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Abstract. The joint probability distribution of wind speeds at two separate locations in space or points in time completely

characterizes the statistical dependence of these two quantities, providing more information than linear measures such as cor-

relation. In this study, we consider two models of the joint distribution of wind speeds obtained from idealized models of

the dependence structure of the horizontal wind velocity components. The bivariate Rice distribution follows from assuming

that the wind components have Gaussian and isotropic fluctuations. The bivariate Weibull distribution arises from power law5

transformations of wind speeds corresponding to vector components with Gaussian, isotropic, mean-zero variability. Maxi-

mum likelihood estimates of these distributions are compared using wind speed data from the mid-troposphere, from different

altitudes at the Cabauw tower in the Netherlands, and from scatterometer observations over the sea surface. While the bivariate

Rice distribution is more flexible and can represent a broader class of dependence structures, the bivariate Weibull distribution

is mathematically simpler and may be more convenient in many applications. The complexity of the mathematical expressions10

obtained for the joint distributions suggests that the development of explicit functional forms for multivariate speed distribu-

tions from distributions of the components will not be practical for more complicated dependence structure or more than two

speed variables.
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1 Introduction

A fundamental issue in the characterization of atmospheric variability is that of dependence: how the state of one atmospheric

variable is related to that of another at a different position in space, or point in time. The simplest measure of statistical

dependence, the correlation coefficient, is a natural measure for Gaussian-distributed quantities but does not fully characterize

dependence for non-Gaussian variables. The most general representation of dependence between two or more quantities is5

their joint probability distribution. The joint probability distribution for a multivariate Gaussian is well-known, and expressed

in terms of the mean and covariance matrix (e.g. Wilks, 2005; von Storch and Zwiers, 1999). No such general expressions for

non-Gaussian multivariate distributions exist. Copula theory (e.g. Schlözel and Friederichs, 2008) allows joint distributions to

be constructed from specified marginal distributions. However, which copula model to use for a given analysis is not generally

known a priori and is usually determined empirically through a statistical model selection exercise.10

The present study considers the bivariate joint probability distribution of wind speeds. As these are quantities which are by

definition bounded below by zero, the joint distribution and the marginal distributions are non-Gaussian. While the correlation

structure (equivalently, the power spectrum) of wind speeds in time (e.g. Brown et al., 1984; Schlax et al., 2001; Gille, 2005;

Monahan, 2012b) and in space (e.g. Carlin and Haslett, 1982; Nastrom and Gage, 1985; Wylie et al., 1985; Brown and Swail,

1988; Xu et al., 2011) has been considered, relatively little attention has been paid to developing expressions for the joint dis-15

tribution. Previous studies have used copula methods to model horizontal spatial dependence of wind speeds for wind power

applications (Grothe and Schnieders, 2011; Louie, 2012; Veeramachaneni et al., 2015) and dependence of daily wind speed

maxima (Schlözel and Friederichs, 2008). While these earlier analyses have focused on probabilistic modelling of simultane-

ous wind speed values at different spatial locations in the horizontal, dependence structures in the vertical (e.g. for vertical

interpolation of wind speeds) or in time are also of interest. For example, an analysis in which the need for an explicit para-20

metric form for the joint distribution of wind speeds at different altitudes has arisen is the Hidden Markov Model (HMM)

analysis considered in Monahan et al. (2015). In an HMM analysis of continuous variables, it is necessary to specify the para-

metric form of the joint distribution within each hidden state. In Monahan et al. (2015), the joint distribution of wind speeds

at 10 m and 200 m and the potential temperature difference between these altitudes was modelled as a multivariate Gaussian

distribution, despite the fact that for at least the speeds this distribution cannot be strictly correct. This pragmatic modelling25

approximation was made because of the absence of a more appropriate parametric distribution for the quantities being consid-

ered. The alternative approach of using the wind components at the two levels (for which the multivariate Gaussian model may

be a better approximation) instead of the speeds directly has the downside of increasing the dimensionality of the state vector

from three to five, dramatically increasing the number of parameters to be estimated (with the covariance matrices in particular

increasing from nine to twenty-five elements) and reducing the statistical robustness of the results.30

A number of previous studies have constructed univariate speed distributions starting from models for the joint distribution

of the horizontal components (e.g. Cakmur et al., 2004; Monahan, 2007; Drobinski et al., 2015). One useful benefit of this

approach is that it allows the statistics of the speed and the components to be related to each other. The specific goal of the

present study is to extend this approach to bivariate distributions, constructing models of the joint probability distribution of
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wind speeds that are directly connected to the joint distributions of the horizontal components of the wind. As the following

results will demonstrate, generalizing this approach to the bivariate speed distribution results in rather complicated mathemat-

ical expressions. Expressions for multivariate distributions of more than two speeds will be even more complicated, and may

not be analytically tractable. Through the analysis of the bivariate speed distribution, we will probe how far the development

of closed-form, analytic expressions for parametric speed distributions based on distributions of components can practically be5

extended.

Both Weibull and Rice distributions have been used to model the univariate wind speed distribution (c.f. Carta et al., 2009;

Monahan, 2014; Drobinski et al., 2015), and models of multivariate distributions with Weibull or Ricean marginals have been

developed (e.g. Crowder, 1989; Lu and Bhattacharyya, 1990; Kotz et al., 2000; Sagias and Karagiannidis, 2005; Yacoub et al.,

2005; Mendes and Yacoub, 2007; Villanueva et al., 2013). Much of this work has been done in the context of wireless commu-10

nications (Sagias and Karagiannidis, 2005; Yacoub et al., 2005; Mendes and Yacoub, 2007): the present study builds upon the

results of these earlier analyses.

The two probability density functions (pdfs) we will consider, the bivariate Rice and Weibull distributions, both start with

simple assumptions regarding the distributions of the wind components. The bivariate Rice distribution follows directly from

the assumption of Gaussian components with isotropic variance, but nonzero mean. In contrast, the bivariate Weibull distribu-15

tion is obtained from nonlinear transformations of the magnitudes of Gaussian, isotropic, mean-zero components. While the

univariate Weibull distribution has been found to generally be a better fit to observed wind speeds than the univariate Rice

distribution (particularly over the oceans, e.g. Monahan, 2006, 2007), the direct connection of the Rice distribution to the

distribution of the components (which the Weibull distribution does not have) is useful from a modelling and theoretical per-

spective (e.g. Cakmur et al., 2004; Monahan, 2012a; Culver and Monahan, 2013; Sun and Monahan, 2013; Drobinski et al.,20

2015). The six-parameter bivariate Rice distribution that we will consider is more flexible than the five-parameter bivariate

Weibull distribution, and able to model a broader range of dependence structures. Furthermore, it is directly connected to the

univariate distributions and dependence structure of the wind components. However, the bivariate Weibull distribution is math-

ematically much simpler than the bivariate Rice distribution and easier to use in practice. Other flexible bivariate distributions

for non-negative random variables exist, such as the α−µ distribution discussed in Yacoub (2007). Because the Weibull and25

Rice distributions are common models for the univariate wind speed distributions, this study will focus specifically on their

bivariate generalizations.

