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Abstract: Trajectory encounter volume – the volume of fluid that passes close to a reference 8 
fluid parcel over some time interval – has been recently introduced as a measure of mixing 9 
potential of a flow. Diffusivity is the most commonly used characteristic of turbulent diffusion. 10 
We derive the analytical relationship between the encounter volume and diffusivity under the 11 
assumption of an isotropic random walk, i.e. diffusive motion, in one and two dimensions. We 12 
apply the derived formulas to produce maps of encounter volume and the corresponding 13 
diffusivity in the Gulf Stream region of the North Atlantic based on satellite altimetry, and 14 
discuss the mixing properties of Gulf Stream rings. Advantages offered by the derived formula 15 
for estimating diffusivity from oceanographic data are discussed, as well as applications to other 16 
disciplines. 17 

1. Introduction 18 

The frequency of close encounters between different objects or organisms can be a fundamental 19 
metric in social and mechanical systems. The chances that a person will meet a new friend or 20 
contract a new disease during the course of a day is influenced by the number of distinct 21 
individuals that he or she comes into close contact with. The chances that a predator will ingest a 22 
poisonous prey, or that a mushroom hunter will mistakenly pick up a poisonous variety, is 23 
influenced by the number of distinct species or variety of prey or mushrooms that are 24 
encountered. In fluid systems, the exchange of properties such as temperature, salinity or 25 
humidity between a given fluid element and its surroundings is influenced by the number of 26 
other distinct fluid elements that pass close by over a given time period. In all these cases it is 27 
best to think of close encounters as providing the potential, if not necessarily the act, of 28 
transmission of germs, toxins, heat, salinity, etc...  29 

In cases of property exchange within continuous media such as air or water, it may be most 30 
meaningful to talk about a mass or volume passing within some radius of a reference fluid 31 
element as this element moves along its trajectory. Rypina and Pratt (2017) introduce a trajectory 32 
encounter volume, 𝑉, the volume of fluid that comes in contact with the reference fluid parcel 33 
over a finite time interval. The increase of V over time is one measure of the mixing potential of 34 
the element, “mixing” being the irreversible exchange of properties between different water 35 



2 
 

parcels. Thus, fluid parcels that have large encounter volumes as they move through the flow 36 
field have large mixing potential, i.e., an opportunity to exchange properties with other fluid 37 
parcels, and vice versa.  38 

In order to formally define the encounter volume V, Rypina and Pratt (2017) subdivide the entire 39 
fluid into infinitesimal fluid elements with volumes 𝑑𝑉𝑖, and define the encounter volume for 40 
each fluid element to be the total volume of fluid that passes within a radius R of it over a finite 41 
time interval 𝑡0 < 𝑡 <  𝑡0 + 𝑇, i.e., 42 

𝑉(�⃗�0; 𝑡0,𝑇,𝑅) = lim 𝑑𝑉𝑖→0 𝛴𝑖 𝑑𝑉𝑖.                (1) 43 

In practice, for dense uniform grids of trajectories, 𝑥𝑘����⃗ (�⃗�0𝑘; 𝑡0,𝑇),𝑘 = 1, … ,𝐾, where 𝑡0 is the 44 
starting time, 𝑇 is the trajectory integration time, and �⃗�0𝑘 is the trajectory initial position 45 
satisfying �⃗�(�⃗�0, 𝑡0;𝑇 = 0) = �⃗�0, both the limit and the subscript in the above definition (1) can 46 
be dropped. In this case, the encounter volume can be approximated by   47 

𝑉 ≈  𝑁 𝛿𝑉,                   (2) 48 

where the encounter number, 49 

𝑁��⃗�0𝑟𝑟𝑟; 𝑡0,𝑇,𝑅� = ∑ I�min��𝑥𝑘����⃗ (�⃗�0𝑘; 𝑡0,𝑇) − �⃗�𝑟𝑟𝑟��⃗�0𝑟𝑟𝑟; 𝑡0,𝑇��� ≤ 𝑅�𝐾
𝑘=1
𝑘≠𝑟𝑟𝑟

,          (3) 50 

is the number of trajectories that come within a radius 𝑅 of the reference trajectory, 51 
�⃗�𝑟𝑟𝑟��⃗�0𝑟𝑟𝑟; 𝑡0,𝑇�, over a time 𝑡0 < 𝑡 <  𝑡0 + 𝑇. Here the indicator function I is 1 if true and 0 if 52 
false, and 𝐾 is the total number of particles. As in Rypina and Pratt (2017), we define encounter 53 
volume based on the number of encounters with different trajectories, not the total number of 54 
encounter events (see the schematic diagram of trajectory encounters in Fig. 1). Rypina and Pratt 55 
(2017) discuss how the encounter volume can be used to identify Lagrangian Coherent 56 
Structures (LCS) such as stable and unstable manifolds of hyperbolic trajectories and regions 57 
foliated by the KAM-like tori surrounding elliptic trajectories in realistic geophysical flows. A 58 
detailed comparison between the encounter volume method and some other Lagrangian methods 59 
of LCS identification, as well as the dependences on parameters, t0, T, R, and on grid spacing (or 60 
on the number of trajectories, K), and the relative advantages of different techniques, was given 61 
in Rypina and Pratt (2017). The interested reader is referred to that earlier paper for details. The 62 
current paper is concerned only with the question of finding the connection between the 63 
encounter volume and diffusivity, rather than identifying LCS. 64 

Given the seemingly fundamental importance of close encounters, it is of interest to relate 65 
metrics such as 𝑉 to other bulk measures of interactions within the system. For example, in some 66 
cases it may be more feasible to count encounters rather than to measure interactions or property 67 
exchanges directly, whereas in other cases the number of encounters might be most pertinent to 68 
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the process in question but difficult to measure directly. In many applications, including ocean 69 
turbulence, the most commonly used metric of mixing is the eddy diffusivity, 𝜅, a quantity that 70 
relates transport of fluid elements by turbulent eddies to diffusion (LaCasce, 2008; Vallis, 2006; 71 
Rypina et al., 2015; Kamenkovich et al., 2015). The underlying assumption is that the eddy field 72 
drives downgradient tracer transfer, similar to molecular diffusion but with a different (larger) 73 
diffusion coefficient. This diffusive parameterization of eddies has been implemented in many 74 
non-eddy-resolving oceanic numerical models. The diffusivity can be measured by a variety of 75 
means, including dye release (Ledwell et al., 2000; Sundermeyer and Ledwell, 2001; Rypina et 76 
al., 2016), surface drifter dispersion (Okubo, 1971; Davis, 1991; LaCasce, 2008, La Casce et al., 77 
2014; Rypina et al. 2012; 2016), and property budgets (Munk, 1966). In numerical models 𝜅 is 78 
often assumed constant in both time and space, or related in some simplified manner to the large-79 
scale flow properties (Visbeck, 1997). 80 

