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Abstract. The analysis in nonlinear variational data assimilation is the solution of a non-quadratic minimization. Thus, the

analysis efficiency relies on its ability to locate a global minimum of the cost function. If this minimization uses a Gauss-

Newton (GN) method, it is critical for the starting point to be in the attraction basin of a global minimum. Otherwise the

method may converge to a local extremum, which degrades the analysis. With chaotic models, the number of local extrema

often increases with the temporal extent of the data assimilation window, making the former condition harder to satisfy. This5

is unfortunate because the assimilation performance also increases with this temporal extent. However, a quasi-static (QS)

minimization may overcome these local extrema. It consists in gradually injecting the observations in the cost function. This

method was introduced by Pires et al. (1996) in a 4D-Var context.

We generalize this approach to four-dimensional strong-constraint nonlinear ensemble variational (EnVar) methods, which

are based on both a nonlinear variational analysis and the propagation of dynamical error statistics via an ensemble. This forces10

to consider the cost function minimizations in the broader context of cycled data assimilation algorithms. We adapt this QS

approach to the iterative ensemble Kalman smoother (IEnKS), an exemplar of nonlinear deterministic four-dimensional EnVar

methods. Using low-order models, we quantify the positive impact of the QS approach on the IEnKS, especially for long data

assimilation windows. We also examine the computational cost of QS implementations and suggest cheaper algorithms.

1 Introduction15

1.1 Context

Data assimilation (DA) aims at gathering knowledge about the state of a system from acquired observations. In the Bayesian

framework, this knowledge is represented by the posterior probability density function (pdf) of the system state given the

observations. A specificity of sequential DA is that observations are not directly available; they become available as time goes

by. Thus, the posterior pdf should be regularly updated.20

In order to do so, one usually proceeds in two steps: the analysis and the propagation (or forecast). During the analysis step,

a background pdf is used as a prior together with the observation likelihood to construct the (often approximate) posterior pdf,
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following Bayes’ theorem. During the propagation step, this posterior pdf is propagated in time with the model to yield the

prior pdf of the next assimilation cycle.

In general these posterior and prior pdfs are not easily computable. In the Kalman filter, assumptions are notably made on the

linearity of operators, to keep these pdfs Gaussian. This way, they are characterized by their mean and covariance matrix. Linear

algebra is then sufficient to enforce both Bayes’ theorem and the propagation step into operations on means and covariances.5

However, with nonlinear models, the Kalman filter assumptions do not hold. The posterior and prior pdfs are not Gaussian

anymore. A possibility in this case is to enforce Gaussianity with approximations. This requires the selection of mean and

covariances intended for the Gaussian surrogate pdfs. With the Kullback-Leibler divergence, the best Gaussian approximation

of a pdf is achieved by equating the mean and covariances (see, e.g., Bishop, 2006). However, the integrations necessary to

evaluate these moments are also prohibitive.10

In the 4D-Var algorithm (see, e.g., Lorenc, 2014, and references therein), Laplace’s approximation gives us a way to work

around the problem by replacing the posterior mean with the presumed unique minimizer of the cost function over all input

values. A model propagation is then sufficient to estimate the prior pdf mean. This global approach calls for efficient global op-

timization routines. However, in practice, solving a global optimization problem is challenging when the number of unknowns

is large, and local methods focused on finding a minimizer over an open subset like Gauss-Newton are often preferred (see,15

e.g., Björck, 1996).

Unfortunately, Gauss-Newton methods’ ability to locate the global minimum depends on the minimization starting point

and on the cost function properties. Furthermore, missing this global minimum is likely to cause a quick divergence (from the

truth) of the sequential DA method. Thus, it is critical for the assimilation algorithm to keep the minimization starting point in

a global minimum basin of attraction.20

1.2 Quasi-static variational data assimilation

This requirement is constraining because, with a chaotic model, the number of local minima may increase exponentially with

the data assimilation window (DAW) time extent L (Pires et al., 1996; Swanson et al., 1998). Unfortunately, assuming a perfect,

chaotic – and hence unstable – model, this is also for the longest time extents that the assimilation performs best. Several

strategies have been investigated to go beyond this restriction. Pires et al. (1996) propose the quasi-static (QS) minimization in25

a 4D-Var context: as the observations are progressively added to the cost function, the starting point (or first guess) of the 4D-

Var minimization is also gradually updated. This lead to the method known as QSVA for quasi-static variational assimilation.

Ye et al. (2015) propose to gradually increase the model error covariances in the weak-constraint 4D-Var cost function in a

minimization over an entire trajectory; this way the model nonlinearity is gradually introduced into the cost function (see also

Judd et al., 2004). They also propose to parallelize this minimization over multiple starting points to increase the chance to30

locate the global minimum.

On the one hand, 4D-Var benefits from the QS approach to approximate the posterior and prior means. On the other hand,

with traditional 4D-Var, the prior covariance matrix is taken as static. This is appropriate when only one cycle of assimilation
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is considered. But this limits the dynamical transfer of error statistics from one cycle to the next, for instance when Pires et al.

(1996) propose to gradually move their fixed-lag data assimilation window in order to build a sequential QSVA.

1.3 Ensemble variational methods

By contrast, four-dimensional (4D) ensemble variational (EnVar) schemes allow to both perform a nonlinear variational anal-

ysis and a propagation of dynamical errors via the ensemble (see Chapter 7 of Asch et al., 2016). The improvement brought5

by QS minimizations on these schemes has been suggested and numerically evaluated in Bocquet and Sakov (2013, 2014);

Goodliff et al. (2015). This motivates a more complete analytical and numerical investigation.

The iterative ensemble Kalman smoother (IEnKS) (Bocquet and Sakov, 2014; Bocquet, 2016) is the archetype of such 4D

nonlinear EnVar scheme, where the ensemble parts of the algorithm are deterministic. Using low-order models (usually toy-

models), it was shown to significantly outperform 4D-Var, the EnKF or the ensemble Kalman smoother in terms of accuracy.10

The IEnKS improves the DA cycling by keeping track of the pdfs mean and covariance matrix. To do this, Laplace’s

approximation is used to replace the posterior mean and covariance matrix with the minimizer of the cost function and an

approximation of the inverse Hessian at the minimizer, respectively. These moments are then used to update the ensemble

statistics. The updated ensemble is then propagated to estimate the prior mean and covariance matrix. Hence, it is also critical

for the IEnKS to locate the global minimum of the cost function.15

Here, we are interested in the application of the QS minimization to the IEnKS. One of the variant of the IEnKS called the

multiple data assimilation (MDA) IEnKS was shown (Bocquet and Sakov, 2014) to be quasi-static by design and can be seen

as the EnVar generalization of the sequential QSVA by Pires et al. (1996). It was first tested in Bocquet and Sakov (2013).

However, the MDA IEnKS is a specific variant of the IEnKS whereas we see here the IEnKS as an exemplar of deterministic

nonlinear 4D EnVar methods.20

Goodliff et al. (2015) have applied QSVA numerically to a collection of hybrid and EnVar techniques on the Lorenz 1963

model (Lorenz, 1963), where they vary the magnitude of nonlinearity. Nonetheless the focus of their study was not cycling

and the transfer of information from one cycle to the next, which is critical to EnVar methods. They also showed that the

ensemble transform Kalman smoother outperforms all of the benchmarked methods. It turns out that we have shown that this

smoother was systematically outperformed by the IEnKS by design, which was also demonstrated on numerics (Bocquet and25

Sakov, 2013). This strengthens our claim that the IEnKS can be used here as an exemplar of deterministic nonlinear 4D EnVar

methods.

1.4 Outline

The rest of the paper is organized as follows. In section 2, the performance dependency of 4D-Var and IEnKS algorithms on

the DAW parameters is investigated. The emphasis is on the transfer of information from one cycle to next, which distinguishes30

the IEnKS from 4D-Var. In order to do so, a brief presentation of 4D-Var and the IEnKS algorithms is given. Then we define

a measure of performance for assimilation algorithms. This definition is used to give analytic expressions for the accuracy of

both algorithms with a linear, diagonal, autonomous model. This quantifies the impact of cycling on the algorithms. After these
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preliminaries, the nonlinear, chaotic case is studied. In section 3, we provide and describe the algorithms of the quasi-static

IEnKS (IEnKSQS). Section 4 is dedicated to numerical experiments with two Lorenz low-order models and to the improvement

of the numerical efficiency. Conclusions are given in section 5.