The bivariate Rice and Weibull distributions are developed in Section 2, starting from discussion of the bivariate Rayleigh

distribution (which is a limiting case of both of the other models). In this section, we repeat some of the formulae obtained

by Sagias and Karagiannidis (2005), Yacoub et al. (2005), and Mendes and Yacoub (2007) for completeness and because of30

notational differences between this study and the earlier ones. In Section 3, the ability of these distributions to model wind

speed data from the middle troposphere, and from the near-surface flow over land and the ocean is considered. Examples of

dependence structures in both space (horizontally and vertically) and in time are considered. A discussion and conclusions are

presented in Section 4.
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2 Empirical models of the bivariate wind speed distribution

As a starting point for developing models of the bivariate wind speed distribution, we consider the joint distribution of the

horizontal wind vector componentsui = (ui,vi), i= 1,2 (where the subscripts i denote wind vectors at two different locations,

two different points in time, or both). In particular, we assume that

1: the two orthogonal wind components are marginally Gaussian with isotropic and uncorrelated fluctuations:5 
ui
vi


∼N




ui
vi


 ,

σ2

i 0

0 σ2
i




 i= 1,2, (1)

2: the cross correlation matrix of the two vectors is

corr(u1,u2) =


corr(u1,u2) corr(u1,v2)

corr(v1,u2) corr(v1,v2)


=


 µ1 µ2

−µ2 µ1


=


 ρcosψ ρsinψ

−ρsinψ ρcosψ


 , (2)

where we have expressed the correlations in both Cartesian and polar coordinates: (µ1,µ2) = (ρcosψ,ρsinψ), with 0≤
ρ=
(
µ2
1 +µ2

2

)1/2 ≤ 1. This assumed correlation structure implies that the correlation matrix becomes diagonal when10

the vector u2 is rotated through the angle −ψ:

corr(u1,R(−ψ)(u2) =


ρ 0

0 ρ


 , (3)

where

R(−ψ)u2 =


 cosψ sinψ

−sinψ cosψ




u2
v2


=


 u2 cosψ+ v2 sinψ

−u2 sinψ+ v2 cosψ


 . (4)

The joint distribution of the horizontal components resulting from these assumptions is15

p(u1,u2,v1,v2) =
1

(2π)2σ2
1σ

2
2(1− ρ2)

exp

(
− 1

2(1− ρ2)

[
(u1 − u1)

2

σ2
1

+
(v1 − v1)

2

σ2
1

+
(u2 − u2)

2

σ2
2

+
(v2 − v2)

2

σ2
2

−2µ1[(u1 − u1)(u2 − u2)+ (v1 − v1)(v2 − v2)]

σ1σ2
− 2µ2[(u1 − u1)(v2 − v2)− (v1 − v1)(u2 − u2)]

σ1σ2

])
(5)

(Mendes and Yacoub, 2007).

Note that only considering the horizontal components of the wind vector implicitly restricts the resulting distributions to

time scales sufficiently long that the vertical component of the wind contributes negligibly to the speed.20

2.1 Bivariate Rayleigh Distribution

The joint distributions of the speeds wi =
√
u2i + v2i obtained from the pdf Eq. (5) when both vector wind components are

mean-zero is the bivariate Rayleigh distribution (e.g. Battjes, 1969). Transforming variables to wind speed wi and direction
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θi = tan−1(vi/ui), the joint distribution (Eq. 5) with ui = vi = 0, i= 1,2, becomes

p(w1,w2,θ1,θ2) =
w1w2

(2π)2σ2
1σ

2
2(1− ρ2)

exp

(
− 1

2(1− ρ2)

[
w2

1

σ2
1

+
w2

2

σ2
2

])
exp

(
ρ

1− ρ2
w1w2

σ1σ2
cos(θ1 − θ2 +ψ)

)
. (6)

Integrating over the wind directions to obtain the marginal distribution for the wind speeds, we obtain

p(w1,w2) =
w1w2

σ2
1σ

2
2(1− ρ2)

exp

(
− 1

2(1− ρ2)

[
w2

1

σ2
1

+
w2

2

σ2
2

])
Io

(
ρ

1− ρ2
w1w2

σ1σ2

)
, (7)

where we have used the fact that5
2π∫
0

eαcosθ coskθ dθ = 2πIk(α), (8)

where Ik(z) is the modified Bessel function of order k. Note that the correlation angle ψ drops out after integration over θ1

and θ2. As a result, for the bivariate Rayleigh distribution, p(w1,w2) depends only on the three parameters (σ1,σ2,ρ).

For ρ= 0, p(w1,w2) factors as the product of the marginal distributions of w1 and w2:

p(w1,w2) =

[
w1

σ2
1

exp

(
− w2

1

2σ2
1

)][
w1

σ2
1

exp

(
− w2

1

2σ2
1

)]
, (9)10

and the wind speeds are independent. As ρ→ 1, we can use the asymptotic result

I0(x)∼ ex√
2πx

(x >> 1) (10)

to show that

p(w1,w2)→ w1

σ2
1

exp

(
− w2

1

2σ2
1

)
δ

(
w1

σ1
− w2

σ2

)
, (11)

where δ(·) is the Dirac delta function. In this limit, w1 and w2 are perfectly correlated and Rayleigh distributed.15

Moments of the bivariate Rayleigh distribution are given by

E{wm
1 w

n
2 }= 2m/22n/2σm

1 σ
n
2 Γ
(
1+

m

2

)
Γ
(
1+

n

2

)
2F1

(
−m

2
,−n

2
,1;ρ2

)
, (12)

where 2F1(α,β,γ;z) is the hypergeometric function (Gradshteyn and Ryzhik, 2000). In particular, we have

mean(wi) = σi

√
π

2
(13)

var(wi) = 2σ2
i

(
1− π

4

)
(14)20

corr(w1,w2) =
π

4− π

(
2F1

[
−1

2
,−1

2
,1;ρ2

]
− 1

)
. (15)

Because 2F1(−1/2,−1/2,1;ρ2) is an increasing function of ρ2 with 2F1(−1/2,−1/2,1;0)= 1, corr(w1,w2) must be non-

negative for the bivariate Rayleigh distribution.

Plots of p(w1,w2) for the three values ρ= 0,0.5, and 0.85 are presented in Figure 1, along with the marginal distributions

of w1 and w2 (which are the same for all three panels). The marginal distributions are positively skewed and the contours25

of the joint distributions are more tightly concentrated below and to the left of their peaks than elsewhere. As expected, the

distributions become more tightly concentrated around the 1:1 line as the dependence parameter ρ increases.
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Figure 1. Example bivariate Rayleigh distributions p(w1,w2) for ρ= 0,0.5, and 0.85, with w1 and w2 scaled respectively by σ1 and σ2.

The upper and left subpanels show the marginal distributions of w1 and w2 respectively. These marginal distributions are the same for all

three panels.

2.2 Bivariate Rice Distribution

The assumptions leading to the bivariate Rayleigh distribution are too restrictive to model observed wind speeds in most

circumstances. A more general distribution results from assuming that the wind components are Gaussian, isotropic, and

uncorrelated, but with nonzero mean (Eq. 5).
Changing variables to wind speed wi and direction θi, the joint distribution becomes5

p(w1,w2, θ1, θ2) =
w1w2

(2π)2σ21σ
2
2(1− ρ2)

exp

(
− 1

2(1− ρ2)

[
(w2

1 +u21 + v21)

σ21
+

(w2
2 +u22 + v22)

σ22
− 2µ1(u1u2 + v1v2)

σ1σ2
− 2µ2(u1v2 − v1u2)

σ1σ2

])
×

exp

([
w1

σ1
a1 cosθ1 +

w2

σ2
a2 cosθ2 +

w1

σ1
b1 sinθ1 +

w2

σ2
b2 sinθ2 +

1

1− ρ2
w1w2

σ1σ2
(µ1 cos(θ1 − θ2) +µ2 sin(θ1 − θ2))

])
, (16)

where

a1 =
1

1− ρ2

(
u1
σ1

−µ1
u2
σ2

−µ2
v2
σ2

)
=

1

1− ρ2

[U1

σ1
cosφ1 − ρ

U2

σ2
cos(φ2 −ψ)

]
(17)

b1 =
1

1− ρ2

(
v1
σ1

−µ1
v2
σ2

+µ2
u2
σ2

)
=

1

1− ρ2

[U1

σ1
sinφ1 − ρ

U2

σ2
sin(φ2 −ψ)

]
(18)10

a2 =
1

1− ρ2

(
u2
σ2

−µ1
u1
σ1

+µ2
v1
σ1

)
=

1

1− ρ2

[U2

σ2
cosφ2 − ρ

U1

σ1
cos(φ1 +ψ)

]
(19)

b2 =
1

1− ρ2

(
v2
σ2

−µ1
v1
σ1

−µ2
u1
σ1

)
=

1

1− ρ2

[U2

σ2
sinφ2 − ρ

U1

σ1
sin(φ1 +ψ)

]
, (20)

and where we have defined the magnitude and direction of the mean vector wind:

(ui,vi) = U i(cosφi,sinφi). (21)
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The marginal distribution for the wind speeds is obtained by integrating the joint distribution over θ1 and θ2. To evaluate this

integral, we make use of the result

1

(2π)2

2π∫
0

2π∫
0

exp[α1 cosθ1 +α2 cosθ2 + β1 sinθ1 + β2 sinθ2 + γ cos(θ1 − θ2+ψ)] dθ1dθ2

=

∞∑
k=0

εk cos

[
k

(
tan−1 β1

α1
− tan−1 β2

α2
+ψ

)]
Ik

(√
α2
1 + β2

1

)
Ik

(√
α2
2 + β2

2

)
Ik(γ), (22)

where5

εk =


1 k = 0

2 k �= 0
(23)

and it is important that tan−1(b/a) be evaluated as the angle between the vector (a,b) and the vector (1,0) (that is, as the

four-quadrant inverse tangent). Eq. (22) follows from the Fourier series

eccosθ =

∞∑
k=0

εkIk(c)coskθ (24)

along with repeated use of trigonometric identities and the integral Eq. (8).10

Finally, we obtain the expression for the bivariate Rice distribution (Mendes and Yacoub, 2007)

p(w1,w2) =
w1w2

σ2
1σ

2
2(1− ρ2)

exp

(
− 1

2(1− ρ2)

[
(w2

1 + u21 + v21)

σ2
1

+
(w2

2 + u22 + v22)

σ2
2

− 2µ1(u1u2 + v1v2)

σ1σ2
− 2µ2(u1v2 − v1u2)

σ1σ2

])

×
∞∑
k=0

εk cos

[
k

(
tan−1 b1

a1
− tan−1 b2

a2
+tan−1 µ2

µ1

)]
Ik

(
w1

σ1

√
a21 + b21

)
Ik

(
w2

σ2

√
a22 + b22

)
Ik

(
ρ

1− ρ2
w1w2

σ1σ2

)
.

(25)

Expressed in terms of the magnitude and direction of the mean wind vectors,

p(w1,w2) =
w1w2

σ2
1σ

2
2(1− ρ2)

exp

(
− 1

2(1− ρ2)

[
w2

1 +U2

1

σ2
1

+
w2

2 +U2

2

σ2
2

− 2ρU1U2 cos(φ1 −φ2 +ψ)

σ1σ2

])
15

×
∞∑
k=0

εk cos(kν)Ik

(
w1

σ1

√
a21 + b21

)
Ik

(
w2

σ2

√
a22 + b22

)
Ik

(
ρ

1− ρ2
w1w2

σ1σ2

)
, (26)

where

ν = tan−1
(1− ρ2)

U1U2

σ1σ2
sin(φ1 −φ2 +ψ)

(1+ ρ2)
U1U2

σ1σ2
cos(φ1 −φ2 +ψ)− ρ

(
U2

1

σ2
1

+
U2

2

σ2
2

) (27)

and

√
a2i + b2i =

1

1− ρ2

[
U2

i

σ2
i

+ ρ2
U2

3−i

σ2
3−i

− ρ
2U1U2

σ1σ2
cos(φ1 −φ2 +ψ)

]1/2
. (28)20
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When numerically evaluating the bivariate Rice distribution, it is convenient to transform the infinite series in Eqs. (25) and

(26) into an integral which is then approximated numerically (Appendix A).

Note that p(w1,w2) depends on the relative orientation of the mean wind vectors and the correlation angle ψ only through

the combination φ1 −φ2 +ψ. Because of this symmetry, the quantities φ1 −φ2 and ψ cannot be determined individually

from wind speed data alone. As a result, p(w1,w2) is determined by six parameters: (U1,σ1,U2,σ2,ρ,φ1 −φ2 +ψ). For5

particular applications, it may be appropriate to fix either φ1−φ2 or ψ, allowing the other angle to be estimated from data. For

example, when considering the temporal dependence structure of winds assumed to have stationary statistics, it can be assumed

that φ1 −φ2 = 0. The bivariate Rice distribution also has the discrete symmetry that it is invariant under the transformation

φ1−φ2+ψ→−(φ1−φ2+ψ). Note that these symmetries are in addition to the invariance of the distribution of components

(Eq. 5) to the rotation of the coordinate system θi → θi+∆θ, i= 1,2, under which the angles φ1 −φ2 and ψ are individually10

invariant.

Integrating over w2 to obtain the marginal distribution for w1 we obtain the univariate Rice distribution

∞∫
0

p(w1,w2) dw2 =
w1

σ2
1

exp

(
−w

2
1 +U2

1

2σ2
1

)
I0

(
w1U1

σ2
1

)
, (29)

with mean and variance

mean(w1) = σ1

√
π

2
1F1

(
−1

2
,1,− U2

1

2σ2
1

)
(30)15

var(w1) = 2σ2
1 +U2

1 − σ2
1

π

2
1F

2
1

(
−1

2
,1,− U2

1

2σ2
1

)
(31)

(with equivalent expressions for w2 obtained by integrating over w1), where 1F1(α;β;z) is the confluent hypergeometric

function (Gradshteyn and Ryzhik, 2000). Eq. (29) follows from Eq. (25) using the integral (Gradshteyn and Ryzhik, 2000)

∞∫
0

xe−ax2

Ik(bx)Ik(cx) dx=
1

2a
exp

(
b2+ c2

4a

)
Ik

(
bc

2a

)
, (32)

Neumann’s Theorem (Watson, 1922)20

∞∑
k=0

εkIk(x)Ik(y)coskφ= I0

(√
x2 + y2+2xy cosφ

)
, (33)

and the fact that

cosν =

(1+ ρ2)
U1

σ1

U2

σ2
cos(φ1 −φ2 +ψ)− ρ

(
U2

1

σ2
1

+
U2

2

σ2
2

)

(1− ρ2)2
√
(a21 + b21)(a

2
2 + b22)

. (34)

Note that each wind speed marginal distribution depends only on the magnitude of the mean wind vector, while the joint

distribution also depends on the angle between the two mean wind vectors. Furthermore, as ρ→ 0 only the first term contributes25

to the infinite series in Eq. (25), and the joint distribution reduces to the product of the marginals.
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The joint moments of the bivariate Rice distribution can be evaluated using the Taylor series expansion:

Ik

(
ρ

1− ρ2
w1w2

σ1σ2

)
=

∞∑
j=0

1

j!(j+ k)!

(
ρ

2(1− ρ2)

)2j+k(
w1

σ1

)2j+k(
w2

σ2

)2j+k

, (35)

which allows the double integral defining the moments to factorize as the products of individual integrals over w1 and w2 that

can be evaluated using
∞∫
0

xµe−αx2

Ik(βx) dx=
βkΓ[(k+µ+1)/2]

2k+1α(µ+ν+1)/2Γ(k+1)
1F1

(
k+µ+1

2
;k+1;

β2

4α

)
. (36)5

The resulting expression for the joint moments is

E{wm
1 w

n
2 }= 2m/22n/2σm

1 σ
n
2 (1− ρ2)1+m/2+n/2 exp

(
− 1

2(1− ρ2)

[
U2

1

σ2
1

+
U2

2

σ2
2

− 2ρU1U2 cos(φ1 −φ2+ψ)

σ1σ2

])

×
∞∑
l=0

l∑
k=0


εkρ2l−k cos(kν)

(
(1− ρ2)

√
(a21 + b21)(a

2
2 + b22)

2

)k
Γ
(
l+ m

2 +1
)
Γ
(
l+ n

2 +1
)

l!(l− k)!(k!)2

× 1F1

(
l+

m

2
+ 1;k+1;(1− ρ2)

(a21 + b21)

2

)
1F1

(
l+

n

2
+ 1;k+1;(1− ρ2)

(a22 + b22)

2

)]
(37)

(Mendes and Yacoub, 2007). When the mean vector winds are equal to zero, only the k = 0 terms contribute to this expression10

and Eq. (12) is recovered.

Defining the variables Vi = U i/
√
2σi, the correlation coefficient between w1 and w2 is given by

corr(w1,w2) = (38)

(1− ρ2)2 exp

(
−V

2
1 +V 2

2 − 2V1V2 cos(φ1 −φ2+ψ)

(1− ρ2)

)
G(V1,V2,ρ,φ1 −φ2 +ψ)− π

4
1F1

(
−1

2
;1;−V 2

1

)
1F1

(
−1

2
;1;−V 2

2

)
[
1+V 2

1 − π

4
1F1

(
−1

2
;1;−V 2

1

)]1/2 [
1+V 2

2 − π

4
1F1

(
−1

2
;1;−V 2

2

)]1/2 ,

where15

G(V1,V2,ρ,φ1 −φ2+ψ) =
∞∑
l=0

l∑
k=0


εkρ2l−k cos(kν)

(
(1− ρ2)

√
(a21 + b21)(a

2
2 + b22)

2

)k
Γ2
(
l+ 3

2

)
l!(l− k)!(k!)2

(39)

× 1F1

(
l+

3

2
;k+1;(1− ρ2)

(a21 + b21)

2

)
1F1

(
l+

3

2
;k+1;(1− ρ2)

(a22 + b22)

2

)]
.