Because the purpose of the diffusivity coefficient 𝜅 is to quantify the intensity of the eddy-81 
induced tracer transfer, i.e., the intensity of mixing, it is tempting to relate it to the encounter 82 
volume, 𝑉, which quantifies the mixing potential of a flow and thus is closely related to tracer 83 
mixing. Such an analytical connection between the encounter volume and diffusivity could 84 
potentially also be useful for the parameterizations of eddy effects in numerical models. The 85 
main goal of this paper is to develop a relationship between 𝑉 and 𝜅 in one and two dimensions. 86 
Specifically, we seek an analytical expression for the encounter volume, 𝑉, i.e., the volume of 87 
fluid that passed within radius 𝑅 from a reference particle over time, as a function of 𝜅. The 88 
relationship is not as straightforward as one might first imagine, but can nevertheless be written 89 
down straightforwardly in the long-time limit. This is opportune, since the concept of eddy 90 
diffusivity is most relevant in the long-time limit.  91 

2. Connection between encounter volume and diffusivity 92 

This problem was framed in mathematical terms in Rypina and Pratt (2017), who outlined some 93 
initial steps towards deriving the analytical connection between encounter volume and diffusivity 94 
but did not finish the derivation. In this section, we complete the derivation.  95 

2.1. Main idea for the derivation 96 

Let us start by considering the simplest diffusive random walk process in one or two dimensions, 97 
where particles take steps of fixed length ∆𝑥 in random directions along the x-axis in 1D or 98 
along both x- and y-axes in 2D, respectively, at fixed time intervals Δ𝑡.  99 

The single particle dispersion, i.e., the ensemble-averaged square displacement from the 100 
particle’s initial position, is 𝐷1𝐷 =< (𝑥 − 𝑥0)2 > and 𝐷2𝐷 =< (𝑥 − 𝑥0)2 + (𝑦 − 𝑦0)2 > in 1D 101 
or 2D, respectively. For a diffusive process, the dispersion grows linearly with time, and the 102 
constant proportionality coefficient related to diffusivity. Specifically,  𝐷1𝐷 = 2𝜅1𝐷𝑡 with 103 
𝜅1𝐷 = ∆𝑥2/ (2Δ𝑡), and  𝐷2𝐷 = 4𝐾2𝐷𝑡 with 𝜅2𝐷 = ∆𝑥2/ (4Δ𝑡). 104 
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It is convenient to consider the motion in a reference frame that is moving with the reference 105 
particle. In that reference frame, the reference particle will always stay at the origin, while other 106 
particles will still be involved in a random walk motion, but with a diffusivity  twice that in the 107 
stationary frame, 𝜅𝑚𝑚𝑚𝑖𝑚𝑚=2𝜅𝑠𝑠𝑠𝑠𝑖𝑚𝑚𝑠𝑟𝑠 (Rypina and Pratt, 2017).   108 

The problem of finding the encounter number then reduces to counting the number of randomly 109 
walking particles (with diffusivity 𝜅𝑚𝑚𝑚𝑖𝑚𝑚) that come within radius 𝑅 of the origin in the 110 
moving frame. This is related to a classic problem in statistics – the problem of a random walker 111 
reaching an absorbing boundary, usually referred to as “a cliff” (because once a walker reaches 112 
the absorbing boundary, it falls off the cliff), over a time interval from 0 to 𝑡.     113 

In the next section we will provide formal solutions; here we simply outline the steps to 114 
streamline the derivation. We start by deriving the appropriate diffusion equation for the 115 
probability density function, 𝑝(𝑥 ���⃗ , 𝑡), of random walkers in 1D or 2D:  116 

𝜕𝜕
𝜕𝑠

= 𝜅𝛻2𝑝.                   (4) 117 

We place a cliff, 𝑥𝑐 �����⃗ , at the perimeter of the encounter sphere, i.e., at a distance 𝑅 from the 118 
origin, and impose an absorbing boundary condition at a cliff, 119 

𝑝(𝑥𝑐 �����⃗ , 𝑡) = 0,                 (5a) 120 

which removes (or “absorbs”) particles that have reached the cliff (see Fig. 2 for a schematic 121 
diagram). We then consider a random walker that is initially located at a point 𝑥0 �����⃗  outside the 122 
cliff at 𝑡 = 0, i.e., 123 

𝑝(𝑥 ���⃗ , 𝑡 = 0) = 𝛿(𝑥 ���⃗ − 𝑥0 �����⃗ ),               (5b) 124 

and we write an analytical solution for the probability density function satisfying Eqs. (4-5), 125 

𝐺(𝑥 ���⃗ , 𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ ),                  (6) 126 

that quantifies the probability to find a random walker initially located at 𝑥0 �����⃗   at any location 𝑥 ���⃗  127 
outside of the cliff at a later time 𝑡 > 0. In mathematical terms, 𝐺 is the Green’s function of the 128 
diffusion equation.  129 

The survival probability, which quantifies the probability that a random walker initially located 130 
at 𝑥0 �����⃗  at 𝑡 = 0 has “survived” over time 𝑡 without falling off the cliff, is  131 

𝑆(𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ ) = ∫𝐺(𝑥 ���⃗ , 𝑡; 𝑥0 �����⃗ , 𝑥𝑐  �����⃗ )𝑑𝑥 ���⃗ ,               (7) 132 

where the integral is taken over all locations outside of the cliff. The encounter, or “non-133 
survival”, probability can then be written as the conjugate quantity, 134 
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 𝑃𝑟𝑚(𝑡; 𝑥0 �����⃗ , 𝑥𝑐  �����⃗ ) = 1 − 𝑆(𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ ),                (8) 135 

which quantifies the probability that a random walker initially located at 𝑥0 �����⃗  at 𝑡 = 0 has 136 
reached, or fallen off, the cliff over time 𝑡. This allows one to write the encounter volume, i.e., 137 
the volume occupied by particles that were initially located outside of the cliff and that have 138 
reached the cliff by time 𝑡, as  139 

