie
along slope barotropic flow). The momentum equations and
continuity equation (1) for this situation are: 50

ut− (f +ω)v =−(p+ e)x + ν∇2u

vt + (f +ω)u=−(p+ e)y + ν∇2v

ht + (hu)x + (hv)y +∇ ·ΠE = 0, (1)

(Pedlosky 1987 and Cushman-Roisin 1994 provide scaling
which lead to these equations) where u,v are the across 55

and along slope flow velocities, respectively, h is the fluid
depth of the at rest state, p is the pressure anomaly divided
by water density (ρ), e= (u2 + v2)/2 is kinetic energy per
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unit mass, ν is the viscosity and f is the Coriolis parame-
ter. The effect of the viscous bottom boundary layer is ac-
counted for by a small correction term ΠE =− 1

2hE k̂×u,
the Ekman flux. Its divergence, div(ΠE) =− 1

2hEω, repre-
sents first-order Ekman suction at a solid boundary with Ek-5

man layer depth, hE =
√

2ν/f . Taking the curl of momen-
tum equations, defining the vorticity as ω = vx−uy , defining
an interior transport function ψ through hu = k̂×∇ψ+∇φ
(where ∇2φ=−∇ ·ΠE =− 1

2hEω represent Ekman diver-
gence), and simplifying by letting q = f+ω

h , gives us the10

vorticity-transport equation (2),

ωt + J(ψ,q) = ν∇2ω− hE
2
qω. (2)

The divergent component caused by the Ekman suction is
small (φ/ψ = hE/h=O(10−2) so φ can be neglected in
the vorticity advection terms. It is standard to expand the15

Jacobian [J (ψ,q) = ψxqy −ψyqx], J (ψ,q) = 1
hJ (ψ,ω)−

f
h2 J (ψ,η) + β(x)

h ψy − β(y)

h ψx, where β(x) = (hxf)/h and
β(y) = (hyf)/h are the average topographic beta-effects and
η is a small free-surface displacement and thus the total water
column depth is h+ η.20

Kuehl (2014) provide a scaling analysis which justified
that Ekman dissipation is the dominant dissipative term and
that relative vorticity is dominated by cross-stream shear,
ω ≈ 1

hψxx. These assumptions are valid for flows which ex-
hibit scale separation between the along and cross flow (to-25

pography) directions and are thus valid for flow along the
oceanic slope. These assumptions, along with the steady flow
assumption, truncating a Taylor expansion in 1

h at leading or-
der (neglecting terms of O( 1

h2 ) ), and assuming f � ω are
again made and result in a leading order governing equation30

of the form:

ψxψxxy −ψyψxxx + fhxψy − fhyψx =−fhE
2
ψxx. (3)

This equation (with appropriate boundary conditions) de-
scribes the linear and first-order nonlinear dynamics of a
barotropic flow along the oceanic slope. It is upon this equa-35

tion that several analytic solutions will be presented.

3 Linear Solutions

3.1 Expanding Jet

Kuehl (2014) considered the linear case of equation 3,

fhxψy − fhyψx =−fhE
2
ψxx. (4)40

Noting its similarity to the heat equation, which has been
pointed out by others (in particular Csanady 1978), Kuehl
attempted to find a similarity solution. The solution deriva-
tion will be sketched through here for completeness (details
in Kuehl 2014). Assuming45

– topography of the form h= h0−αxy−γ ,

– similarity variable ζ = x(ky)
n,

– boundary conditions ψ(−∞,y) = 0 and ψ(∞,y) =Q,

– initial condition ψ(x,0) =Qsgn(x),

equation 4 reduces to −2ζg′ = g′′, where g = ψ/Q, with 50

conditions n=− 1+γ
2 and k =

[
α

2hE
(1− γ)

] 1
2n

. This equa-

tion has a well-know solution, ψ =Q
[

erf(ζ)+1
2

]
, and param-

eters α and γ may be set to mimic the desired topography.
The “topographic β-plume” solution is valid in the parameter
range −1≤ γ < 1. For the solution to be real, we must have 55

γ < 1 and for γ <−1, the jet would be compressing, which
does not satisfy the initial conditions. Physically, the Ekman
pumping in the bottom boundary layer is relaxing the topo-
graphic vorticity control, allowing the jet to spread across
isobaths. 60

3.2 Compressing Jet

In nature, compressing (or intensifying) jet are often ob-
served and an analysis of ocean slope topography finds many
locations where γ <−1 is relevant (Ibanez 2016). To extend
the above result to the case of compressing jets, the initial 65

condition used above must be revisited. Similarity solutions
require one point of reference to tether the solution. It is most
common to place this singularity at the origin, as is done
above and in many other classical cases such as the Blasius
boundary layer (Blasius 1908, Rogers 1992). However, in the 70

present case, we choose to relocate the singularity to y =∞.
Upon relocation, the solution given above is still valid but the
domain of physical relevance of the solution has a slightly al-
tered interpretation.