The correlation coefficient corr(w1,w2) depends only on the four quantities (U1/σ1,U2/σ2,φ1−φ2+ψ,ρ). Monahan (2012b)

considered the correlation structure of wind speeds using the approximation corr(w1,w2)� corr
(
w2

1 ,w
2
2

)
. The assumed co-

variance structure of the wind components then results in the approximate expression:20

corr(w1,w2)�
ρ2 +

(
u1u2
σ1σ2

+
v1v2
σ1σ2

)
µ1 +

(
u1v2
σ1σ2

− v1u2
σ1σ2

)
µ2√(

1+
u21 + v21
σ2
1

)(
1+

u22 + v22
σ2
2

) =
ρ2 +

U1U2

σ1σ2
cos(φ1 −φ2 +ψ)ρ√√√√(1+ U2

1

σ2
1

)(
1+

U2

2

σ2
2

) . (40)
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Figure 2. Comparison of the correlation coefficient corr(w1,w2) for bivariate Rice distributed variables (Eq. 38) with the approximate

expression Eq. (40) for the parameter values (U1/σ1,U2/σ2,φ1 −φ2 +ψ) = (3,2,0) and (0.5,4,0).

Plots of the correlation coefficient (Eq. 38) and the approximation (Eq. 40) as functions of ρ are shown in Figure 2 for

(U1/σ1,U2/σ2,φ1 −φ2 +ψ) = (3,2,0) and (1,5,0). Agreement between the exact and approximate values of the correlation

coefficient is reasonably good in both cases, with the largest discrepancies generally occurring for larger absolute values of ρ.

Note that negative wind speed correlation values are permitted by the bivariate Rice distribution.

Examples of the joint Rice pdf (and the associated marginals) are presented in Figure 3 for (U1,σ1,U2,σ2) = (6,4,2,5) and5

(ρ,φ1 −φ2 +ψ) = (0.85,π),(0,0), and (0.85,0). By construction, the marginal distributions are the same in each panel. The

distributions of bothw1 and w2 are positively skewed, and take respective maxima at values of about σ1 and just less than 2σ2.

For the different values of the dependence parameter ρ, the joint distributions have considerably different shapes. The joint

distribution for (ρ,φ1−φ2+ψ) = (0.8,π) are (weakly) negatively correlated with a nonlinear dependence structure evident in

ridges of enhanced probability extending to the left and right upward from the probability maximum. For (ρ,φ1 −φ2 +ψ) =10

(0,0), probability contours are concentrated towards smaller values of w1 and w2 (as is the case for the marginal distributions).

Finally, w1 and w2 are evidently positively correlated for (ρ,φ1−φ2+ψ) = (0.8,0), with a slight curvature in the shape of the

distribution indicating the existence of some nonlinear dependence.

Although the bivariate Rice distribution differs from the bivariate Rayleigh distribution only by allowing for nonzero mean

wind vector components, the resulting expressions for the joint pdf (Eq. 25) and the moments (Eq. 37) are much more com-15

plicated for the bivariate Rice than the bivariate Rayleigh. Furthermore, while the univariate Rice distribution is a convenient

model for the pdf of wind speed, observed winds show clear deviation from Ricean behaviour (e.g. Monahan, 2006, 2007). We

will therefore consider another model of the bivariate wind speed distribution with Weibull marginals, which turns out to result

in simpler mathematical expressions (at the cost of a more artificial derivation than that of the bivariate Rice distribution).
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Figure 3. As in Figure 1 for the bivariate Rice distribution with (U1,σ1,U2,σ2) = (6,4,2,5) and (ρ,φ1 −φ2 +ψ) = (0.8,π),(0,0), and

(0.8,0).

2.3 Bivariate Weibull Distribution

As in Sagias and Karagiannidis (2005) and Yacoub et al. (2005), we obtain the bivariate Weibull distribution from the bivariate

Rayleigh distribution through separate power law transformations of w1 and w2. The pdf of a Weibull distributed variable is

p(x) =
b

a

(x
a

)b−1

exp

(
−
[x
a

]b)
, (41)

with moments5

E{xm}= amΓ
(
1+

m

b

)
, (42)

where a and b are denoted the scale and shape parameters, respectively. The Rayleigh distribution is a special case of the

Weibull distribution with a=
√
2σ and b= 2. Weibull distributed variables remain Weibull under a power-law transformation,

with suitably modified scale and shape parameters: if x is Weibull with scale parameter a and shape parameter b, xk will be be

Weibull with scale parameter ak and shape parameter b/k. A joint wind speed distribution with Weibull marginal distributions10

can therefore be constructed from a joint Rayleigh distribution using the appropriate power law and scale transformations.

If we start with (x1,x2) as bivariate Rayleigh distributed with σi = 1/
√
2, i= 1,2, we obtain marginal Weibull distributions

with specified scale and shape parameters through the transformations

wi = aix
2/bi
i . (43)

The joint pdfs transform as15

p(w1,w2) =

∣∣∣∣∣∣
∂x1w1 ∂x2w1

∂x1w2 ∂x2w2

∣∣∣∣∣∣
−1

p(x1,x2) (44)
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and so we obtain the bivariate Weibull distribution

p(w1,w2) =
1

1− ρ2
b1b2
a1a2

(
w1

a1

)b1−1(
w2

a2

)b2−1

exp

(
− 1

(1− ρ2)

[(
w1

a1

)b1

+

(
w2

a2

)b2
])

I0

(
2ρ

(1− ρ2)

(
w1

a1

)b1/2(w2

a2

)b2/2
)
.

(45)

An analagous approach to constructing bivariate Weibull distributions through nonlinear transformations of a bivariate Gaus-

sian was followed in Villanueva et al. (2013); the resulting expressions are considerably more complicated than those consid-

ered here.5

Evidently, p(w1,w2) factorizes into the product of the marginal distributions as ρ→ 0. As ρ→ 1, we can use Eq. (10) to

make the approximation

p(w1,w2)� 1

1− ρ2
b1b2
a1a2

(
w1

a1

)b1−1(
w2

a2

)b2−1

exp

(
− 1

(1− ρ2)

[(
w1

a1

)b1

+

(
w2

a2

)b2
])

×
(

4πρ

(1− ρ2)

(
w1

a1

)b1/2(w2

a2

)b2/2
)−1/2

exp

(
2ρ

(1− ρ2)

(
w1

a1

)b1/2(w2

a2

)b2/2
)

�
[
b1
a1

(
w1

a1

)b1−1

exp

(
−
(
w1

a1

)b1
)][

b2
2a2

(
w1

a1

)−b1/4(w2

a2

)3b2/4−1
]
δ

((
w1

a1

)b1/2

−
(
w2

a2

)b2/2
)

10

=p(w1)δ

(
w2 − a2

(
w1

a1

)b1/b2
)
, (46)

where the last equality follows from the fact that

δ (f(x)−α) =
1

f ′(α)
δ
(
x− f−1(α)

)
. (47)

As expected, w1 and w2 are completely dependent in the limit that ρ→ 1 (although they are not perfectly correlated if b1 �= b2

as the functional relationship15

w2 = a2

(
w1

a1

)b1/b2

(48)

between the two variables will be nonlinear).