𝑉(𝑡; 𝑥𝑐  �����⃗ ) = ∫𝑃𝑟𝑚(𝑡; 𝑥0 �����⃗ , 𝑥𝑐 �����⃗ )𝑑𝑥0 �����⃗  ,                 (9) 140 

where the integral is taken over all initial positions outside of the cliff.  141 

 142 
2.2. 1D case 143 

Consider a random walker initially located at the origin, who takes, with a probability ½, a fixed 144 
step ∆𝑥 to the right or to the left along the x-axis after each time interval Δ𝑡. Then the probability 145 
to find a walker at a location 𝑥 = 𝑛∆𝑥 at after (𝑚 + 1) steps is 146 

𝑝(𝑛∆𝑥, (𝑚 + 1)Δ𝑡) = 1/2[𝑝�(𝑛 − 1)∆𝑥,𝑚Δ𝑡� + 𝑝�(𝑛 + 1)∆𝑥,𝑚Δ𝑡�].         (10) 147 

Using a Taylor series expansion in ∆𝑥 and ∆𝑡, we can write down the finite-difference 148 
approximation to the above expression as 149 

𝑝(𝑥, 𝑡) + Δ𝑡
𝜕𝑝
𝜕𝑡

=
1
2
�𝑝(𝑥, 𝑡) − ∆𝑥

𝜕𝑝
𝜕𝑥

+
∆𝑥2

2
𝜕2𝑝
𝜕𝑥2

+ 𝑝(𝑥, 𝑡) + ∆𝑥
𝜕𝑝
𝜕𝑥

+
∆𝑥2

2
𝜕2𝑝
𝜕𝑥2

+ 𝑂(∆𝑥4)� = 

= 𝑝(𝑥, 𝑡) + ∆𝑥2

2
𝜕2𝜕
𝜕𝑥2

+ 𝑂(∆𝑥4),              (11) 150 

yielding a diffusion equation  151 

𝜕𝜕
𝜕𝑠

= 𝜅 𝜕2𝜕
𝜕𝑥2

                 (12) 152 

with diffusivity coefficient 𝜅 = ∆𝑥2

2∆𝑠
. 153 

 154 

A Green’s function for the 1D diffusion equation without a cliff is a solution with initial 155 
condition 𝑝(𝑥, 𝑡 = 0; 𝑥0) = 𝛿(𝑥 − 𝑥0) in an unbounded domain. It takes the form 156 

𝐺𝑢𝑚𝑢𝑚𝑢𝑚𝑑𝑟𝑑(𝑥, 𝑡; 𝑥0) = 1
√4𝜋𝜅𝑠

𝑒−
(𝑥−𝑥0)2

4𝜅𝑡 .             (13) 157 

A Green’s function with the cliff (see Fig. 2 for a schematic diagram), for a solution to the 158 
initial-value problem with 𝑝(𝑥, 𝑡 = 0; 𝑥0) = 𝛿(𝑥 − 𝑥0) in a semi-infinite domain, 𝑥 ∈ [−∞; 𝑥𝑐], 159 
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with an absorbing boundary condition at a cliff, 𝑝(𝑥 = 𝑥𝑐, 𝑡; 𝑥0) = 0, can be constructed by the 160 
method of images from two unbounded Green’s functions as  161 

𝐺(𝑥, 𝑡; 𝑥0, 𝑥𝑐) = 1
√4𝜋𝜅𝑠

(𝑒−
(𝑥−𝑥0 )2

4𝜅𝑡 − 𝑒−
(𝑥−(2𝑥𝑐−𝑥0))2

4𝜅𝑡 ).            (14) 162 

It follows from (7-9) that the survival or non-encounter probability is 163 

𝑆(𝑡; 𝑥0, 𝑥𝑐): = ∫ 𝐺(𝑥, 𝑡; 𝑥0, 𝑥𝑐)𝑑𝑥𝑥𝑐
−∞ = 𝐸𝐸𝐸[ 𝑥𝑐−𝑥0

2√𝜅𝑠
],            (15) 164 

the encounter probability is 165 

𝑃𝑟𝑚(𝑡; 𝑥0, 𝑥𝑐) = 1 − 𝑆(𝑡) = 1 − 𝐸𝐸𝐸 �𝑥𝑐−𝑥0
2√𝜅𝑠

�,            (16) 166 

and the encounter volume is  167 

𝑉(𝑡;𝑥𝑐) = ∫ 𝑃𝑟𝑚(𝑡; 𝑥0,𝑥𝑐)𝑑𝑥0
𝑥𝑐
−∞ = ∫ �1 − 𝐸𝐸𝐸 � 𝑥𝑐−𝑥0

2√𝜅𝑠
��𝑑𝑥0

𝑥𝑐
−∞ = 2

√𝜋
√𝜅𝑡.               (17) 168 

The above formula accounts for the randomly walking particles that have reached the cliff from 169 
the left over time 𝑡. By symmetry, if the cliff was located to the right of the origin, the same 170 
number of particles would be reaching the cliff from the right, so the total encounter volume is   171 

𝑉(𝑡; 𝑥𝑐) = 4
√𝜋
√𝜅𝑡.               (18) 172 

Note that formula (18) gives the encounter volume, i.e., the volume of fluid coming within radius 173 
𝑅 from the origin, in a reference frame moving with the reference particle, so the corresponding 174 
diffusivity in the right-hand side of (18) is  𝜅𝑚𝑚𝑚𝑖𝑚𝑚=2𝜅𝑠𝑠𝑠𝑠𝑖𝑚𝑚𝑠𝑟𝑠. 175 

2.3. 2D case 176 

Consider a random walker in 2D, who is initially located at the origin and who takes, with a 177 
probability of 1/4, a fixed step of length ∆𝑥 to the right, left, up or down after each time interval 178 
Δ𝑡. Then the probability to find a walker at a location 𝑥 = 𝑛∆𝑥, 𝑦 = 𝑚∆𝑦 at time 𝑡 = (𝑙 + 1)Δ𝑡 179 
is 180 

𝑝(𝑛∆𝑥,𝑚𝑚𝑦, (𝑙 + 1)𝑚𝑡) = 1
4
�𝑝�(𝑛 − 1)∆𝑥,𝑚Δ𝑦, 𝑙Δ𝑡� + 𝑝�(𝑛 + 1)∆𝑥,𝑚Δ𝑦, 𝑙Δ𝑡� +181 

𝑝(𝑛∆𝑥, (𝑚− 1)Δ𝑦, 𝑙Δ𝑡) + 𝑝(𝑛∆𝑥, (𝑚 + 1)Δ𝑦, 𝑙Δ𝑡)�.           (19) 182 

Using a Taylor series expansion in ∆𝑥, ∆𝑦 and ∆𝑡, the finite-difference approximation leads to a 183 
diffusion equation 184 