For the expanding jet case, the analytical solution is valid 75

over the domain y = [0 :∞]. However, the physical rele-
vance of the solution demands the neglect of the region
near y = 0, due to the singularity, as well as the region near
y =∞, as this region violates the across and along jet scale
separation assumption. Though, the interior solution is in- 80

deed a physically relevant description of geophysical sys-
tems. For the compressing jet case, the situation is simply
reversed. In this case, the analytical solution is still valid over
the domain y = [0 :∞]. However, the physical relevance of
the solution demands the neglect of the region near y = 0, as 85

this region violates the across and along jet scale separation
assumption, and the region near y =∞, due to the singu-
larity, but again the interior solution is a physically relevant
description of geophysical systems. The region of applicabil-
ity is ultimately governed by the assumption ω ≈ 1

hψxx (ie 90

ψxx� ψyy), which reasonable but should be check in each
particular application. Thus, we have adopted the terminol-
ogy that expanding jet are those with a singularity at the up-
stream source region (y = 0) and compressing jets as those
with the singularity at downstream exit region (y =∞). 95
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4 Nonlinear Solution

Motivated by the success and utility of the linear solutions
provided above, we seek a similarity solution for the nonlin-
ear case (eqn. 3). Again, consider the normalized transport
function, g = ψ

Q , and introduce a similarity variable of the5

form η = cxnxyny , where c,nx,ny are constants. Note, from
this point on η will refer to the similarity variable and not
surface displacement. The relevant derivatives take the form:

gy = g′
∂η

∂y
= nycx

nxyny−1g′

gx = g′
∂η

∂x
= nxcx

nx−1ynyg′10

gxx =
∂

∂x

[
g′
∂η

∂x

]
= g′′

(
∂η

∂x

)2

+ g′
∂2η

∂x2

= n2xc
2x2(nx−1)y2nyg′′+nx(nx− 1)cxnx−2ynyg′

gxxx = g′′′
(
n3xc

3x3(nx−1)y3ny
)

+ 3g′′
(
nxcx

nx−1yny
)(
nx(nx− 1)cxnx−2yny

)
+ g′

(
nx(nx− 1)(nx− 2)cxnx−3yny

)
15

gxxy = g′′′
(
nycx

nxyny−1
)(
c2n2xx

2(nx−1)y2ny
)

+ g′′
(
2nxcx

nx−1yny
)(
nxnycx

nx−1yny−1
)

+ g′′
(
nycx

nxyny−1
)(
nx(nx− 1)xnx−2yny

)
+ g′

(
cnx(nx− 1)nyx

nx−2yny−1
)
.

In this work, we are interested in straight slope topographies.20

Upon setting nx = 1, it is seen that the nonlinear terms sim-
plify significantly. Specifically, all g′g′ terms are set to zero.
Also, it is found that the g′g′′′ terms cancel. Thus, the only
remaining nonlinear term is the g′g′′ term, which in equation
3, takes the form Q2g′g′′c3nyy

3ny−1. Ultimately, equation 325

becomes

Qg′
[
hxfcnyxy

ny−1−hyfcyny
]︸ ︷︷ ︸

1

+Qg′′
[
fhe
2
c2y2ny

]
︸ ︷︷ ︸

2

+Q2g′g′′
[
c3nyy

3ny−1
]︸ ︷︷ ︸

3

= 0. (5)

It is now convenient to address the y dependences of the co-
efficients in terms 2 and 3 of equation 5. We require the y30

dependency of terms 2 and 3 to balance, i.e. 2ny = 3ny − 1,
which gives the condition ny = 1. Thus, the similarity vari-
able has the form η = cxy. Apply this condition, and upon
division by the coefficient of term 2, yields

2

hec
g′
[
hxxy

−2−hyy−1
]

︸ ︷︷ ︸
1

+ g′′︸︷︷︸
2

+
2Qc

fhe
g′g′′︸ ︷︷ ︸
3

= 0. (6)35

Next, the bracketed portion of equation 6 in term 1 is con-
sidered. Recall, h= h0−αxy−γ , hx =−αy−γ and hy =
αγxy−γ−1. We anticipate that the x must be absorbed into
an η term, so the bracketed terms become