The relatively simple form of the bivariate Weibull distribution permits a relatively simple expression for the conditional

distribution

p(w2|w1) =
p(w1,w2)

p(w1)
20

=

{
b2
a2

(
w2

a2

)b2−1

exp

(
−
[
w2

a2

]b2)}
(49)

×
{

1

1− ρ2
exp

(
− ρ2

1− ρ2

[(
w1

a1

)b1

+

(
w2

a2

)b2
])

I0

(
2ρ

(1− ρ2)

(
w1

a1

)b1/2(w2

a2

)b2/2
)}

.
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The factor in the second set of braces characterizes how conditioning on the value of w1 changes the distribution ofw2 from its

marginal distribution (and corresponds to a copula density; e.g. Schlözel and Friederichs, 2008). Note that for w1 sufficiently

large we can write

p(w2|w1)� 1√
4πρ(1− ρ2)

b2
a2

(
w2

a2

)3b2/4−1(
w1

a1

)−b1/4

exp


− 1

1− ρ2

[
ρ

(
w1

a1

)b1/2

−
(
w2

a2

)b2/2
]2 . (50)

For ρ not too close to zero, the conditional distribution for large w1 is concentrated around the nonlinear regression curve5 (
w2

a2

)b2

= ρ2
(
w1

a1

)b1

. (51)

Computing the moments, we obtain

E{wm
1 w

n
2 }= am1 a

n
2Γ

(
1+

m

b1

)
Γ

(
1+

n

b2

)
2F1

(
−m
b1
,− n

b2
,1;ρ2

)
. (52)

(Sagias and Karagiannidis, 2005; Yacoub et al., 2005). The correlation coefficient is then given by

corr(w1,w2) =
Γ
(
1+ 1

b1

)
Γ
(
1+ 1

b2

)[
2F1

(
− 1

b1
,− 1

b2
,1;ρ2

)
− 1
]

√[
Γ
(
1+ 2

b1

)
−Γ2

(
1+ 1

b1

)][
Γ
(
1+ 2

b2

)
−Γ2

(
1+ 1

b2

)] . (53)10

For b1, b2 > 1 (the relevant range of shape parameters for wind speeds), 2F1(−1/b1,−1/b2,1;ρ
2) is an increasing function of

ρ2 with 2F1(−1/b1,−1/b2,1;0) = 1. Therefore, the bivariate Weibull distribution is unable to represent situations in which

the wind speeds are negatively correlated.

Examples of the bivariate Weibull distribution for (a1, b1,a2, b2) = (4,1.5,5,7) and values of ρ= 0,0.7, and 0.95 are shown

in Figure 4. Again, the marginal distributions in all three cases are the same by construction. The distribution ofw1 is positively15

skewed with a maximum near a value ofw1 = 0.5a1, while that of w2 is negatively skewed with a maximum nearw2 = a2. For

ρ= 0 the joint distribution is simply the product of the marginals. As ρ increases, w1 and w2 become positively correlated -

although the correlation is weak even for ρ= 0.7 for this set of parameter values. At the value of ρ= 0.95, while the correlation

of the two variables is only moderate, a strong nonlinear dependence is evident in the concentration of the distribution around

the curve given by Eq. (48).20

3 Fits of bivariate Rice and Weibull distributions to observed wind speeds

Many wind datasets from different locations are available, and it is impracticable to consider joint distributions of wind speeds

from all of these. In this Section, we will consider examples of the joint distribution of wind speeds using data from a represen-

tative range of settings. Bivariate distributions of wind speeds at both different locations in space and different points in time

will be considered. The sampling of the wind speeds considered will be temporal (that is, individual samples will correspond25

to a specific time for spatial joint pdfs and a specific pair of times for temporal joint pdfs). Best-fit values of the parameters of

the bivariate Weibull and Rice distributions we present were obtained numerically as maximum likelihood estimates (Table 1),
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Figure 4. As in Figure 1 for the bivariate Weibull distribution with (a1, b1,a2, b2) = (4,1.5,5,7) and ρ= 0,0.7, and 0.95 and the speeds

w1,w2 scaled respectively by the Weibull scale parameters a1,a2.

with φ1 −φ2 set to zero. Goodness-of-fit of the distributions was assessed using a statistical test described in Appendix B. In

order to distinguish how well the parametric joint distributions model the marginal distributions from how well they represent

dependence between variables, the goodness-of-fit analyses were repeated for each pair of time series with the values of one of

the pair shuffled in time. This shuffling destroys the dependence structure without affecting the distributions of the marginals.

Use of a bivariate analysis rather than separate univariate goodness-of-fit tests for the marginals allows direct comparisons of5

p-values, as exactly the same test is used for the original and shuffled data.

3.1 Wind speeds at 500 hPa

We first consider the joint distribution of 00Z December, January, and February 500 hPa wind speeds from 1979 to 2014.

These data were taken from the European Centre for Medium-Range Weather Forecasts (ECMWF) ERA-Interim Reanalysis

(Dee et al., 2011), subsampled to every second day to minimize the effect of serial dependence on the goodness-of-fit test10

(Monahan, 2012b). The wind speed data were computed as the magnitude of zonal and meridional components.

The joint distributions of wind speeds at four pairs of latitudes along 216◦W are presented in Figure 5. A moderately strong

negative correlation (r =−0.55) is evident between wind speeds at (39◦S,216◦W) and (54.75◦S,216◦W) (Figure 5a). Because

it is unable to model a negative correlation between wind speeds, the best-fit bivariate Weibull pdf differs substantially from

the distribution of the observed winds (Figure 5e). The goodness-of-fit test correspondingly rejects the null hypothesis that the15

observations are drawn from this distribution (p= 0). In contrast, the bivariate Rice distribution provides a reasonable model

of the joint distribution of wind speeds at these two locations (Figure 5i) and the goodness-of-fit test provides no evidence that

these data are statistically incompatible with this distribution (p= 0.31). For wind speeds at these two locations, the bivariate

Rice distribution is evidently a better model than the bivariate Weibull distribution.

In contrast, for wind speeds at (12◦N, 216◦W) and (15.75◦N, 216◦W), the null hypotheses of being drawn from either the20

bivariate Rice or Weibull distributions are rejected at the 95% significance level for both distributions. These wind speeds are
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Sample Bivariate Rice Bivariate Weibull

Size (U1,σ1,U2,σ2,φ1 −φ2 +ψ,ρ) (a1, b1,a2, b2, ρ)

( ms−1 , ms−1 , ms−1 , ms−1 , - , - ) ( ms−1 , - , ms−1 , - , - )

500 hPa (39◦S,54.75◦S) 1625 (19.8, 10.5, 17.9, 11.3, 3.14, 0.71) (25.6, 2.5, 24.5, 2.3, 0.0)

(12◦N,15.75◦N) 1625 (0.0, 4.8, 6.9, 6.2, 0.88, 0.79) (6.8, 1.9, 11.0, 2.0, 0.62)

(3◦S, 0.75◦N) 1625 (3.8, 3.1, 5.5, 3.5, 0.0, 0.75) (5.8, 2.1, 7.6, 2.3, 0.85)

(15◦S, 45◦S) 1625 (1.1, 4.2, 26.9, 11.0, 0.0, 0.15) (6.0, 1.8, 32.7, 3.1, 0.23)

500 hPa 0.5 day lag 1625 (19.4, 10.8, 19.4, 10.5, 0, 0.80) (25.1, 2.2, 24.9, 2.3, 0.90)

1.5 day lag 1624 (19.4, 10.9, 19.7, 10.4, 0, 0.40) (25.5, 2.4, 25.4, 2.5, 0.62)

3 day lag 1623 (19,3, 10.9, 19.4, 10.4, 0, 0.23) (25.6, 2.5, 25.3, 2.6, 0.44)

Cabauw night 1189 (1.9, 1.9, 6.9, 3.7, 0.0, 0.85) (3.1, 1.7, 8.9, 2.3, 0.92)

night R1 763 (1.6, 1.2, 5.0, 4.0, 0.0, 0.83) (2.3, 2.2, 7.6, 2.1, 0.90)

night R2 427 (3.5, 2.0, 9.4, 3.0, 0.0, 0.90) (4.6, 2.2, 10.9, 3.6, 0.95)

day 1060 (3.2, 2.8, 3.6, 4.7, 0.12, 0.98) (5.0, 2.3, 7.3, 2.1, 0.99)

QuikSCAT (6.5◦S,162◦W) 321 (7.2,1.5,6.7,1.7,1.27,0.48) (8.0,5.4,7.6,4.8,0.35)

(6.5◦S,152◦W) 185 (7.3, 1.5, 7.0,1.7,1.15,0.95) (8.0,5.6,7.8,4.9,0.66)

(6.5◦S,142◦W) 208 (7.1,1.6,7.2,1.6,0.60,0.80) (7.9,5.1,8.0,5.0,0.83)

Table 1. Maximum likelihood parameter estimates for the wind speed data shown in Figures 5, 6, 7, 8.

weakly correlated (r = 0.37) but show evidence of nonlinear dependence. The joint pdf of the observed speeds is characterized

by two ridges of high probability extending to the right, upward and downward away from the region of maximum probability