𝜕𝜕
𝜕𝑠

= 𝜅(𝜕
2𝜕

𝜕𝑥2
+𝜕

2𝜕
𝜕𝑠2

)                (20) 185 
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with diffusivity coefficient 𝜅 = ∆𝑥2

4∆𝑠
. 186 

To proceed, we need an analytical expression for the Green’s function of Eq. (20) with a cliff at a 187 
distance 𝑅 from the origin, i.e., a solution to the initial-value problem with 𝑝(𝑥 ���⃗ , 𝑡 = 0; 𝑥0 �����⃗ ) =188 
𝛿(𝑥 ���⃗ − 𝑥0 �����⃗ ) for the above 2D diffusion equation on a semi-infinite plane (𝐸 ≥ 𝑅, 0 < 𝜃 ≤ 2𝜋), 189 
bounded internally by an absorbing boundary (a cliff) located at 𝐸 = 𝑅, so that 𝑝(𝐸 =190 
𝑅,𝜃, 𝑡; 𝑥0 �����⃗ ) = 0 (see Fig. 2(right) for a schematic diagram). Here (𝐸,𝜃) are polar coordinates. 191 

Carlslaw and Joeger (1939) give the answer as 192 

𝐺(𝐸,𝜃, 𝑡; 𝐸0,𝜃0,𝑅) = 𝑢 + 𝑤 = ∑ (𝑢𝑚(𝐸, 𝑡; 𝐸0,𝑅) + 𝑤𝑚(𝐸, 𝑡; 𝐸0,𝑅)) cos𝑛(𝜃 − 𝜃0)∞
𝑚=−∞        (21) 193 

where 𝐸0(≥ 𝑅),𝜃0 denote the source location, and  194 

{𝑢𝑚,𝑤𝑚} = 𝐿−1 �𝑢�𝑚 ,𝑤�𝑚� = 1
2𝜋𝑖 

lim𝑇→∞ ∫ 𝑒𝑠𝑠 �𝑢�𝑚 ,𝑤�𝑚�
𝛾+𝑖𝑇
𝛾−𝑖𝑇 𝑑𝑑  195 

are the inverse Laplace transforms of  196 

𝑢�𝑚 = 1
2𝜋𝜅

�𝐼𝑚
(𝑞𝐸)𝐾𝑚(𝑞𝐸0),𝑅 < 𝐸 < 𝐸0
𝐼𝑚(𝑞𝐸0)𝐾𝑚(𝑞𝐸), 𝐸 > 𝐸0

 and 𝑤�𝑚 = − 𝐼𝑛(𝑞𝑞)
𝐾𝑛(𝑞𝑞)𝐾𝑚(𝑞𝐸0)𝐾𝑚(𝑞𝐸)                (22) 197 

with 𝑞 =  �𝑠
𝜅

.  198 

The survival probability (from Eq. (7)) is  199 

𝑆(𝑡; 𝐸0,𝑅) = ∫ 𝐺(𝑥 ���⃗ , 𝑡; 𝑥0 �����⃗ ,𝑅)𝑑2𝑥 ���⃗𝑞2 = ∫ ∫ ∑ (𝑢𝑚 + 𝑣𝑚) cos𝑛(𝜃 − 𝜃0)∞
𝑚=−∞  𝐸 𝑑𝐸 𝑑𝜃∞

𝑞 =2𝜋
0200 

2𝜋 ∫ (𝑢0 + 𝑣0)∞
𝑞 𝐸𝑑𝐸.                (23) 201 

Next, we take the Laplace transform of the survival probability and write it in terms of a Laplace 202 
variable 𝑑 as  203 

𝑆(𝑑, 𝐸0,𝑅) = ∫ 𝑒−𝑠𝑠𝑆(𝑡; 𝐸0,𝑅)𝑑𝑡∞
0 = 2𝜋 ∫ (𝑢0 + 𝑤0)∞

𝑞 𝐸𝑑𝐸 = 1
𝜅 ∫ 𝐼0(𝑞𝐸)𝐾0(𝑞𝐸0)𝑟0

𝑞 𝐸𝑑𝐸 +204 
1
𝜅 ∫ 𝐼0(𝑞𝐸0)𝐾0(𝑞𝐸)∞

𝑟0
𝐸𝑑𝐸 − 1

𝜅 ∫
𝐼0(𝑞𝑞)
𝐾0(𝑞𝑞)𝐾0(𝑞𝐸)𝐾0(𝑞𝐸0)∞

𝑞 𝐸𝑑𝐸.           (24) 205 

Using  ∫ 𝐸𝐼0(𝐸)𝑑𝐸 = 𝐸𝐼1(𝐸) and ∫ 𝐸𝐾0(𝐸)𝑑𝐸 = −𝐸𝐾1(𝐸), and lim𝑥→∞ 𝑥𝐾1(𝑥) = 0 we find 206 
 207 

𝑆(𝑑; 𝐸0,𝑅) =208 
1
𝜅
𝐾0(𝑞𝐸0) �𝑟

𝑞
𝐼1(𝑞𝐸)� �𝐸

′

𝑅
+ 1

𝜅
𝐼0(𝑞𝐸0) �− 𝑟

𝑞
𝐾1(𝑞𝐸)� �∞𝑅 − 1

𝜅
𝐼0(𝑞𝑟0)
𝐾0(𝑞𝑞)𝐾0(𝑞𝐸0) �− 𝑟

𝑞
𝐾1(𝑞𝐸)� �∞𝑅 = 209 

1
𝜅
�𝑟0
𝑞
�𝐼1(𝑞𝐸0)𝐾0(𝑞𝐸0) + 𝐼0(𝑞𝐸0)𝐾1(𝑞𝐸0)� − 𝑠

𝑞
𝐾0(𝑞𝑟0)
𝐾0(𝑞𝑞) �𝐼1(𝑞𝑅)𝐾0(𝑞𝑅) + 𝐼0(𝑞𝑅)𝐾1(𝑞𝑅)��.       (25) 210 
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But 𝐼1(𝑥)𝐾0(𝑥) + 𝐼0(𝑥)𝐾1(𝑥) = 1
𝑥
  so 211 