We emphasize that the algorithmic developments of this study are not meant to improve neither high-dimensional nor5

imperfect model, data assimilation techniques. Even if Miller et al. (1994) show some similarities between the perfect and

imperfect settings of a model of intermediate complexity, model error would generally forbid the use of very long DAWs as

sometimes considered in this study. Instead, the objective of this paper is to better understand the interplay between chaotic

dynamics, ensemble variational data assimilation schemes and their cycling, irrespective of whether they could be useful in

high-dimensional systems.10

2 The data assimilation window and the assimilation performance

After reviewing 4D-Var (in a constant background matrix version) and the IEnKS algorithms, we will investigate the depen-

dency of assimilation performance on the DAW key parameters. This will illustrate the cycling improvement brought in by the

IEnKS compared to 4D-Var. We shall see that, with chaotic models, the longer the DAW is, the better the accuracy of these

algorithms. Which highlights the QSVA relevance for cycled data assimilation.15

The evolution and observation equations of the system are assumed of the form:

yl =H (xl) + εl, (1a)

xl+1 =M(xl) , (1b)

where the unknown state xl at time tl is propagated to tl+1 with the model resolventM : Rm→ Rm. The model is assumed

to be perfect so that there are no errors in Eq. (1b) and autonomous (M does not depend on time). The observation operator20

H : Rm→ Rd relates the state xl to the observation vector yl. The observation errors (εl)l≥0 are assumed Gaussian with mean

0 ∈ Rd and covariance matrix R ∈ Rd×d; they are uncorrelated in time.

2.1 4D-Var and IEnKS algorithms

Both 4D-Var and the IEnKS use a variational minimization in their analysis step. The objective of this minimization is to locate

the global maximum of the posterior pdf p(x0|yL:K) of the system past state x0 given the observations yL:K = [yK , . . . ,yL]25

at times tL:K = [tK , . . . , tL] ∈ RS . The system state and observations are seen as random vectors with values in Rm and Rd,

respectively. The posterior pdf quantifies how our knowledge on the state x0 changes with realizations of yL:K . Thus, its

maximum is the most probable state after assimilating the observations. The DAW is displayed in Fig. 1. The parameters K

and L are the time index of the DAW first and last assimilated observation batch, respectively. The number of observation

vectors used within the DAW is L−K + 1. To specify this posterior pdf, we have to make further assumptions on x0.

The initial state x0 is assumed to be Gaussian with mean xb
0 ∈ Rm and covariance matrix B ∈ Rm×m:

p(x0) =N
(
x0|xb

0 ,B
)
. (2)
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Figure 1. Schematic of a DAW. The state variable at t0 is x0, the observation vector yK at time tK is the first of the DAW to be assimilated

and the observation yL at present time tL is the last one. These observations, possibly observation vectors, are represented by black dots.

With these assumptions, an analytic expression can be obtained for the posterior smoothing pdf p(x0|yL:K) at the first cycle,5

or for the cost function associated with this pdf. The latter is defined as

G(x0|yL:K) =− lnp(x0|yL:K) . (3)

The notation G is used rather than the traditional J to refer to an exact cost function, i.e., a cost function defined from an exact

posterior pdf. Bayes’ theorem yields:

G(x0|yL:K) =− lnp(x0)− lnp(yL:K |x0)10

+ lnp(yL:K) , (4)

and with the Gaussian assumption on the background and observation errors we have

G(x0|yL:K) =
1

2

∥∥xb0−x0

∥∥2

B−1 + c0

+
1

2

L∑
l=K

∥∥yl−H◦Ml (x0)
∥∥2

R−1 , (5)

where ‖x‖2A = xTAx is the norm of x associated with a symmetric positive definite matrix A; c0 is a normalization constant15

ensuring
∫
e−G(x0|yL:K)dx0 = 1;Ml stands for l compositions ofM.

The propagation corresponds to a time shift of S time steps. Thus, at the k-th assimilation cycle, the posterior pdf is

p(xkS |ykS+L:K). Using Bayes’ theorem the k-th cycle cost function is:

G(xkS |ykS+L:K) =− lnp
(
xkS |y(k−1)S+L:K

)
+

1

2

L∑
l=K

∥∥ykS+l−H◦Ml (xkS)
∥∥2

R−1 + ckS , (6)

where − lnp
(
xkS |y(k−1)S+L:K

)
is the background term. If the model and observation operators are nonlinear, an analytical

expression for this prior is not accessible and one needs to approximate it. The 4D-Var and the IEnKS algorithms are solutions

based on distinct approximation strategies.
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The 4D-Var cost function at the k-th cycle, based on the static error covariance matrix B, is defined by5

J
(
xkS ;ykS+L:kS+K ,x

b
kS

)
=

1

2

∥∥xbkS −xkS
∥∥2

B−1

+
1

2

L∑
l=K

∥∥ykS+l−H◦Ml (xkS)
∥∥2

R−1 . (7)

The analysis of 4D-Var consists in minimizing Eq. (7), yielding xa
kS at tkS . Because this cost function depends on realizations

of the random observations, xa
kS is also a random variable. This analysis is then propagated at time t(k+1)S with the resolvent

of the model to produce the next cycle background state:10

xb
(k+1)S =MS (xa

kS) . (8)

In general, G(x0|yL:K) and J
(
x0;yL:K ,x

b
0

)
only coincide at the first cycle of an assimilation because of the assumption

Eq. (2). Subsequently, the background term of the 4D-Var cost function 1
2

∥∥xb
kS −xkS

∥∥2

B−1 is a Gaussian approximation of the

exact background term − lnp
(
xkS |y(k−1)S+L:K

)
. By definition, the background error covariance matrix B of the traditional

4D-Var cost function is the same for each cycle. This is not the case for the IEnKS.15

The IEnKS (Bocquet and Sakov, 2014) is an ensemble method with a variational analysis. Two versions of the algorithm

exist: the singular data assimilation (SDA) version where observations are assimilated only once; the multiple data assimilation

(MDA) version where they are assimilated several times. We focus on the SDA version in the theoretical development. The

MDA version, which can be seen as the first published quasi-static EnVar scheme is used in the numerical experiments for

comparison. Note that, for the SDA IEnKS, the number observations is L−K + 1 = S.20

At the k-th cycle of the IEnKS, the background ensemble at tkS is obtained by a propagation from the previous cycle. The

ensemble members are the columns of the matrix Eb
kS , which is seen as a random matrix with values in Rm×n. It is used to

estimate the prior mean and covariance matrix:

E
[
xkS |y(k−1)S+L:K

]
' x̄b

kS , (9)

C
[
xkS |y(k−1)S+L:K

]
'Xb

kSX
bT
kS , (10)25

where E and C are the expectation and covariance operators, respectively; x̄b
kS and Xb

kS are the empirical mean and normalized

anomaly of Eb
kS , respectively:

x̄b
kS = Eb

kS

1n
n
, (11)

Xb
kS = Eb

kS

In− 1n1
T
n

n√
n− 1

, (12)

with 1n = [1, . . . ,1]
T ∈ Rn a vector of ones and In is the identity of Rn. Note that Eqs (9, 10) are approximations because of

sampling errors. If the state vector is of the form:

xkS = x̄b
kS +Xb

kSwkS , (13)
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with wkS ∈ Rn the control variable in the ensemble space, the IEnKS cost function is defined in the ensemble space by5