−α
c
ηy−γ−3(1 + γ). (7) 40

The y dependence is removed with the condition γ =−3 and
the terms in 7 reduce to 2αc η. It is then found that equation 6
reduces to

4α

hec2
ηg′+ g′′+

2Qc

fhe
g′g′′ = 0. (8)

Note as expected, the limit of equation 8, as Q→ 0, recovers 45

the linear solutions provided above with 4α
hec2

= 2.
Thus, for topography of the form h= h0−αxy3 and a

similarity variable of the form η = cxy, the nonlinear PDE,
equation 3, reduces to a nonlinear ODE the form

ηg′ =−(K1 +K2g
′)g′′, (9) 50

with K1 = hec
2

4α and K2 = Qc3

2fα .
Equation 9 can be solved for g′ by using separation of

variables. Let g′(η) = u(η) (the “sudo velocity”) so ηu=
−(K1+K2u)dudη or ηdη =−(K1+K2u)duu . Integrating both
sides yields 55

η2

2
+m=−(K1 lnu+K2u), (10)

where m is an integration constant related to the total trans-
port.

It is possible to solve equation 10 for u, by using the Lam-
bert W-Function (W ), 60

u(η) =

K1W

(
K2

K1
e−

2m+η2

2K1

)
K2

. (11)

The integral of u(η) is the analytic solution to the nor-
malized transport equation, whose boundary conditions are
g(−∞,y) = 0, g(∞,y) = 1 and g(x,∞) =Qsgn(x). How-
ever, the solution to the derivative of the transport function 65

(pseudo velocity, u) is sufficient to calculate the flow field,
as ψx =Qg′(η) dη∂x and ψy =Qg′(η) dη∂y .

4.1 Calculation

It can be seen thatm is related to total transport by taking the
analytic limit of equation 11 as K2→ 0 (which is an Error 70

Function) and evaluating the transport boundary conditions.
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To complete the analytic solution in the nonlinear case, equa-
tion 11 can be integrated and an iterative method can be em-
ployed to determine m based on the transport boundary con-
dition. Alternatively, equation 9 can be solved numerically.
A fourth order Runge-Kutta method coupled with a shooting5

algorithm was applied to iteratively meet the total transport
boundary condition. It should be noted that the iterative nu-
merical approach is based on a very small and sensitive ve-
locity boundary condition, which cannot be taken at −∞ but
must be approximated at a small finite value. In the linear10

and moderate nonlinear regime, the numerical and analytical
solutions show good agreement (figure 1). However, as non-
linearity increases, the velocity boundary condition become
extremely sensitive and difficult to iterate on. Thus, the great
advantage of an analytical solution is that it is easily applica-15

ble at any amplitude.

5 Discussion

The solutions presented above are relevant to barotropic,
along-slope flow over generic topographies of the form h=
h0−αxy−γ . For the linear solution cases, the Ekman pump-20

ing relaxes the topographic vorticity control via the bottom
boundary layer. When −1≤ γ < 1, the Ekman pumping out
paces the topographic control and an expanding topographic
β-plume solution is found. This represents cross-topographic
transport due solely to bottom boundary layer processes.25

When γ <−1, the Ekman pumping is not able to overcome
the topographic influence and a compressing topographic β-
plume solution is found. Such compressing solutions result in
intense currents, which may be subject to instability. For the
special case, h= h0−αxy3, a nonlinear solution is found.30

As seen in figure 1, the nonlinear solution broadens com-
pared to the linear solution. At first this may seem to be a
contradiction, however one must remember that in this case
the topographic slope is rapidly increasing, with the influence
to compress the jet. The influence of the nonlinear terms is to35

resist this compression. This is consistent with the expected
tendency of flow inertia. The details of this nonlinear ten-
dency are then relevant to the onset of barotropic instability
(or other forms of instability, analysis of which is ongoing
work). Note also that the nonlinear solution limits to the lin-40

ear solution (both analytically and numerically) as it must.

Code and data availability. This is an analytical paper, the codes
described are standard and easily reproduce from explanations pro-
vided in the text. Data availability is not applicable.
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Figure 1. Comparison between linear (open circles), nonlinear nu-
merical (thick dashed) and nonlinear analytic (solid lines) normal-
ized transport functions. Plotted is the ratio K2/K1 (nonlinear co-
efficient over linear coefficient) of 0.001 (upper panel), 10 (middle
panel) and 100 (lower panel) with K1 = 0.5.
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