𝑆(𝑑; 𝐸0,𝑅) = 1
𝜅
� 1
𝑞2
− 1

𝑞2
𝐾0(𝑞𝑟0)
𝐾0(𝑞𝑞)� = 1

𝑠
�1 − 𝐾0(𝑞𝑟0)

𝐾0(𝑞𝑞)�.                    (26) 212 

From (8), the encounter probability 𝑃𝑟𝑚(𝑡; 𝑥0 �����⃗ ,𝑅) = 1 − 𝑆(𝑡; 𝑥0 �����⃗ ,𝑅), and from (9) the encounter 213 
volume is 214 

𝑉(𝑡;𝑅) = ∫ 𝑃𝑟𝑚𝑑
2𝑥0 �����⃗𝑅2 = ∫ ∫ 𝑃𝑟𝑚 𝐸0 𝑑𝐸0 ∞

𝑅
2𝜋

0 = 2𝜋∫ [1 − 𝑆(𝑡; 𝐸0,𝑅)]𝐸0 𝑑𝐸0 ∞
𝑅 .         (27) 215 

We now take the Laplace transform of the encounter number to get 216 

𝑉�(𝑑;𝑅) = ∫ 𝑒−𝑠𝑠𝑉(𝑡;𝑅)𝑑𝑡∞
0 = 2𝜋 ∫ �1

𝑑
− 𝑆(𝑑;𝑅)� 𝐸0 𝑑𝐸0 ∞

𝑞 = 2𝜋 ∫ 𝐾0(𝑞𝑟0)
𝐾0(𝑞𝑞)

 𝑟0
𝑠
𝑑𝐸0 =∞

𝑞217 

2𝜋
𝑠𝐾0(𝑞𝑞) �−

𝑟0
𝑞
𝐾1(𝑞𝐸0)� �∞𝑅 = 2𝜋𝑞

𝑠𝑞
𝐾1(𝑞𝑞)
𝐾0(𝑞𝑞) = 2𝜋𝑞

𝑠3/2 𝜅−
1
2

𝐾1��
𝑠
𝜅𝑞�

𝐾0��
𝑠
𝜅𝑞�

,                      (28) 218 

where we used ∫ 𝑒−𝑠𝑠𝑑𝑡 = 1
𝑠

∞
0 , ∫ 𝐾0(𝑧)𝑧 𝑑𝑧 = −𝑧𝐾1(𝑧), and lim𝑧→∞ 𝐾1 (𝑧)=0. 219 

The explicit connection between the encounter volume and diffusivity is thus given by the 220 
inverse Laplace transform of the above expression (28), 221 

𝑉(𝑡;𝑅) = 𝐿−1{𝑉�(𝑑;𝑅)}.               (29) 222 

Although numerically straightforward to evaluate, a non-integral analytic form does not exist for 223 
this inverse Laplace transform. To better understand the connection between 𝑉 and 𝜅 and the 224 
growth of 𝑉 with time, we next look at the asymptotic limits of small and large time. The small-𝑡 225 
limit is transparent, while the long-𝑡 limit is more involved.          226 

(a) small-𝑡 asymptotics 227 

In the small-𝑡 limit, the corresponding Laplace coordinate 𝑑 is large, giving     228 

𝑉�(𝑑;𝑅) ~2𝜋𝑅𝜅
1
2

1
𝑠3/2                     (30) 229 

because 𝑙𝑙𝑚𝑧→∞
𝐾1(𝑧)
𝐾0(𝑧) = 1. Noting that 𝐿−1 �𝑑−

3
2� = 2√𝑠

√𝜋
, the inverse Laplace transform of the 230 

above gives the following simple expression connecting the encounter number and diffusivity at 231 
short times: 232 

𝑉(𝑡;𝑅)
𝑠→0
�⎯� 4𝑅√𝜋 √𝜅𝑡.               (31) 233 

(b) large-𝑡 asymptotics 234 
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In the large-𝑡 limit, the Laplace coordinate 𝑑 is small and the asymptotic expansions 𝐾0,𝐾1 take 235 
the form 236 

𝑙𝑙𝑚𝑧→0𝐾0(𝑧) = −𝛾 − ln �𝑧
2
� + 𝑂(�𝑧

2
�
2

ln (𝑧
2
)),             (32) 237 

𝑙𝑙𝑚𝑧→0𝐾1(𝑧) = 1
𝑧

+ 𝑧
2

[ln �𝑧
2
� + 𝛾 − 1

2
] + 𝑂 (z3ln 𝑧),               (33) 238 

giving 239 

lim𝑠→0 𝑉�(𝑑;𝑅) = − 4𝜋𝜅
𝑠2 ln(𝜏𝑠) −

𝜋𝑞2

𝑠
+ 𝑂 � 1

𝑠 ln(𝜏𝑠)�,            (34) 240 

where 241 

 𝜏 = 𝑞2𝑟2𝛾

4𝜅
.                (35) 242 

We now need to take an inverse Laplace transform of 𝑉� . The second term in the right-hand side 243 

gives 𝐿−1 �𝜋𝑞
2

𝑠
� = 𝜋𝑅2. Llewelyn Smith (2000) discusses the literature for inverse Laplace 244 

transforms of the form (𝑑𝛼 ln 𝑑)−1 for small 𝑑. For our problem, the discussion in Olver (1974, 245 
Chap. 8, §11.4) is the most helpful approach. His result (11.13), discarding the exponential term 246 
which is not needed here, shows that the inverse Laplace transform of (𝑑2 ln 𝑑)−1 has the 247 
asymptotic expansion  248 

𝐿−1 � 1
𝑠2 ln 𝑠 

�
𝑠→∞
�⎯� − 𝑡 � 1

ln 𝑠
+ 1−𝛾

(ln 𝑠)2 
+ 𝑂((ln 𝑡)−3)�.            (36) 249 

Using 𝐿−1{𝐹(𝜏𝑑)} = 1
𝜏
𝐸(𝑡/𝜏), we thus obtain the desired connection between the encounter 250 

number and diffusivity at long times: 251 

𝑉(𝑡;𝑅)
𝑠→∞
�⎯� 4𝜋𝜅𝑡 � 1

ln𝑡𝜏
+ 1−𝛾

(ln𝑡𝜏)
2

 
� − 𝜋𝑅2 + 𝑂 � 𝑠

(ln𝑡𝜏)
3� + 𝑂 � 1

ln𝑡𝜏
�.         (37) 252 

Physically, the time scale 𝜏 (Eq. (35)) defines the time at which the dispersion of random 253 
particles, 𝐷 = 4𝜅𝜏, is comparable to the volume of the encounter sphere, ie., 𝑅2𝑒2𝛾 ≅ 𝜋𝑅2 in 254 
2D. Thus for 𝑡 ≫ 𝜏, particles are coming to the encounter sphere “from far away.” 255 