J
(
wkS ;ykS+L:kS+K ,E

b
kS

)
=

1

2
‖wkS‖2

+
1

2

L∑
l=K

∥∥ykS+l−H◦Ml
(
x̄b
kS +Xb

kSwkS

)∥∥2

R−1 , (14)

where ‖·‖= ‖·‖I with I the identity matrix. The analysis of the IEnKS consists in minimizing this cost function. It yields an

updated ensemble Ea
kS at time tkS verifying:

x̄a
kS = x̄b

kS +Xb
kSw

a
kS , (15)10

Xa
kS = Xb

kS

[
∇2J

(
wa
kS ;ykS+L:kS+K ,E

b
kS

)]−1/2
U, (16)

with x̄a
kS and Xa

kS the empirical mean and normalized anomalies of the analyzed ensemble, respectively, wa
kS the cost function

minimizer,∇2J
(
wa
kS ;ykS+L:kS+K ,E

b
kS

)
its Hessian at this minimum usually approximated in the Gauss-Newton method by

∇2J
(
wa
kS ;ykS+L:kS+K ,E

b
kS

)
' In +

L∑
l=K

FT
l R
−1Fl, (17)15

with Fl = dFl

dwkS
(wa

kS) , where Fl : wkS 7→ H ◦Ml
(
x̄b
kS +Xb

kSwkS

)
, in order to avoid computing the model second deriva-

tives. The exponent −1/2 refers to the unique symmetric definite positive inverse square root of a symmetric definite positive

matrix and U ∈ Rn×n an orthogonal matrix such that U1n = 1n. This analyzed ensemble is also propagated to time t(k+1)S

to produce the next cycle background ensemble

Eb
(k+1)S =MS (Ea

kS) . (18)20

The cycle is completed by using in the next analysis the cost function Eq. (14) with time indexes incremented by S. 4D-Var

and the IEnKS are sketched in Fig. 2.

2.2 Performance of assimilation

In order to evaluate the efficiency of 4D-Var and the IEnKS with DAW parameters S and L, two measures of accuracy are

investigated here: the usual empirical RMSE, and a theoretical counterpart.25

At the k-th cycle, the algorithm generates at time tkS an analysis xa
kS from the observations. This analysis is propagated with

the model l steps forward in time to yield the analysis xa
kS+l meant to approximate the system true state xkS+l. A traditional

measure of an assimilation performance is the root mean square error (RMSE). It is defined by

RMSE =
1√
m

∥∥xkS+l−xa
kS+l

∥∥ . (19)

The RMSE takes different names depending on the time it is computed at. If l = L, it is called filtering RMSE; if 0≤ l ≤ L−1,

it is the smoothing RMSE with lag L− l. In the following, the smoothing RMSE will correspond to the one with (maximum)

lag L.

7



Analysis

Propagation

Analysis

xb
0 ,E

b
0

xa
0,E

a
0

yK yL

xb
S ,E

b
S

xa
S ,E

a
S

yK+S yL+S

M
S:0

Figure 2. Chaining of the 4D-Var and IEnKS first two cycles with S = 3,L= 4. The first 4D-Var analysis uses the background xb
0 at t0

and the observations yL:K to give the analysis xa
0 at t0. It is propagated S steps forward in time to produce the new background at time

tS where another analysis can be performed. The IEnKS does the same but with an ensemble. The dashed rectangle symbolizes the current

DAW, black dots represent the observations assimilated in the current cycle, gray dots represent already assimilated observations and white

dots represent observations not assimilated.

The RMSE rigorously depends on the random variable realizations, and thus it is also a random variable. In our numerical5

experiments, as is usually done, the RMSE is averaged over the cycles to mitigate this variability:

aRMSEN =
1

N

N−1∑
k=0

1√
m

∥∥xkS+l−xa
kS+l

∥∥ . (20)

Let us assume that there is a random couple
(
x∞S+l,x

a
∞S+l

)
whose distribution is invariant and ergodic with respect to the

shift transformation:

T :
(
xkS+l,x

a
kS+l

)
7→
(
x(k+1)S+l,x

a
(k+1)S+l

)
. (21)10

Then by Birkhoff’s ergodic theorem (see Walters, 1982) the sequence (aRMSEN )N converges when N →∞ and its limit

aRMSE verifies:

aRMSE =
1√
m
E
[∥∥x∞S+l−xa

∞S+l

∥∥] , (22)

where the expectation E is taken over p
(
x∞S+l,x

a
∞S+l

)
. In this case, the aRMSE measures the long time impact of the cycling

on the assimilation accuracy. This limit is difficult to exploit algebraically. That is why, in the theoretical developments, we15

will prefer the expected MSE (eMSE), denoted by P :

PkS+l = E
[∥∥xkS+l−xa

kS+l

∥∥2
]
,

where the expectation is taken over p
(
xkS+l,x

a
kS+l

)
. In the following subsection, we will focus on the long term impact of

the cycling on P . Simplifying assumptions will be made to express P∞S+l = lim
k→∞

PkS+l as a function of S and L.

2.3 Performance in the linear, diagonal, autonomous case

In order to obtain analytical expressions of the eMSE for 4D-Var and the IEnKS, we make drastic simplifying assumptions.5
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First, the model is assumed to be the resolvent of a linear, diagonal, autonomous ordinary differential equation. Thus, it can

be expressed as

Ml (x+ δx) =Ml (x) +Mlδx, (23)

where M = diag(αi)i=1..m is diagonal and does not depends on x. We further assume H= hIm, B = bIm, R = rIm, where

Im is the identity matrix of Rm and h,r,b > 0. With these assumptions, appendix A provides an expression for the 4D-Var10

asymptotic eMSE in the univariate case. The generalization to the diagonal multivariate case is obtained by summing up the

eMSEs of each direction:

P 4D-Var
∞S+l =

m∑
i=1


∞ if ∆i ≥ 1

b2ΣL
K,i

α
2(S−l)
i

∆i

1−∆i
otherwise

, (24a)

ΣLK,i =
h2

r

α
2(L+1)
i −αi2K
α2
i − 1

, (24b)

∆i =
α2S
i(

1 + bΣLK,i

)2 . (24c)15

The case ∆i ≥ 1 means that too much credit is given to the background variance, which is approximated for all cycles by

the constant b in our 4D-Var scheme. Therefore, the information carried by the observations is not sufficient to mitigate the

exponential growth of errors in the propagation.

Concerning the IEnKS, the anomalies are assumed to be full rank to avoid any complication due to singular covariance

matrices. Moreover, the linearity of the model is employed to express the background statistics:20

x̄b
(k+1)S =MS (x̄a

kS) , (25a)

Xb
(k+1)S = MSXa

kS , (25b)

x̄b
0 = xb

0 , (25c)

Xb
0 = B1/2. (25d)

This way, sampling errors are avoided as they are not the focus of this study. The background ensemble Eb
kS becomes a25

notational shortcut for the pair
(
x̄b
kS ,X

b
kS

)
. Actually, this simplified IEnKS is a Kalman smoother (Cosme et al., 2012; Bocquet

and Carrassi, 2017). With these assumptions, appendix B gives an expression for the IEnKS asymptotic eMSE in the univariate

case. The optimality of the IEnKS eMSE is also proven. The generalization to the diagonal multivariate case is also obtained

by summing up the eMSEs of each direction:

P IEnKS
∞S+l =

m∑
i=1


0 if |αi| ≤ 1

r

h2α
2(L−l)
i

α2
i−1

α2
i

otherwise
. (26)

This expression shows that the eMSE components on the stable directions are null. Indeed one expects the IEnKS to be at least5

more efficient than a free-run, whose errors in the stable directions tend to zero.1 This is not the case for 4D-Var since the
1The fact that the errors lie in the unstable subspace is more general (Bocquet and Carrassi, 2017)
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static background covariance matrix introduces spurious variance in the stable directions as seen in Eq. (24). In Trevisan et al.

(2010), 4D-Var error variances in the stable directions are forced to zero to improve the accuracy of the assimilation.

In the following, we study the eMSE dependency on the DAW parameters, S and L, for both algorithms. We focus on a

bivariate case with α1 = 1.2, α2 = 0.8 in order to have one stable and one unstable direction; h= b= r = 1. Using Eqs (24,26),10

the asymptotic smoothing and filtering eMSEs are displayed as a function ofL,S in Fig. 3. The eMSE components on the stable

and unstable directions are also shown. Those graphs are interpreted in the following.