(Figure 5b,f,j). These ridges are not captured by either of the best-fit bivariate Weibull or Rice distributions, although a hint of

this structure is evident in the Rice distribution. While the fit of one or both of these parametric distributions to these observed
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Figure 5. Joint distributions of 500 hPa DJF 00Z wind speeds at four different pairs of latitudes along 216◦W. Wind speeds at the two

latitudes quoted in the column headings are respectively denoted w1 and w2. Upper row: scatterplots of wind speed data. Middle row:

maximum likelihood bivariate Weibull pdfs (white contours) and kernel density estimates of the observed joint pdf (colours). The p-value of

a goodness-of-fit test with the null hypothesis that the observed wind speed data are drawn from the corresponding best-fit bivariate Weibull

distribution is given. The values in brackets are the p-values obtained when the dependence structure is eliminated by shuffling the values of

w2 in time. Bottom row: as in the middle row, for the best-fit bivariate Rice distribution. Values of the best-fit model parameters are given in

Table 1.

wind speed data may be sufficiently good for practical applications, nevertheless we can confidently exclude the possibility

that these data are drawn from either distribution.
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The wind speeds at (3◦S, 216◦W) and (0.75◦N, 216◦W) are correlated (r = 0.68) and their scatter clusters around a straight

line extending away from the origin (Figure 5c). Both the best-fit bivariate Weibull and Rice distributions appear to the eye to

be good fits to the data (Figures 5g,k), and in neither case can the null hypothesis be rejected that the data are drawn from these

distributions. Only small differences exist between the two best-fit distributions for these data.

Finally, the wind speeds at (15◦S, 216◦W) and (45◦S, 216◦W) are uncorrelated (r = 0.06) and fit sufficiently well by both5

the bivariate Weibull and Rice distributions (Figure 5d,h,l) that in neither case is the null hypothesis rejected. As in the previous

example, the bivariate best-fit Rice and Weibull distributions are essentially indistinguishable for these data.

Considering the spatial correlation structure of these 500 hPa winds, we find cases in which one distribution (the Rice) is

evidently a better fit to the data than the other (the Weibull), in which neither distribution provides a statistically significant

fit to the data, and in which both distributions fit the data equally well. p-values from the analyses with temporally shuffled10

data, quoted in parentheses in Figure 5, show that for none of the four pairs of wind speeds considered can the null hypotheses

of univariate Weibull or univariate Rice distributions for the marginals be rejected. This result indicates that for these data the

rejection of the full bivariate distributions occurs because of a failure to adequately represent the dependence structure between

the two random variables.

The temporal dependence structure of the wind speed at (39◦S,216◦W) is illustrated in Figure 6. As with the previous15

calculations, the pairs of lagged wind speeds (w(tn),w(tn+s)) were subsampled to two-day resolution to minimize the effect

of serial dependence on the results of the goodness-of-fit tests. As the lag increases, the value of the dependence parameter

ρ decreases as expected for both the Weibull and Rice distributions (Figure 6h,l). For most lags, the null hypothesis of the

Weibull distribution as a model for the joint distribution is rejected (p < 0.05; Figure 6d). The rejection of the null hypothesis

of a bivariate Weibull distribution is most robust for lags shorter than 3 days. In contrast, the null hypothesis of a bivariate Rice20

distribution is rejected less often than it is not - although p < 0.05 for more than one third of the lags (Figure 6d). Inspection

of the example distributions shown demonstrates that the bivariate Weibull distributions are broader around their principal axis

for small to intermediate wind speeds in a way that is not consistent with observations (Figure 6e-g). Such structures are not

seen in the best-fit Rice distributions (Figure 6i-k). Note that for lags of 0.5 and 1.5 days the observed distributions suggest

a flaring out of the joint distribution for large wind speeds that is accounted for by neither the bivariate Weibull nor Rice25

distributions. There is good evidence that these data were not drawn from a bivariate Weibull distribution, and the evidence

that they are drawn from a bivariate Rice distribution is not strong. p-values of fits obtained after shuffling of the lagged wind

speed time series (in brackets in Figs. 6e-g,i-k and dashed lines in 6d) are generally larger than those of the unshuffled data:

with a few exceptions (e.g. a lag of 1.75 days), the rejection of the null hypothesis of the full dataset being drawn from either

of the parametric distributions considered is not associated with a failure to fit the marginals.30

3.2 Wind speeds over land at 10 m and 200 m

We next consider wind speeds at altitudes of 10 m and 200 m measured from a 213 m tower in Cabauw, Netherlands

(51.971◦N,4.927◦E) maintained by the Cabauw Experimental Site for Atmospheric Research (CESAR; van Ulden and Wieringa,

1996) with 10-minute resolution from 1 January 2001 through 31 December 2012. We will focus on data from July, August,
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Figure 6. The temporal dependence structure of 500 hPa DJF 00Z wind speeds at (39◦S,216◦W) for lags s = 0.25 to 4 days, withw1 =w(tn)

and w2 = w(tn+s). Upper row (a)-(c): scatterplots of wind speeds separated by 0.5 day (first column), 1.5 days (second column), and 3 days

(third column). Middle row (e)-(g): maximum likelihood bivariate Weibull distribution (white contours) and kernel density estimate of the

joint pdf of the lagged data. The p-value of a goodness-of-fit test of the bivariate Weibull fit is quoted in white. The values in brackets are

the p-values obtained when the dependence structure is eliminated by shuffling the values of w2 in time. Bottom row (i)-(j) as in the middle

row (e)-(g) for the bivariate Rice distribution. Panels (d,h,l) show results at a range of different time lags. Panel (d): p-values of bivariate

goodness-of-fit tests for bivariate Weibull (solid black) and bivariate Rice (solid red). The dashed lines correspond to the p-values for shuffled

w2. The thin black curve is the 0.95 significance level. Panel (h): best-fit estimate of the parameter ρ of the bivariate Weibull distribution.

Panel (l): best-fit estimates of ρ (black) and cosφ (blue) for the Rice distribution. Values of the best-fit model parameters are given in Table

1.
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and September (JAS), separated into daytime (08:00-16:00 UTC) and nighttime (20:00-05:00) periods. These data were sub-

sampled in time to account for serial dependence. Only every 50th point was used in the following analysis. A small number

of zero wind speed values were removed from the dataset.

Monahan et al. (2011, 2015) demonstrated the existence of two distinct regimes of the nocturnal boundary layer in these data,

corresponding to the very and weakly stratified boundary layers (vSBL and wSBL; e.g. Mahrt, 2014). These regimes, denoted5

respectively R1 and R2 were separated in Monahan et al. (2015) using a two-state Hidden Markov Model (HMM). Conditioning

the data on the HMM state, the scatterplot of wind speeds at 10m and 200m separates into two distinct populations (Figure

7a-c). The scatter of wind speeds at these two altitudes shows no evident regime structure during the day (Figure 7d). In all

cases, the wind speeds at the two altitudes are highly correlated.

Maximum likelihood estimates of the bivariate Weibull and Rice distributions for the full nighttime data show evident dis-10

agreement between the scatter of the data and the best-fit distributions (Figure 7e,i). Goodness-of-fit tests for both distributions

were rejected (with p= 0 in both cases). When conditioned on being in either regime R1 or R2, both the bivariate Rice and

Weibull distributions result in much better representations of the nighttime data (Figure 7f,g,j,k). In all cases the p-values ex-

ceed 0.05, so the fits cannot be rejected at the 95% significance level. While neither the bivariate Rice nor Weibull distributions

is a good probability model for the full joint distribution of wind speeds at these two altitudes, both are reasonable models for15

the distributions conditioned by regime occupation. Finally, the fits of neither the bivariate Rice and Weibull distributions to

the daytime data are statistically significant at the 95% significance level. In particular, the joint Rice distribution is too broad

(relative to observations) for small values ofw10 andw200 and neither distribution is broad enough at higher wind speed values.

p-values of fits with w200 shuffled in time are all larger than those of fits to the original data; only for the Rice fit to the full

nighttime data is the shuffled p-value below 0.05. As seen in the previous data considered, there is no systematic evidence that20

the failure of the joint Weibull or Rice distributions to model the joint distributions of the Cabauw data results from a failure to

model the marginals.