For practical applications, it is sufficient to only keep the leading order term of the expansion, 256 
yielding a simpler connection between encounter number and diffusivity, 257 

  𝑉(𝑡;𝑅)
𝑠→∞
�⎯� 4𝜋𝜅𝑠

ln𝑡𝜏
+ 𝑂 � 𝑠

(ln𝑡𝜏)
2�.              (38) 258 
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Note again that the diffusivity in the right-hand side of Eqs. (28-29), (31) and (38) is 259 
𝜅𝑚𝑚𝑚𝑖𝑚𝑚=2𝜅𝑠𝑠𝑠𝑠𝑖𝑚𝑚𝑠𝑟𝑠. 260 

2.4. Numerical tests of the derived formulas in 1d and 2d 261 

Before applying our results to the realistic oceanic flow, we numerically tested the accuracy of 262 
the derived formulas in idealized settings by numerically simulating a random walk motion in 1D 263 
and 2D, as described in the beginning of subsections 2.1 and 2.2, respectively. We then 264 
computed the encounter number and encounter volume using definition (2-3), and compared the 265 
result with the derived exact formulas (18) and (28-29) and with the asymptotic formulas (31) 266 
and (38). Note that although formulas (28-29) are exact, the inverse Laplace transform still needs 267 
to be evaluated numerically and thus is subject to numerical accuracy, round-off errors etc.; these 268 
numerical errors are, however, small, and we will refer to numerical solutions of (28-29) as 269 
“exact,” as opposed to the asymptotic solutions (31) and (38).  270 

The comparison between numerical simulations and theory is shown in Fig. 3. Because the 271 
numerically simulated random walk deviates significantly from the diffusive regime over short 272 
(< O(100Δt)) time scales, the agreement between numerical simulation and theory is poor at 273 
those times in both 1D and 2D. Once the random walkers have executed > 100 time steps, 274 
however, the dispersion reaches the diffusive regime, and the agreement between the theory (red) 275 
and numerical simulation (black) rapidly improves for both 1D and 2D cases, with the two 276 
curves approaching each other at long times. In 2D, the long-time asymptotic formula (38) works 277 
well at long times, 𝑡 ≫ 𝜏, as expected. The 2D short-time asymptotic formula (green) agrees well 278 
with the exact formula (red) at short times but not with the numerical simulations (black) for the 279 
same reason as discussed above, i.e., because the numerically simulated random walk has not yet 280 
reached the diffusive regime at those times. 281 

3. Application to the altimetric velocities in the Gulf Stream region 282 

Sea surface height measurements made from altimetric satellites provide nearly global estimates 283 
of geostrophic currents throughout the World Oceans. These velocity fields, previously 284 
distributed by AVISO, are now available from the Copernicus Marine and Environment 285 
Monitoring Service (CMEMS) website (http://marine.copernicus.eu/), both along satellite tracks 286 
and as a gridded mapped product in both near-real and delayed time. Here we use the delayed-287 
time gridded maps of absolute geostrophic velocities with ¼ deg spatial resolution and temporal 288 
step of 1 day, and focus our attention on the Gulf Stream extension region of the North Atlantic 289 
Ocean. There, the Gulf Stream separates from the coast and starts to meander, shedding cold- 290 
and warm-core Gulf Stream rings from its southern and northern flanks. These rings are among 291 
the strongest mesoscale eddies in the ocean. However, their coherence, interaction with each 292 
other and with other flow features, and their contribution to transport, stirring and mixing are still 293 
not completely understood (Bower et al., 1985; Cherian and Brink, 2016).  294 

http://marine.copernicus.eu/
http://marine.copernicus.eu/
http://marine.copernicus.eu/
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Maps showing the encounter volume for fluid parcel trajectories in the region, and the 295 
corresponding diffusivity estimates (Fig. 4) could be useful both for understanding and 296 
interpreting the transport properties of the flow, as well as for benchmarking and 297 
parameterization of eddy effects in numerical models. In our numerical simulations, trajectories 298 
were released on a regular grid with 𝑑𝑥 = 𝑑𝑦 ≅  10 km on 11 Jan 2015 and were integrated 299 
forward in time for 90 days using a fifth-order variable-step Runge-Kutta integration scheme 300 
with bi-linear interpolation between grid points in space and time. The encounter radius was 301 
chosen to be 𝑅 = 30 km in both zonal and meridional directions, i.e., about a third of a radius of 302 
a typical Gulf Stream ring. Similar parameter values were used in Rypina and Pratt (2017), 303 
although our new simulation was carried out using more recent 2015 velocities instead of 1997 304 
as in that paper. 305 