Specifically, the eMSE expression for the IEnKS is of the form

P IEnKS
∞S+l = c1α

2(l−L)
1 , (27)

where c1 does not depend on S,L, l. The contribution to P IEnKS
∞S+l on the stable direction is zero. It depends only on the lag15

L− l; it does not depend on S. Moreover, the filtering eMSE (l = L) is constant: the propagation compensates for the analysis.

The smoothing eMSE (l = 0) decreases exponentially with L.

Concerning 4D-Var, we assume K fixed and S→∞ to give an asymptotic eMSE expression:

P 4D−Var
∞S+l = P IEnKS

∞S+l (1 + o(1)) + c2α
2l
2 (1 + o(1)) , (28)

where c2 is constant with S,l and o(1)→ 0 when S→∞. The unstable component is close to the IEnKS overall eMSE. The20

biggest difference with it concerns the eMSE on the stable component. The inexact background variance modeling adds to the

eMSE a detrimental term.

To qualify the long term impact of the cycling on the errors, the filtering eMSE is more instructive than the smoothing eMSE.

Indeed, the smoothing eMSE is improved with L as it adds future observations (with respect to the analysis time) in the DAW.

This improvement dominates the potentially detrimental impact of the Gaussian background approximations. In the filtering25

eMSE, this improvement is balanced by the propagation of the analysis at the end of the DAW. In Fig. 3, the filtering eMSE

stable component is mitigated such that it has little effect. However, on the unstable component, the parameter S improves the

filtering eMSE. The bigger S , the closer P 4D−Var
∞S+l is to P IEnKS

∞S+l , which is optimal (cf. appendix B). A qualitative explanation

is that to assimilate the same numbers of observations, a 4D-Var using high values of S need fewer cycles. Therefore, it relies

less often on the background approximation, making the analysis more trustworthy.30

Figure 4 displays the asymptotic eMSEs of both algorithms as a function of the lag for S = L= 5. These curves are similar

to those of Trevisan et al. (2010). Concerning 4D-Var, the eMSE can be written as a function of the lag L− l:

P 4D−Var
∞S+l ' c1α

−2lag
1 + c2α

2(L−lag)
2 . (29)

Thus, the unstable component of the eMSE is an exponentially decreasing function of the lag and the stable component is an

exponentially increasing function of the lag. The sum is therefore decreasing when the unstable component is dominant; it is

increasing when the stable component is dominant.

In this section, we have studied the accuracy of both the cycled IEnKS and 4D-Var eMSEs as a function of the DAW

parameters under linear, autonomous, diagonal assumptions. We found that the DAW parameter L improves the smoothing
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Figure 3. The asymptotic smoothing (on the left column) and filtering (on the right column) eMSEs of 4D-Var and the IEnKS. They are

displayed as functions of L,S with their components on the stable, unstable subspaces. The L parameter is on the abscissa axis for 4D-Var

and on the ordinate axis for the IEnKS. The S parameter is on the abscissa axis for the IEnKS and on the ordinate axis for 4D-Var.

eMSE and S improves the filtering eMSE. These properties will be discussed and numerically investigated in a nonlinear5

context in the next section.
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Figure 4. The asymptotic eMSEs as a function of the lag (lag = 0 is the filtering performance, lag = L is the smoothing performance). The

superposing curves have been slightly translated for better readability, S = L= 5, h= b= r = 1.

2.4 Performance in the nonlinear, chaotic case

The results of section 2.3 foster the use of the largest possible L to improve the 4D-Var and IEnKS smoothing eMSEs. For

filtering, the error propagation at the end of the DAW balances the gain in eMSE due to the assimilation of future observa-

tions. Thus, the filtering eMSE is not improved by the assimilation of observations distant in time; it is rather affected by10

the background pdf approximation. To assimilate the same number of observations, algorithms using high values of S need

fewer cycles. Therefore, they rely less often on the background approximation. That is why the 4D-Var filtering performance

is improved with S. For the IEnKS as in section 2.3, the prior pdf approximation is exact so that there is no dependence on

S. This is no longer true in the nonlinear case. Hence, with a similar reasoning, one actually expects an improvement on the

IEnKS filtering performance with S. As a matter of fact, it has been shown that with a nonlinear chaotic model, the filtering15

accuracy increases with L in most cases (see Bocquet and Sakov, 2014, and section 4 of the present paper).

2.4.1 Multiple local minima

However, with a chaotic model, Pires et al. (1996) showed that the 4D-Var cost function number of local extrema increases with

L, making minimization problematic. We show in this section that the IEnKS cost function suffers from the same problem.

This behavior will be illustrated with the Lorenz 95 (L95) model (Lorenz and Emanuel, 1998). It represents a mid-latitude

zonal circle of the atmosphere and is described by a set of m nonlinear differential equations:5

dxj
dt

= (xj+1−xj−2)xj−1−xj +F, (30)
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where xj is the j-th modulo m component of x, m= 40 and F = 8. This equation is integrated using a fourth-order Runge-

Kutta scheme with a time-step of δt= 0.05. The dynamics of L95 are chaotic; the L95 largest Lyapunov exponent is λ' 1.7.

Figure 5 shows a typical IEnKS cost function profile in one direction of the analyzed ensemble space for multiple values of

the DAW parameters. The system is observed at every time step andH= B = R = Im. The curves have more and more local
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Figure 5. Cost functions of the IEnKS projected in one direction of the analyzed ensemble (hence centered and normalized) with various

DAW parameters S,L. A quasi-static minimization can be visualized from these panels. It begins with the bottom-left cost function; the

orange square is the starting point and the green dot is at the minimum. From the bottom-left cost function up to the top-right cost function,

batches of 9 then 10 observation vectors are progressively added to the DAW, and the minimizer (green dot) is updated accordingly.

extrema when L increases. The curves with the highest amplitudes of the ripples are found for small values of S. Indeed, an5

averaging effect may settle in as the number of observations increases.
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This hilly shape causes minimization problems. A possible minimization procedure for the IEnKS is the Gauss-Newton

(GN) algorithm (e.g., Björck, 1996). GN is not a global procedure meaning that, depending on the starting point and the cost

function properties, the algorithm can converge towards any local extremum, take many iterations or even diverge. However, if

the cost function is quadratic, the global minimum is reached in one iteration. The cost function non-quadraticity is induced by10

the model nonlinearity. In the following, we will give a heuristic argument yielding a bound on the S parameter beyond which

the GN method probably misses the global minimum in the configurationH= B = R = Im. To some extent, our argument can

be seen as an improvement on the notion of useful DAW length introduced by Pires et al. (1996) beyond which the performance

gain is negligible. In contrast with the useful DAW length, we account in the following for both the cycling and the nonlinearity.

2.4.2 Effective data assimilation window length15

First, the GN convergence properties are drastically simplified. We assume the method converges to the global minimum if and

only if the minimization starting point is in a neighborhood of the global minimizer where the IEnKS cost function is almost

quadratic.

Unfortunately, this minimizer is unknown because the cost function depends on realizations of many random variables. In

order to eliminate this variability, Pires et al. (1996) introduced a so-called error-free cost function. We will rather use an20

averaged cost function J∞S defined by

J∞S (w) = lim
N→∞

1

N

N−1∑
k=0

J
(
w;ykS+L:kS+K ,E

b
kS

)
. (31)

Relying on an ergodicity assumption, appendix C proves that this averaged cost function verifies

J∞S (w) =
1

2
‖w‖2 +

dS

2
+

1

2

L∑
l=K

E
[∥∥δxb

∞S+l

∥∥2
]
, (32a)

δxb
∞S+l =Ml

(
x̄b
∞S +Xb

∞Sw
)
−Ml (x∞S) , (32b)25

where the ergodic random variables x̄∞S , Xb
∞S and x∞S have been defined in section 2.2 and Appendix C. As seen in Eq. (32),

a sufficient condition for the starting point w = 0 to be in a neighborhood of the global minimizer where the cost function is

assumed almost quadratic is to require that x̄b
∞S be in a neighborhood of x∞S where all the

(
Ml
)
K≤l≤L are almost linear.