3.3 Sea surface wind speeds

Twice-daily December, January, and February level 3.0 gridded SeaWinds scatterometer equivalent neutral 10 m wind speeds

between 60◦S and 60◦N at a resolution of 0.25◦× 0.25◦ from the National Aeronautics and Space Administration (NASA)25

Quick Scatterometer (QuickSCAT; Perry, 2001) are available from December 1999 through February 2008. Data flagged as

having possibly been corrupted by rain were excluded from the following analysis. Although the data are nominally twice-

daily, it is often the case that data for either the ascending or the descending pass of the satellite are missing. The maximum

likelihood parameter estimates of bivariate wind speed distributions and goodness-of-fit tests were carried out using every third

non-missing data point in order to minimize the effect of serial dependence. For the goodness-of-fit tests M = 10 quantiles30

were used because of the relatively small sample sizes. Because of the near-polar orbit of the satellite results, observations of

wind speed at different locations are not simultaneous. The joint distributions we consider therefore combine dependence in

both space and time.
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Figure 7. Joint distribution of JAS wind speeds at 10m and 200m measured at Cabauw, NL. Upper row: Wind speed scatterplots. Middle

row: kernel density estimate of the joint pdf of wind speeds (colour) and maximum likelihood bivariate Weibull distribution (contours). The

p-value of a goodness of fit test of the bivariate Weibull distribution is quoted in white. The values in brackets are the p-values obtained when

the dependence structure is eliminated by shuffling the values of w200 in time. Bottom row: as in middle row, but for best-fit bivariate Rice

distribution (contours). First column: all nighttime data (20:00-05:00 UTC). Second column: nighttime data conditioned on being in regime

R2 (very stable boundary layer). Third column: nighttime data conditioned on being in regime R1 (weakly stable boundary layer). Fourth

column: all daytime data (08:00-16:00). Values of the best-fit model parameters are given in Table 1.

Joint distributions of wind speed at (6.5◦S,135◦W) with speeds at points along a zonal transect to 165◦W (in increments

of 1◦) were estimated. As the distance between the two positions increases, there is a decreasing trend in the best-fit bivariate

Weibull dependence parameter ρ (Figure 8h) with some small fluctuations likely due to sampling variability. The same is not

20



true for the best-fit bivariate Rice dependence parameter ρ, which fluctuates wildly (Figure 8l). Large fluctuations also seen in

the best-fit value of cosψ are clearly correlated with those of ρ: where one parameter is anomalously large (relative to the spatial

trend), the other is anomalously small. Of the 30 pairs of points considered, the null hypothesis of a bivariate Rice distribution

is rejected (at the 95% significance level) at only one (Figure 8d). In contrast, p < 0.05 for the bivariate Weibull distribution at

several longitudes, particularly close to the base point at (6.5◦S,135◦W). Inspection of the best-fit bivariate Weibull pdfs (Figure5

8e-g) shows that they are broader for smaller wind speeds than for larger values, a feature not evident in the best-fit bivariate

Rice distributions (Figure 8i-k) or the scatter of data (Figure 8a-c). From these results, we find only equivocal evidence that

the pairs of wind speed data along this zonal transect are drawn from a bivariate Weibull distribution and no strong evidence

to reject the null hypothesis that they are drawn from a bivariate Rice distribution. Again, the p-values of fits to temporally

shuffled wind speeds are generally similar to or larger than those of fits to the full distribution. The bivariate Rice distribution10

with the wind speed at 142◦W (Figure 8j,k) illustrates a rare example in which the parametric fit to the original data passed

the goodness-of-fit test at the 5% significance level while the fit to the shuffled data did not; it is evident from Figure 8d that

this situation is not common. The surface wind vector components in the tropics are known to be non-Gaussian (e.g. Monahan,

2007) so we have a priori reasons to believe the joint distribution should not be Ricean. The fact that the data do not generally

allow for a rejection of the null hypothesis that the winds are bivariate Rice (for either the original or shffuled datasets) is likely15

a consequence of the relatively small sample size.

The large variations in best-fit estimates of ρ and cosψ for the bivariate Rice distribution result from the fact that for some

parameter values the distribution is only weakly sensitive to simultaneous changes in these parameters: increases in ρ can

be offset by decreases in cosψ with only small changes to the joint distribution. To demonstrate this weak sensitivity, 50

realizations of bivariate Ricean variables with (U1,σ1,U2,σ2,ρ,φ1 −φ2 +ψ) = (7.3,1.5,6.9,1.5,0.5,0) were generated for20

each of the sample sizes of N = 250,1500, and 9000. Maximum likelihood estimates of these parameters obtained from these

realizations demonstrate that for the smaller samples ρ and cosψ show strong and correlated sampling variability, with large

increases in ρ combined with large decreases in cosψ (Figure 9a-c). As expected, these sampling fluctuations become smaller

as the sample size increases. Despite the large variation of ρ and cosψ for small to intermediate sample sizes, there is relatively

little variation in the structure of the corresponding bivariate Rice distributions (Figure 9d-f).25

An indication of why increases in ρ should counterbalance decreases in cosψ with only small effects on the joint distribution

is given by the approximate expression for the correlation coefficient, Eq. (40). The value of this approximation is unaffected

by changes in ρ and ψ that leave the numerator invariant. The compensation between sampling variations in ρ and cosψ is

evident the fact that corr(w1,w2) given by Eq. (40) is an excellent approximation to the sample correlation coefficient even for

estimates of ρ and cosφ which are far away from the population values (Figure 9g-i). Note that there is no evident relationship30

between sampling fluctuations in corr(w1,w2) and those of ρ and ψ: the range of sample correlation values for (ρ,cosψ) near

the population values of (0.5,1) (open circles) is the same as that for values of (ρ,cosψ) far from these values (stars). In these

parameter ranges, the dependence between w1 and w2 constrains ρ and ψ not individually, but together - over large ranges of

values for sufficiently small sample sizes.
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Figure 8. Joint distribution of DJF QuikSCAT wind speeds at (6.5◦S, 135◦W), denoted w1, and westward along a zonal tran-

sect to 165◦W (denoted w2). Upper row (a)-(c): Scatterplots of wind speed at (6.5◦S, 135◦W) and at the points (6.5◦S,162◦W),

(6.5◦S,152◦W),(6.5◦S,142◦W). Middle row (e)-(g): Kernel density estimate of the joint pdf (colour) as well as the maximum likelihood

bivariate Weibull distribution (white contours). The p-value of a goodness of fit test of the bivariate Weibull distribution is quoted in white.

The values in brackets are the p-values obtained when the dependence structure is eliminated by shuffling the values of w2 in time. Bottom

row (f)-(k): As in (e)-(g) but for the bivariate Rice distribution. Panel (d): p-values of the bivariate goodness-of-fit tests for the wind speeds

along the transect, for the bivariate Weibull distribution (solid black) and the bivariate Rice distribution (solid red). The dashed lines corre-

spond to the p-values for shuffled w2. Panel (h): estimate of the parameter ρ from the best-fit bivariate Weibull distribution along the transect.

Panel (l): estimate of the parameters ρ (black) and cosψ (blue) from the best-fit bivariate Rice distribution along the transect. Values of the

best-fit model parameters are given in Table 1.
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Figure 9. Upper row: Estimates of ρ and cosψ from 50 realizations of bivariate Ricean variables with (U1,σ1,U2,σ2,ρ,φ1 −φ2 +ψ) =

(7.3,1.5,6.9,1.5,0.4,0) for each of the sample sizes N = 250,1250 and 9000. The open circles correspond to estimates with

cos(φ1 −φ2 +ψ)≥ 0.99, while the stars are estimates with cos(φ1 −φ2 +ψ)< 0.99. Middle row: contours of bivariate Rice pdfs corre-

sponding to 10 of the 50 best-fit parameter estimates (randomly chosen). The contour values are the same for all pdfs within each subplot.