The encounter volume field, shown in the top left panel of Fig. 4, highlights the overall 306 
complexity of the flow and identifies a variety of features with different mixing potential, most 307 
notably several Gulf Stream rings with spatially small low-V (blue) cores and larger high-𝑉 (red) 308 
peripheries. Although the azimuthal velocities and vorticity-to-strain ratio are large within the 309 
rings, the coherent core regions with inhibited mixing potential are small, suggesting that the 310 
coherent transport by these rings might be smaller than anticipated from the Eulerian diagnostics 311 
such as the Okubo-Weiss or closed-streamline criteria (Chelton et al., 2011; Abernathey and 312 
Haller, 2017). On the other hand, the rings’ peripheries, where the mixing potential is elevated 313 
compared to the surrounding fluid, cover a larger geographical area than the cores. Thus, while 314 
rings inhibit mixing within their small cores, the enhanced mixing on the periphery might be 315 
their dominant effect. This is consistent with the results from Rypina and Pratt (2017), but a 316 
more thorough analysis is needed to test this hypothesis. Notably, the encounter number is also 317 
large along the northern and southern flank of the Gulf Stream jet, with two separate red curves 318 
running parallel to each other and a valley in between (although the curves could not be traced 319 
continuously throughout the entire region). This enhanced mixing on both flanks of the Gulf 320 
Stream Extension current is reminiscent of chaotic advection driven by the tangled stable and 321 
unstable manifolds at the sides of the jet (del-Castillo-Negrete and Morrison, 1993; Rogerson et 322 
al., 1999; Rypina et al.,  2007; Rypina and Pratt, 2017), and is also consistent with the existence 323 
of critical layers (Kuo, 1949; Ngan and Sheppard, 1997).          324 
 325 
We now apply the asymptotic formula (38) to convert the encounter volume to diffusivity. 326 
Because equation (38) is not invertible analytically, we converted 𝑉 to 𝜅 numerically using a 327 
look-up table approach. More specifically, we used (38) to compute theoretically-predicted 𝑉 328 
values at time T=90 days for a wide range of 𝜅’s spanning all possible oceanographic values for 329 
0 to 109 𝑐𝑚2/𝑑, and we used the resulting look-up table to assign the corresponding 𝜅 values to 330 
𝑉 values in the 3rd row of Fig. 4. Note that, instead of the long-time asymptotic formula (38) (as 331 
in in the 3rd row of Fig. 4), it is also possible to use the exact formulas (28-29) to convert 𝑉 to 𝜅 332 
via a table look-up approach. The resulting exact diffusivities, shown in the 2nd row of Fig. 4, are 333 
similar to the long-time asymptotic values (3rd row). Because both exact and asymptotic formulas 334 
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were derived under the assumption of a diffusive random walk, neither should work well in 335 
regions with a non-diffusive behavior. The asymptotic formula has the advantage of being 336 
simpler and it also provides for a numerical estimate of the “long-time-limit” time scale, 𝜏, 337 
shown in the bottom row of Fig. 4 338 
 339 
As expected, the diffusivity maps in the 2nd and 3rd rows of Fig. 4, which resulted from 340 
converting 𝑉 to 𝜅 using (28-29) or (38), respectively, have the same spatial variability as the 𝑉-341 
map, with large 𝜅 at the peripheries of the Gulf Stream rings and at the flanks of the Gulf Stream 342 
and small 𝜅 at the cores of the rings, near the Gulf Stream centerline and far away from the Gulf 343 
Stream current, where the flow is generally slower. The diffusivity values range from 344 
𝑂(105) 𝑐𝑚2/𝑑 to 𝑂(107) 𝑐𝑚2/𝑑. Using the 1971 Okubo’s diffusivity diagram and scaling law, 345 
𝜅𝑂𝑘𝑢𝑢𝑚[𝑐𝑚^2/𝑑] = 0.0103 𝑙[𝑐𝑚]1.15, our diffusivity values correspond to spatial scales from 346 
10 𝑘𝑚 to 650 𝑘𝑚, thus spanning the entire mesoscale range. This is not surprising considering 347 
the Lagrangian nature of our analysis, where trajectories inside the small (< 50 𝑘𝑚) low-348 
diffusion eddy cores stay within the cores for the entire integration duration (90 days), whereas 349 
trajectories in the high-diffusivity regions near the ring peripheries and at the flanks of the Gulf 350 
Stream jet cover large distances, sometimes > 650 𝑘𝑚, over 90 days. 351 
 352 
The performances of the exact and asymptotic diffusive formulas vary greatly throughout the 353 
domain, with better/poorer performances in high-/low-𝑉 areas. This is because in the low-𝑉 354 
areas, the behavior of fluid parcels is non-diffusive, so the diffusive theoretical formulas work 355 
poorly. The breakdown of the long-time asymptotic formula is evident in the 4th row of Fig. 4, 356 
which shows the corresponding long-time scales, 𝜏 (from Eq. (35)), throughout the domain. As 357 
suggested by our 2D random walk simulations, the long-time asymptotic diffusive formula only 358 
works well when 𝑡 ≫ 𝜏, but in reality 𝜏 values are < 9 days (1/10 of our integration time) only in 359 
the highest-𝑉 regions, and are much larger everywhere else, reaching values of ≅ 90 days within 360 
the cores of the Gulf Stream rings. More detailed comparison between theory, both exact and 361 
asymptotic, and numerical 𝑉(𝑡) is shown in Fig. 5 for 3 reference trajectories that are initially 362 
located inside the core, on the periphery, and outside of a Gulf Stream ring (black, red, and blue, 363 
respectively) centered at approximately 36.8N and 60W. Clearly, the diffusive theory works 364 
poorly for the trajectory inside the eddy core (black curve). The agreement is better for the blue 365 
and even better for the red curves, corresponding to trajectories outside and on the periphery of 366 
the eddy, although deviations between the theory and numerics are still visible, raising questions 367 
about the general validity of the diffusive approximation in ocean flows on time scales of a few 368 
months. 369 
 370 
The non-diffusive nature of the parcel motion over 90 days is because ocean eddies have finite 371 
length- and time-scales, so a variety of different transport regimes generally occurs before 372 
separating parcels become uncorrelated and transport becomes diffusive, as in a random walk. At 373 
very short times the motion of fluid parcels is largely governed by the local velocity shear, so the 374 
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resulting transport regime is ballistic, i.e., 𝐷 ∝ 𝑇2 and 𝑉 ∝ 𝑇 (Rypina and Pratt, 2017). At longer 375 
times, when velocity shear can no longer be assumed constant in space and time, the regime may 376 
transition to a local Richardson regime (i.e., 𝐷 ∝ 𝑡3), where separation at a given scale is 377 
governed by the local features of a comparable scale (Richardson 1926; Bennett 1984; Beron-378 
Vera and LaCasce 2016), or to a non-local chaotic-advection spreading regime (i.e., 𝐷 ∝379 
exp (𝜆𝑡)), where separation is governed by the large scale flow features (Bennett 1984; Rypina et 380 
al. 2010; Beron-Vera and LaCasce 2016). The kinetic energy spectrum of a flow indicates 381 
whether a local or non-local regime will be relevant. The chaotic transport regime is generally 382 
expected to occur in mesoscale-dominated eddying flows, such as, for example, AVISO velocity 383 
fields, over time scales of a few eddy winding times. At times long enough for particles to 384 
sample many different flow features, such as Gulf Stream meanders or mesoscale eddies in the 385 
AVISO fields, the velocities of the neighboring particles become completely uncorrelated, and 386 
transport finally approaches the diffusive regime. With the mesoscale eddy turnover time being 387 
on the order of several weeks, it often takes longer than 90 days to reach the diffusive regime. 388 
 389 
A number of diffusivity estimates other than Okubo’s have been made for the Gulf Stream 390 
extension region (e.g., Zhurbas and Oh, 2004; LaCasce, 2008; Rypina et al., 2012; Abernathey 391 
and Marshall, 2013; Klocker and Abernathey, 2014; or Cole et al., 2015). These estimates are 392 
based on surface drifters (Zhurbas and Oh, 2004, LaCasce, 2008; Rypina et al., 2012), satellite-393 
observed velocity fields (Abernathey and Marshall, 2013; Klocker and Abernathey, 2014, 394 
Rypina et al., 2012), and Argo float observations (Cole et al., 2015), and they use either the 395 
spread of drifters or the evolution of simulated or observed tracer fields to deduce diffusivity. 396 
The resulting diffusivities are spatially varying and span 2 orders of magnitude, from 2 × 104 397 
𝑚2/𝑑 in the most energetic regions in the immediate vicinity of the Gulf Stream and its 398 
extension, to 103 𝑚2/𝑑 in less energetic areas, to 200 𝑚2/𝑑 in the coastal areas of the Slope Sea. 399 
Diffusivity estimates vary significantly depending on the initial tracer distribution used 400 
(Abernathey and Marshall, 2013) and depend on whether the suppression by the mean current 401 
has been taken into account (Klocker and Abernathey, 2014). The diffusivity tensor has also 402 
been shown to be anisotropic, with a large anisotropy ratio near the Gulf Stream (Rypina et al., 403 
2012). Data resolution and coverage, as well as the choice of time and length scales also play a 404 
role in defining 𝜅 value (Cole at al., 2015). All of these issues complicate the reconciliation of 405 
different diffusivity estimates. Nevertheless, ignoring these complications for a moment, and 406 
avoiding the smallest diffusivities in those geographical areas of Fig. 4 where the diffusive 407 
approximation is invalid, our 𝑂(103 𝑚2/𝑑) encounter-volume-based diffusivity estimates tend to 408 
be in the middle of the range of available estimates for the western North Atlantic. Although not 409 
inconsistent with other estimates, the encounter volume method did not predict diffusivities to 410 
reach values of 104 𝑚2/𝑑 anywhere within the considered geographical domain. 411 
 412 
Because the action of the real ocean velocity field on drifters or tracers is generally not exactly 413 
diffusive, all methods simply fit the diffusive approximation to the corresponding variable of 414 
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interest, such as particle dispersion, tracer variance, or, in our case, encounter volume. The 415 
analytic form of the diffusive approximation is, however, different for different variables and 416 
different flow regimes. For example, for a diffusive random walk regime, dispersion grows 417 
linearly with time, whereas the growth of the encounter volume is non-linear, as defined by eq. 418 
(38). This generally leads to different diffusivity estimates resulting from different methods. In 419 
other words, the diffusivity value that fits best to the observed particle dispersion at 90 days does 420 
not necessarily provide the best fit to the observed encounter volume at 90 days, and vice versa.  421 
 422 
To illustrate this more rigorously, we consider a linear strain flow, 423 