In the univariate case, if the model behavior is almost linear and unstable, we can use Eq. (26) to estimate the terms in the

sum in Eq. (32) at the starting point w = 0:

E
[∥∥δxb

∞S+l

∥∥2
]
' α2(S+l−L)α

2− 1

α2
, (33)

where α is the model linear part and the extra S accounts for the propagation. But in a necessarily bounded physical system,

the right-hand side of Eq. (33) cannot grow indefinitely with l+S. Such model saturation imposes5

E
[∥∥δxb

∞S+l

∥∥2
]
≤B, (34)
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with B a bound. Hence, Eqs (33,34) yield the following inequality on S:

S ≤ Smax, (35a)

Smax =
ln(B)− ln

(
1−α−2

)
2ln(α)

. (35b)

We choose l = L because it corresponds to the most constraining case. When Eq. (35a) is violated, x̄b
∞S departs from x∞S10

such that the nonlinearities ofML are significant.

To apply this inequality to the L95 model we choose:

α= lim
N→∞

1

N

N−1∑
k=0

σ

(
dM
dx

(xk)

)
, (36)

σ being the mean of the singular values greater than 1. This corresponds to an average of the error amplification by dM
dx (x∞S)

in the local unstable subspace. We also choose for the bound B the average squared norm between two long trajectories:15

B = lim
N→∞

1

mN

N−1∑
k=0

∥∥xkS −MkS
(
x̄b

0

)∥∥2
. (37)

This quantity is greater than E
[∥∥δxb

∞S+l

∥∥2
]

because the IEnKS asymptotic performance is at least better than a free run.

From the values of α and B we find Smax = 14.

Figure 6 shows the filtering and smoothing aRMSEs of an IEnKS L= S with L95 as a function of S, the performance

strongly deteriorates for S > 16, which is remarkably consistent with our estimation. Figure 6 also shows another difference20

with the linear case: the IEnKS filtering aRMSE depends on S. The former discussion on the local extrema explains this

dependency for large values of S.

However, for small values of S, the decreasing aRMSE has not been explained. This is a consequence of the Gaussian

background approximation. At each cycle, the IEnKS uses the background ensemble Eb
kS to estimate the first two moments of

the background pdf and makes the approximation:25

p
(
xkS |y(k−1)S+L:K

)
'N

(
xkS |x̄b

kS ,X
b
kS

(
Xb
kS

)T)
. (38)

Because the model is nonlinear, this pdf is unlikely to be Gaussian. Therefore, this approximation results in a loss of information

and the more it is used, the farther from G the IEnKS cost function is. This is exactly what happens when S is small: to

assimilate the same number of observations, the IEnKS uses more cycles so that it relies more on the Gaussian background

approximation.

3 Quasi-static algorithms

We have seen in the previous section that the effective DAW length is constrained by the cost function non-quadraticity. In this5

section we review and propose algorithms able to overcome these minimization issues and reach longer DAWs.
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Figure 6. Smoothing aRMSE (top) and filtering aRMSE (bottom) of a Gauss-Newton IEnKS L= S as a function of S with L95 model over

5× 105 cycles (logarithmic scale). We used the finite-size version (Bocquet, 2011) to account for sampling errors and avoid the need for

inflation,H= R = B = Im, n= 20.

Quasi static algorithms have been introduced by Pires et al. (1996) in a 4D-Var context. The idea behind QSVA is to

control the way observations are added to the cost function in order to keep the minimization starting point in the basin of

attraction containing the global minimizer. The method consists in repeating the minimization with an increasing number of

observations: the first minimization is performed using the cost function with a single observation vector then the number of10

observation vectors is increased and another minimization can be performed with the former minimizer as the new starting

point. The process is then repeated until all observations are accounted for.

This procedure is directly applicable to the IEnKS cost function minimization. The left panel in Fig. 7 is a schematic of a QS

minimization and Algorithm 1 gives the pseudo-code of an IEnKS with a QS minimization. The new parameters (Lq)q<NQ

control the number of observations added at each minimization, whereNQ is the total number of batches of observation vectors.

The three first lines initialize the minimization starting point, the ensemble mean and anomaly matrix. The for loop in lines

4-23 repeats the QS minimization. The while loop in lines 6-22 is the Gauss-Newton minimization. Lines 7 and 8 center the

ensemble on the current minimizer. Lines 9 and 10 initialize the cost function gradient and the approximate Hessian. The for5

loop in lines 12-18 compute the observation terms of the cost function, the gradient and the approximate Hessian. Lines 13
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Algorithm 1 One cycle of the IEnKSQS

Require: Eb
0 the background ensemble at t0; λ the inflation; (Lq)q<NQ a list of DAW time indexes; ε the finite differences step; δ,jmax

GN end of loop parameters; 1 = (1, . . . ,1)T ∈ Rn and I is the identity of Rn.

1: wa
0 := 0

2: x̄b
0 = Eb

01/n

3: Xb
0 = λ

(
Eb

0 − x̄b
01

T
)

4: for q = 0...NQ− 1 do

5: j := 0

6: repeat

7: x̄a
0 = x̄b

0 +Xb
0w

a
0

8: E0 := x̄a
01

T + εXb
0

9: ∇J := (n− 1)wa
0

10: ∇̃2J := (n− 1)I

11: EK :=MK (E0)

12: for l =K,...,Lq do

13: ȳl :=H (El)1/n

14: Yl :=
(
H (El)− ȳl1

T
)
/ε

15: ∇J :=∇J −YT
l R

−1 (yl− ȳl)

16: ∇̃2J := ∇̃2J −YT
l R

−1Yl

17: El+1 :=M(El)

18: end for

19: solve ∇̃2Jδw :=∇J

20: wa
0 := wa

0 − δw

21: j := j+ 1

22: until ||δw|| ≤ δ or j ≥ jmax

23: end for

24: Ea
0 := xa

01
T +
√
n− 1Xb

0∇̃2J−1/2

25: Eb
S :=MS (Ea

0)

and 14 use a finite difference formula to compute the tangent linear and adjoint of w 7→ H◦Ml
(
x̄b

0 +Xb
0w
)
. Lines 15 and 16

use this adjoint to update the gradient and approximate Hessian. Lines 19 and 20 solve the linear system of the Gauss-Newton

algorithm to update the current minimizer. When GN convergence is reached, this minimizer will be used as a starting point

for the next QS minimization. Line 24 updates the ensemble. Line 25 propagates the updated ensemble to the next assimilation

cycle. Figure 5 illustrates the QS scheme on a single analysis, as described in the caption.

To cycle the scheme, the DAW is then shifted with a small S. This ensures minimal cost function deformation, since few

vectors of observation enter and few leave the DAW. This new cost function is then minimized using the forecast of the5

preceding minimizer as a starting point.
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To keep this cost function deformation statistically consistent, Bocquet and Sakov (2014) advocated to use S = 1 and as-

similate one observation vector at the end of the DAW, which avoids multiple assimilation of the same observations. It is also

the easiest way to ensure inequality (35a). However, this method has been shown to be suboptimal because of the frequent

Gaussian background approximations. Moreover, it ultimately fails to be QS since there is only one distant observation vector10

per analysis.

An alternative is to keep S = 1 but using all observations in the DAW and, consequently, to relax the conditionK = L−S+1.

This way, observations are assimilated several times. This is done in the MDA IEnKS (Bocquet and Sakov, 2014). To keep

the statistics consistent, at least in the linear/Gaussian case, the observations error covariances should be adequately altered.