Bottom row: scatterplot of the sample correlation coefficient between the two Ricean variables and the correlation coefficient given by the

approximate expression Eq. (40). The 1:1 line is given in solid black. The open circles and stars are as in the upper row.
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4 Conclusions

This study has considered two idealized probability models for the joint distribution of wind speeds, both derived from models

for the joint distribution of the horizontal wind components. The first, the bivariate Rice distribution, follows from assuming

that the wind vector components are bivariate Gaussian with an idealized covariance structure. The second, the bivariate

Weibull distribution, arises from nonlinear transformations of variables with a bivariate Rice distribution in the limit that the5

mean vector winds vanish (the bivariate Rayleigh distribution). While the bivariate Rice distribution has the advantage of being

more flexible and naturally related to a simplified model for the joint distribution of the wind components, the bivariate Weibull

distribution is mathematically much simpler and easier to work with. Through consideration of a range of joint distributions of

observed wind speeds (over land and over the ocean; at the surface and aloft; in space and in time) the bivariate Rice distribution

was shown to generally model the observations better than the bivariate Weibull distribution. However, in many circumstances10

the differences between the two distributions are small and the convenience of the bivariate Weibull distribution relative to the

bivariate Rice distribution is a factor which may motivate its use.

The fact that the bivariate Rice distribution is easier to work with, but less flexible, than the bivariate Weibull distribution is

evident from inspection of their analytic forms and the relative number of parameters to fit (5 vs. 6). If the bivariate Weibull

distribution was generically appropriate for modelling the bivariate wind speed distribution, there would be no need to consider15

more complicated models such as the bivariate Rice. This study provides an empirical assessment of the relative practical utility

of the two models, trading off the ability to model more general dependence structures (e.g. negatively correlated speeds)

against model simplicity. Neither the univariate nor the bivariate Weibull or Rice distributions are expected to represent the

true distributions of wind speeds (e.g. Carta et al., 2009). The results of this analysis characterize the practical utility of these

models, rather than making a claim to their “truth”. It is noteworthy that for the data considered in this study, the failure20

of either the bivariate Rice or Weibull distributions to adequately fit the joint distribution of wind speeds (at a significance

level of 5%) is not generally associated with a corresponding failure of the parametric distribution to model the marginals.

An interesting direction of future study would be consideration of other parametric models for the joint distribution of non-

negative quantities, such as the α−µ distribution (Yacoub, 2007), copula-based models (e.g. Schlözel and Friederichs, 2008),

or distributions obtained through nonlinear transformations of multivariate Gaussians (e.g. Brown et al., 1984).25

Many of the assumptions that have been made regarding the distribution of the wind components are known not to hold

in various settings. For example, the vector wind components are generally not Gaussian, either aloft or at the surface (e.g.

Monahan, 2007; Luxford and Woollings, 2012; Perron and Sura, 2013), and fluctuations will not generally be isotropic (espe-

cially over land, cf. Mao and Monahan, 2017). Furthermore, when used to model temporal dependence the assumed correlation

structure cannot account for the anisotropy in autocorrelation of orthogonal components in either space (e.g. Buell, 1960) or30

time (e.g Monahan, 2012b). Relaxing the assumptions regarding isotropy of correlation structure results in expressions for the

joint speed distributions involving integrals over angle which are not analytically tractable.

While it is possible to relax the assumption of Gaussian components for univariate speed distribution (e.g. Monahan, 2007;

Drobinski et al., 2015), extending this analysis to the bivariate case would involve specifying a non-Gaussian dependence
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structure for the components. At present, there is no physically-based model for such dependence. Without any such physi-

cal justification, the only option is an empirical investigation of the ability of different copula models to represent observed

joint wind speed distributions. It is unlikely that a copula-based model for dependence of components will admit analytically

tractable expressions for joint speed distributions. A copula-based analysis of either the components or the speeds directly is

also likely necessary for modelling extreme wind speeds (either large percentiles, peaks over threshold, or block maxima), as5

the tails of the bivariate Rice and Weibull distributions may not be adequate for this task. Finally, extending the approach used

in this study to obtain explicit closed-form results for the bivariate wind speed distribution to a higher-dimensional multivariate

setting - of wind speeds alone, or of a mixture of wind speeds and other meteorological quantities - will be analytically in-

tractable for any except the simplest (and likely unrealistic) covariance structures. It may not be practical to extend the program

of obtaining closed-form expressions for joint speed distributions from models of the component distributions much further10

beyond the bivariate Rice and Weibull speed distributions considered in this study.

Ultimately, it would be best for models of the joint distribution of wind speeds to arise from physically-based (if still

idealized) models, as has been done for the univariate case in Monahan (2006) and Monahan et al. (2011). The development

of such models represents an interesting direction of future study.

Data availability. The ERA-Interim 500 hPa zonal and meridional wind components were obtained from15

http://www.ecmwf.int/en/research/climate-reanalysis/era-interim). The Cabauw tower data were downloaded

from http://www.cesar-database.nl/. The Level 3.0 QuickSCAT data were downloaded from the NASA Jet Propulsion Labora-

tory Physical Oceanography Distributed Active Archive Center, http://podaac.jpl.nasa.gov/dataset/QSCAT_LEVEL_3_V2.

Appendix A: Numerical computation of bivariate Rice pdf

Equation (25) is difficult to evaluate numerically when the arguments of the Bessel functions become large. We have found20

that a computationally more stable result is obtained when this equation is expressed in the form

p(w1,w2) =
w1w2

2πσ2
1σ

2
2(1− ρ2)

2π∫
0

expf(w1,w2,λ) dλ, (A1)

where

f(w1,w2,φ) =− 1

2(1− ρ2)

[
w2

1 +U2

1

σ2
1

+
w2

2 +U2

2

σ2
2

− 2ρU1U2 cos(φ1 −φ2 +ψ)

σ1σ2

]
+ lnI0

(√
A2 +B2 +2AB cosλ

)
(A2)

+C cosν cosλ+ lncosh(C sinν sinλ) dλ,25

with
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A=
w1

√
a21 + b21
σ1

(A3)

B =
w2

√
a22 + b22
σ2

(A4)

C =
ρ

1− ρ2
w1w2

σ1σ2
, (A5)

and the integral is evaluated numerically. Eq. (A1) is obtained from Eq. (26) using the fact that

Ik(x)Ik(y) =
1

2π

2π∫
0

I0(
√
x2 + y2 +2xy cosφ)coskφ dφ (A6)5

(which follows from Eq. 33) and use of Eq. (24). When wi/σi becomes large, numerical evaluations of the Bessel function in

Eq. (A1) become unreliable. For the present computations using Matlab, values of Inf occur in such cases. This problem was

not solved by using the approximation Eq. (10) when the argument of the Bessel function is large, as this approximation is not

sufficiently accurate.

Appendix B: Bivariate goodness-of-fit test10

Goodness-of-fit of the bivariate distributions considered was assessed as follows. For the speed dataset wj,n, j = 1,2 and

n= 1, ...,N , evenly spaced quantiles qj,i = i/M , i= 0, ...,M for the marginals are estimated. The quantiles qj,0 = 0 and

qj,M = 1 are estimated respectively as 0.9 times the smallest observed value and 1.1 times the largest observed value. The

number of pairs of observations falling simultaneously into all pairs of quantiles are computed:

fkl =

N∑
n=1

1
[(
w1,n ∈ (q1,k,q1,(k+1)]

)∩ (w2,n ∈ (q2,l,q2,(l+1)]
)]
, (B1)15

where 1(·) is the indicator function. The pdf with maximum likelihood parameters θ is then integrated to obtain the expected

number of observations in these intervals

gkl =N

q1,(k+1)∫
q1,k

q2,(l+1)∫
q2,l

p(w1,w2;θ) dw1dw2 (B2)

and the test statistic A is computed:

A=
1

M2

M∑
k,l=1

|fkl − gkl|. (B3)20

Any elements gkl which take the value of Inf (because of numerical difficulties in evaluating the Bessel function for large

arguments; cf. Appendix A) are excluded from the calculation of the test statistic A.
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After computation of A from the observations, an ensemble of B random realizations of length N from p(w1,w2;θ) are

generated and the corresponding Ãk, k = 1, ...,B values of the test statistic are generated in the manner described above.

The p-value of the null hypothesis that the observations are drawn from the specified distribution is finally computed as the

fraction of Ãk values falling above A. Throughout this analysis, we use M = 20 and B = 250 (unless otherwise noted). This

goodness-of-fit test assumes independence of the random draws (w1n,w2n),(w1m,w2m), m �= n. To minimize the effect of5

serial dependence in data, in this study we subsample the datasets considered with a sampling interval sufficiently large to

balance reducing serial dependence with maintaining sample size.

A second goodness of fit test proposed by McAssey (2013) was also considered, but the statistical power was found to be

lower than the test described above for the distributions considered in this study.
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