Hence, the MDA IEnKS is truly a QS scheme and makes a good reference scheme for our numerical experiments. However,15

the multiple assimilation of the observations introduces spurious correlations in the nonlinear/non-Gaussian case, which entail

sub-optimality. A scheme similar to the IEnKSQS has also been successfully used in Carrassi et al. (2017) to compute model

evidence. Indeed, the efficient computation of model evidence as an integral over the state space depended on the proper

identification of a global maximum of the integrand. However, its implementation was based on the update of the ensemble

whenever an observation batch is added to the cost function, which is not as numerically efficient as the scheme presented here.20

The success of the QS minimization lies in the fact that, when an observation is successfully assimilated, the eMSE is

reduced. Thus, the analysis probability mass concentrates around the true state. The analysis is then more likely to be in a

neighborhood of the true state where the model is linear. The cost function non-quadraticity can then be increased by adding a

new term in it. This is confirmed by the following argument. Let P (q) be the IEnKS asymptotic eMSE at the q-th step of a QS

minimization. With the notations and assumptions of section 2.3, i.e. in a linear context, we have the recurrence relation:25 (
P (q+1)

)−1

=
(
P (q)

)−1

+ Σ
Lq+1

Lq+1, (39a)

P (−1) = α2S α2− 1

α2(LNQ−1+1)
. (39b)

Thus, P (q+1) < P (q) and we can increase the cost function non-quadraticity by adding new terms in it as long as the propaga-

tion of errors does not exceed the bound

α2Lq+1P (q) ≤B. (40)30

This implies

Lq+1 ≤ Lq +Smax, (41a)

L0 ≤ LNQ−1 +Smax−S, (41b)

which yields S ≤NQSmax. Therefore, the QS minimizations allow for a NQ times longer DAW.

Unfortunately, these QS minimizations are very expensive. Indeed, they add a third outer loop repeating NQ GN minimiza-

tions. The GN iterations used to compute the intermediate starting points give unnecessary precision; all that is required for5

these starting points is to be in a neighborhood of x∞S where the model is almost linear. Thus, one can restrain the number
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of intermediate GN loops and save the full convergence to the last minimization. This is done in the quasi-convergent IEnKS

(IEnKSQC) with the parameters (jq)q<NQ
. They correspond to the numbers of GN loops in the intermediate QS minimizations.

They are typically equal to 1 except for the last one. Algorithm 2 gives the pseudo code of the IEnKSQC and the right panel in

Fig. 7 is a schematic for it.

Algorithm 2 One cycle of the IEnKSQC

Require: Eb
0 the background ensemble at t0; λ the inflation; (Li)q<NQ a list of DAW time indexes; (jq)q<NQ the number of intermediate

GN loops; ε the finite differences step; δ GN end of loop parameter; 1 = (1, . . . ,1)T ∈ Rn and I is the identity of Rn;

1: wa
0 := 0

2: x̄b
0 = Eb

01/n

3: Xb
0 = λ

(
Eb

0 − x̄b
01

T
)

4: for q = 0...NQ− 1 do

5: j := 0

6: repeat

7: x̄a
0 := x̄b

0 +Xb
0w

a
0

8: E0 := x̄a
01

T + εXb
0

9: ∇J := (n− 1)wa
0

10: ∇̃2J := (n− 1)I

11: EK :=MK (E0)

12: for l =K,...,Lq do

13: ȳl :=H (El)1/n

14: Yl :=
(
H (El)− ȳl1

T
)
/ε

15: ∇J :=∇J −YT
l R

−1 (yl− ȳl)

16: ∇̃2J := ∇̃2J −YT
l R

−1Yl

17: El+1 :=M(El)

18: end for

19: solve ∇̃2Jδw :=∇J

20: wa
0 := wa

0 − δw

21: j := j+ 1

22: until ||δw|| ≤ δ or j ≥ jq
23: end for

24: Ea
0 := xa

01
T +
√
n− 1Xb

0∇̃2J−1/2

25: Eb
S :=MS (Ea

0)
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Figure 7. Schematics of an IEnKSQS minimization (on the left) and a IEnKSQC minimization (on the right). The rectangle contains the

observations to be assimilated, the black dots represent the observations used in the current minimization. The "Gauss-Newton" surrounded

by arrows represents the iterations of the Gauss-Newton procedure. The number of quasi-static steps is NQ = 3. The flow of observations

is controlled by the parameters (L0,L1,L2) = (3,5,6). For the QC IEnKS, the number of GN iterations is controlled by the (j0, j1, j2)

parameters.

4 Numerical experiments with low-order models5

In the following, we perform numerical experiments with the Lorenz 1963 (L63) and Lorenz 1995 (L95) models. L95 has

already been presented in section 2.4. L63 (Lorenz, 1963) is a simplified model for atmospheric convection. It is defined by

the ordinary differential equations:

dx

dt
= σ (y−x) , (42a)

dy

dt
= ρx− y−xz, (42b)

dz

dt
= xy−βz. (42c)
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These equations are integrated using a fourth-order Runge-Kutta scheme with a time-step of δt= 0.01 and (σ,ρ,β) = (10,28,8/3).

The dynamics of the L63 model are chaotic, with a largest Lyapunov exponent given by λ' 0.91.5

Both models are assumed perfect. The truth run is generated from a random state space point. The initial ensemble is

generated from the truth with B = Im where m= 40,3 and n= 20,3 for L95 and L63, respectively. Observation vectors

are generated from the truth with H= R = Im every ∆t= 0.05 for L95 and every ∆t= 0.02 for L63. A burn-in period of

5× 103×∆t is enforced in both cases.

The IEnKS parameters are ε= 10−4, δ = 10−3, jmax = 20, NQ = 1, L0 = L. For the IEnKSQS, the QS parameters are10 (
L0,L1, . . . ,LNQ−1

)
=K + (0,1, . . . ,NQ− 1)× S−1

NQ−1 . For the IEnKSQC, the QS parameters are the same and, in addition,(
j0, . . . , jNQ−2, jNQ−1

)
= (1, . . . ,1,20). Sampling errors are systematically accounted for using the IEnKS finite-size version

(Bocquet, 2011; Bocquet and Sakov, 2012; Bocquet et al., 2015) which avoids the need for inflation and its costly tuning.

Finally the aRMSE is averaged over a number of cycles which is determined by the number of observations assimilated. We

use 5× 105 observation vectors for L95 and 5× 106 observation vectors for L63.15

Unlike Goodliff et al. (2015), our numerical experiments neither address increasing nonlinearity, nor do they address the use

of climatological background error covariance matrices. Instead, we focus exclusively on the IEnKS performance dependence

on the DAW key parameters L, S and the number NQ of QS minimizations. Goodliff et al. (2015) numerically evaluates the

QSVA approach with hybrid and EnVar techniques, similarly to Bocquet and Sakov (2013), and confirms the findings of Pires

et al. (1996) albeit in a EnVar context. In terms of accuracy, Goodliff et al. (2015) show that the ensemble transform Kalman20

smoother (ETKS) outperforms all hybrid schemes in their numerical experiment. Since the IEnKS systematically outperforms

the ETKS in all conditions (Bocquet and Sakov, 2013, 2014) as long as the DAW length is not excessively long (for a chaotic

model), then one concludes that our RMSEs would be systematically equal or smaller that those reported for any hybrid scheme

in Goodliff et al. (2015).

Figures 8, 9 show the aRMSE of the IEnKS and IEnKSQS for both L95 and L63 as a function of S and L. The smoothing25

and filtering performance of the IEnKS increases for small values of L,S then decreases for high values of L,S. This is

due to the appearances of local minima. As noted by Goodliff et al. (2015) with L63, the QS variant allows to reach much

longer DAWs, and improves the performance. However, some limit of this method is visible with the L95 model when, for

L= 50, best smoothing aRMSEs are reached for S < 50. However, the IEnKSQS filtering performance is invariant with L and

improves with S as in the 4D-Var filtering performance of Fig. 3. As suggested by Pires et al. (1996), one can be tempted30

to estimate the useful DAW length due to past observations beyond which the performance gain is negligible. However, they

estimated such length in a one-cycle 4D-Var context with a focus on the filtering RMSE. Hence, this useful DAW length is not

directly relevant for a cycled IEnKSQS. By contrast, here, a lot of observations have already been assimilated and condensed

in the background approximation. Thus, the performance gain with the DAW length comes from the precision of this Gaussian

background approximation; a precision that the linearized theory is not able to provide, as attested by the filtering (l = L)35

performance independence of Eq. (26) with the DAW parameters.

Figure 10 compares the smoothing aRMSE (first column), the filtering aRMSE (second column) and the number of ensemble

propagations (third column) of the IEnKSQS (NQ = S,S = L), the IEnKS (S = L) and the IEnKS-MDA (S = 1), for both L95

21



10 20 30 40 50

L IEnKS, S IEnKSQS

smoothing

10

20

30

40

50
S
IE
n
K
S
,
L
IE
n
K
S
Q
S

10 20 30 40 50

L IEnKS, S IEnKSQS

filtering

10

20

30

40

50

S
IE
n
K
S
,
L
IE
n
K
S
Q
S

0.040

0.044

0.049

0.054

0.060

0.066

0.073

0.081

0.090

0.100

0.151

0.156

0.161

0.166

0.171

0.177

0.182

0.188

0.194

0.200

L95

Figure 8. IEnKS (lower triangles) and IEnKSQS (upper triangles, NQ = S) smoothing and filtering aRMSEs as a function of L and S with

the L95 model. The L parameter is on the abscissa axis for the IEnKS and on the ordinate axis for the IEnKSQS. The S parameter is on the

abscissa axis for the IEnKSQS and on the ordinate axis for the IEnKS. For readability, smoothing RMSE beyond 0.10 and filtering RMSE

beyond 0.20 are in the same color and the scale is logarithmic.

and L63 as a function of L. The number of ensemble propagations is the total number of ensemble propagations in units

of ∆t divided by the total number of assimilated observation vectors. For L < 20, all three algorithms show smoothing and5

filtering performance improvements with L. For L > 20, the IEnKS filtering and smoothing RMSE increase because of the

multiple local extrema. For L < 40, the IEnKSQS has smaller aRMSEs than the IEnKS-MDA. Because the IEnKSQS is SDA by

design, it does not suffer from suboptimality related to multiple assimilations and nonlinearity. Moreover, the IEnKSQS always

requires less propagations of the ensemble, which improves the computational cost. However, for L > 40 with the L95 model,

the quasi-static approach cannot sustain the nonlinearity anymore and the IEnKSQS aRMSE degrades. Hence, the IEnKS-MDA10

S = 1 has still the best performance. With the L63 model, the IEnKSQS is always better than the IEnKS-MDA suggesting that

L could still be increased.

Figure 11 compares the smoothing aRMSE (first column), the filtering aRMSE (second column) and the number of ensemble

propagations (third column) of the IEnKSQS and IEnKSQC as a function of the NQ parameter. The IEnKSQS aRMSE decreases

quickly after a point for both algorithms and for both models. Before this point, the algorithms fail to find the global minimum

and the RMSE is close to the climatological variance. After this point, the algorithms succeed in finding the global minimum

and the RMSE is low. For the IEnKSQS with the L95 model, this point can be estimated using results of section 3 by S/Smax '
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Figure 9. IEnKS (lower triangles) and IEnKSQS (upper triangles, NQ = S) smoothing and filtering aRMSEs as a function of L and S with

the L63 model. The L parameter is on the abscissa axis for the IEnKS and on the ordinate axis for the IEnKSQS. The S parameter is on the

abscissa axis for the IEnKSQS and on the ordinate axis for the IEnKS. For readability, smoothing and filtering RMSE beyond 0.10 are in the

same color and the scale is logarithmic.

3.6, in remarkable agreement with the experiments. This point comes later for the IEnKSQC but it demands less ensemble

propagations making this algorithm numerically more efficient than the IEnKSQS. However those ensemble propagations have5

different behavior for the L95 and L63 models when the minimizations fail to find the global minimum. For the L95 model, the

number of ensemble propagations is high meaning that the minimization takes a lot of iterations and fails to converge. For the

L63 model, the number of ensemble propagations is low indicating that minimizations converge but to a non-global extrema.

5 Conclusions

In this paper, we have extended the study of Pires et al. (1996) on quasi-static variational data assimilation, focused on 4D-Var10

technique, to cycled data assimilation schemes and specifically four-dimensional nonlinear ensemble variational techniques,

an exemplar of which being the iterative ensemble Kalman smoother (IEnKS).

The long term impact of cycling has been first investigated theoretically in a linear context for 4D-Var and the IEnKS,

then numerically for the IEnKS in a nonlinear context. The way information is propagated between data assimilation cycles

indeed makes up for the difference between 4D-Var and the IEnKS. Both reveal performance improvements with the DAW
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Figure 10. IEnKS-MDA (S = 1), IEnKSQS and IEnKS (S = L, NQ = S) filtering and smoothing aRMSEs and number of ensemble propa-

gations as a function of L for the L95 and L63 models (logarithmic scale). The ensemble propagations are in units of ∆t. For instance, with

L= 50, a single ensemble propagation through the DAW counts for 50.

parameter S, which counts the number of observation vectors within the DAW, as well as the time shift between cycles. This

is a consequence of the Gaussian background approximation: the larger S is, the less the assimilation relies on it.

However, it is observed that this improvement has a limit in the chaotic, perfect model case. The cost function global

minimum basin of attraction appears to shrink with increasing L. This causes the Gauss-Newton procedure to miss the cost5

function global minimum, which deteriorates the assimilation performance.

Quasi-static minimizations lead slowly but surely to the global minimum by repeated cost function minimizations. As the

DAW length L is gradually increased, the starting point of the minimization remains in the global minimum basin of attraction.

For most S,L couples, the quasi-static IEnKS turns out to be a more accurate substitute for the multiple data assimilation

IEnKS (IEnKS-MDA).10
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Figure 11. IEnKSQS and IEnKSQC (S = L= 50) filtering and smoothing aRMSEs and number of ensemble propagations as a function of

NQ for the L95 and L63 models (logarithmic scale). The ensemble propagations are in units of ∆t.

Unfortunately, this method (IEnKSQS) adds an outer loop which could significantly increase the numerical cost. Precision

on intermediate minima being superfluous, one can limit the intermediate Gauss-Newton number of loops. The unavoidable

space increments required to minimize the non-quadratic cost function are thus reported in time in the quasi-convergent IEnKS

(IEnKSQC).

We did not focus on the applicability of the methods to high-dimensional and imperfect models. In particular, we considered5

very long DAWs, which, even if of high mathematical interest or for low-order reliable models, is less relevant for significantly

noisy models. However, we know from Swanson et al. (1998), that the perfect model results are expected to extend to the

imperfect model case provided that the growth rate of the model error is similar to that of the leading Lyapunov vectors of

the model. This is likely to apply as well to a (strong-constraint) IEnKSQS. Beyond, an extension to this work would therefore

consist in investigating the same ideas but using a weak constraint 4D-Var and IEnKS (Trémolet, 2006; Sakov and Bocquet,5

2018; Sakov et al., 2018).
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Appendix A: Performance of 4D-Var in the linear, univariate case

The objective of this appendix is to establish a recurrence relation between the 4D-Var eMSE of each cycle. From this relation

we will get an expression for the 4D-Var asymptotic eMSE.

We assume m= 1 andMl(x) = αlx. At the k-th cycle, the gradient and Hessian of the 4D-Var cost function Eq. (7) are10

∇J
(
xkS ;y:,x

b
kS

)
=− 1

b

(
xb
kS −xkS

)
− h

r

L∑
l=K

αl
(
ykS+l−hαlxkS

)
, (A1)

∇2J
(
xkS ;y:,x

b
kS

)
=

1

b
+
h2

r

L∑
l=K

α2l, (A2)

where ykS+L:kS+K is temporarily denoted y:. Because of the operators’ linearity, J is quadratic with respect to xkS and

convex. Hence, its minimizer xa
kS exists and is characterized by the null gradient equation:15

∇J
(
xa
kS ;y:,x

b
kS

)
= 0. (A3)

With an exact Taylor expansion around the state xkS we obtain:

0 =∇J
(
xkS ;y:,x

b
kS

)
+∇2J

(
xkS ;y:,x

b
kS

)
× (xa

kS −xkS) . (A4)

Note that ∇2J
(
xkS ;y:,x

b
kS

)
, given by Eq. (A2), is not random and does not depend on xkS ,y:,x

b
kS . That is why it is simply20

noted ∇2J . Using Eqs (1,A4), we have

∇2J ·(xa
kS −xkS) =

1

b

(
xb
kS −xkS

)
+
h

r

L∑
l=K

αlεkS+l, . (A5)

The random variable xb
kS −xkS = αS

(
xa

(k−1)S −x(k−1)S

)
is independent from the errors εkS+K , . . . ,εkS+L. Thus, taking

the expectation of the square of Eq. (A5) gives the following expression for the eMSE P 4D-Var
kS of 4D-Var at time tkS :

P 4D-Var
kS = E

[
(xkS −xa

kS)
2
]
,

=
(
∇2J

)−2

(
α2S

b2
P 4D-Var

(k−1)S +
h2

r

L∑
l=K

α2l

)
, (A6a)5

P 4D-Var
−S = b. (A6b)
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Introducing the notation

ΣLK =
h2

r

L∑
l=K

α2l =
h2

r
α2K α

2S − 1

α2− 1
, (A7)

∆ =
α2S(

1 + bΣLK
)2 , (A8)

we obtain10

P 4D-Var
kS = ∆P 4D-Var

(k−1)S +
ΣLK(

1
b + ΣLK

)2 . (A9)

Thus,
(
P 4D-Var
kS

)
k

is an arithmetico-geometric sequence. Its limit P 4D-Var
∞S depends on the value of ∆ in the following way:

P 4D-Var
∞S =

∞ if ∆≥ 1,

b2ΣL
K

α2S
∆

1−∆ otherwise.
(A10)

The generalization to any asymptotic eMSE with lag L− l is straightforward:

P 4D-Var
∞S+l =

∞ if ∆≥ 1,

b2ΣL
K

α2(S−l)
∆

1−∆ otherwise.
(A11)15

In the multivariate, diagonal case the algebra can be conducted on each direction independently. The eMSE in this case is the

sum of the univariate eMSEs of each direction.

Appendix B: Performance of the IEnKS in the linear, univariate case

The objective of this appendix is to establish a recurrence relation between the IEnKS eMSE of each cycle. From this relation

we will get an expression for the IEnKS asymptotic eMSE.20

First, it is proven by recurrence that for all k ≥ 0, G(xkS |ykS+L:K) is Gaussian with moments

E [xkS |ykS+L:K ] = x̄a
kS , (B1)

V [xkS |ykS+L:K ] = (Xa
kS)

2
, (B2)

where V is the variance of a random variable and x̄a
kS ,X

a
kS are defined by Eqs (15,16). Because of the assumptions Eqs (25c,25d)

with Eq. (13) one gets25

G(x0|yL:K) = J
(
w0;yL:K ,E

b
0

)
+ c0, (B3)

where c0 is a constant independent from x0 and w0. Hence,G(x0|yL:K) is Gaussian and its moments are given by Eq. (B1,B2)

with k = 0. Now, assume G(xkS |ykS+L:K) is Gaussian with moments given by Eqs (B1,B2) for a k ≥ 0. Because x(k+1)S =
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MS (xkS) withM affine, one gets

E
[
x(k+1)S |ykS+L:K

]
=MS (x̄a

kS) = x̄b
(k+1)S , (B4)5

V
[
x(k+1)S |ykS+L:K

]
= α2S (Xa

kS)
2

=Xb
(k+1)S , (B5)

using the conditional expectation properties and Eqs (25a,25b). This result together with Eq. (6) and assumption Eq. (13) yields

G
(
x(k+1)S |y(k+1)S+L:K

)
=

J
(
w(k+1)S ;y(k+1)S+L:(k+1)S+K ,E

b
(k+1)S

)
+ ck+1, (B6)

where ck+1 is a constant independent from x(k+1)S and w(k+1)S . Hence G
(
x(k+1)S |y(k+1)S+L:K

)
is Gaussian with moments10

given by Eqs (B1,B2).

The conditional variance Eq. (B2) is therefore related to the IEnKS performance by the total law of expectation:

P IEnKS
kS = E

[
(x̄a
kS −xkS)

2
]
,

= E
[
E
[
(x̄a
kS −xkS)

2 |ykS+L:K

]]
,

= E [V [xkS |ykS+L:K ]] ,15

= E
[
(Xa

kS)
2
]
. (B7)

Then, from Eq. (16) we get the recurrence relation:

(
Xa

(k+1)S

)−2

= α−2S (Xa
kS)
−2

+
h2

r

L∑
l=K

α2l, (B8a)

(Xa
0 )
−2

=
1

b
+
h2

r

L∑
l=K

α2l. (B8b)

Thus,Xa
kS is not random and P IEnKS

kS = (Xa
kS)

2. Equation (B8) tells that the sequence of inverse IEnKS eMSEs is arithmetico-20

geometric:

(
P IEnKS
kS

)−1
= α−2S

(
P IEnKS

(k−1)S

)−1

+ ΣLK , (B9a)(
P IEnKS
−S

)−1
= b−1, (B9b)

where the notation Eq. (A7) has been used. Properties of arithmetico-geometric sequences allow to obtain the IEnKS asymp-

totic eMSE:

P IEnKS
∞S =

0 if |α| ≤ 1,

r
h2α2L

α2−1
α2 otherwise,

(B10)
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and the generalization to asymptotic eMSEs with lag L− l is straightforward:

P IEnKS
∞S+l =

0 if |α| ≤ 1,

r
h2α2(L−l)

α2−1
α2 otherwise.

(B11)

Let us now show that the IEnKS eMSE is optimal. Let xa
kS (ykS+L:K) be the 4D-Var analysis or any other function of5

ykS+L:K . A bias-variance decomposition (e.g., Bishop, 2006) of this estimator yields

ExkS ,ykS+L:K

[
(xkS −xa

kS)
2
]

=EykS+L:K
[VxkS

[xkS |ykS+L:K ]]

+EykS+L:K

[
(ExkS

[xkS |ykS+L:K ]−xa
kS)

2
]
. (B12)

Replacing the moments with Eqs (B1,B2) yields10

P 4D-Var
kS = P IEnKS

kS +E
[
(x̄a
kS −xa

kS)
2
]
.

≥ P IEnKS
kS . (B13)

In the multivariate, diagonal case the algebra can be conducted on each direction independently. Thus, the eMSE in this case

is the sum of the univariate eMSEs of each direction.

Appendix C: Expression of the averaged cost function15

The IEnKS averaged cost function J∞S is the N goes to∞ limit of

1

N

N−1∑
k=0

J
(
w;ykS+L:kS+K ,E

b
kS

)
=

1

2
‖w‖2 +

1
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N−1∑
k=0
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x̄b
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kSw
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R−1 . (C1)

Expanding the squared norm aroundH◦Ml (xkS) using Eq. (1) gives

1

2
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(
x̄b
kS +Xb

kSw
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R−1 =20

1

2
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2
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−1δykS+l, (C2)

where δykS+l =H◦Ml (xkS)−H◦Ml
(
x̄b
kS +Xb

kSw
)
. We assume that there exists random variables (ε∞S ,x∞S ,E

a
∞S)

whose distribution is invariant and ergodic with respect to the shift transformation:

T : (εkS ,xkS ,E
a
kS) 7→(

ε(k+1)S ,x(k+1)S ,E
a
(k+1)S

)
. (C3)
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Then because the (εkS)k are mutually independent, independent from the (xkS ,E
a
kS)k and identically distributed, p(ε∞S ,x∞S ,E

a
∞S) =5

p(ε0)p(x∞S ,E
a
∞S). By Birkhoff’s ergodic theorem (see Walters, 1982) we get

1
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‖εkS+l‖2R−1 →
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where δy∞S+l =H◦Ml (x∞S)−H◦Ml
(
x̄b
∞S +Xb

∞Sw
)

and x̄b
∞S ,X

b
∞S are respectively the mean and normalized anomaly5

ofMS (Ea
∞S). Finally,
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. (C7)
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