𝑢 = 𝛼 𝑥, 
 𝑣 = −𝛼 𝑦, 424 

with a constant strain coefficient 𝛼. The particle trajectories are given by 𝑥 = 𝑥0𝑒𝛼𝑠,𝑦 = 𝑦0𝑒−𝛼𝑠 425 
where 𝑥0,𝑦0 are particles initial positions. The dispersion of a small cluster of particles that are 426 
initially uniformly distributed within a small square of side length 2𝑑𝑥 is 427 

𝐷 =< (𝑋 − 𝑋�)2 + (𝑌 − 𝑌�)2 >, 428 
where 𝑋 = 𝑥 − 𝑥0 and 𝑌 = 𝑦 − 𝑦0 are displacements of particles from their initial positions and 429 
the overbar denotes the ensemble mean. Since the linear strain velocity remains unchanged in a 430 
reference frame moving with a particle, without loss of generality we can restrict our attention to 431 
a cluster that is initially centered at the origin, so 𝑋� = 𝑌� = 0. In the long time limit, when   432 
𝑒𝛼𝑠 ≫ 1 ≫ 𝑒−𝛼𝑠, the dispersion becomes 433 

𝐷 = 2/3𝑑𝑥3𝑒2𝛼𝑠. 434 
If one is using a diffusive fit,  435 

𝐷 = 4𝜅𝐷𝑡, 436 
to approximate diffusivity, then the resulting diffusivity is 437 

𝜅𝐷 =
𝑑𝑥3𝑒2𝛼𝑠

6𝑡
. 

On the other hand, the encounter volume for the linear strain flow is  438 
𝑉 =  2𝛼𝑅2𝑡, 439 

whereas the long-time diffusive fit is 440 

𝑉 = 4𝜋𝜅𝑉𝑠
𝑙𝑚 𝑠/𝜏

 , 441 

yielding  442 

𝜅𝑉 = −
𝛼𝑅2𝑃𝐸𝑃𝑑𝑢𝑐𝑡𝐿𝑃𝑃(−𝜋𝑒

2𝛾

2𝛼𝑡 )
2𝜋

 

 443 
where the function 𝑃𝐸𝑃𝑑𝑢𝑐𝑡𝐿𝑃𝑃(𝑧) is a solution to 𝑧 = 𝑤𝑒𝑤. Because 𝜅𝐷 is exponential in time, 444 
while 𝜅𝑉 is not, 𝜅𝐷 always becomes larger than 𝜅𝑉 at large 𝑡.  445 
 446 
Of course, real oceanic flows are more complex than the simple linear strain example. However, 447 
for flows that are in a state of chaotic advection, exponential separation between neighboring 448 
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particles will occur and the dispersion will grow exponentially in time, as in the linear strain 449 
example. Although we do not have a formula for the encounter volume for a chaotic advection 450 
regime, the linear strain example suggests that the encounter volume growth will likely be slower 451 
than exponential. Thus, for a chaotic advection regime, the dispersion-based diffusivity could be 452 
expected to be larger than the encounter-volume-based diffusivity. This can potentially explain 453 
the smaller encounter-volume-based diffusivity values in Fig. 4 compared to other available 454 
estimates from the literature. Numerical simulations (not shown) using an analytic Duffing 455 
oscillator flow, which features chaotic advection, indeed produced smaller encounter-volume-456 
based diffusivity than dispersion-based diffusivity, in agreement with our arguments above. The 457 
AVISO velocities are dominated by the meso- rather than submeso-scales, and the 90-day time 458 
interval is about a few mesoscale eddy winding times, thus this flow satisfies all the pre-459 
requisites for the chaotic advection to occur. Finally, the particle trajectories that we used to 460 
produce Fig. 4 can be grouped into small clusters (we are using encounter radius R=30 km as a 461 
cluster radius for consistency) to estimate their dispersion and infer diffusivity from its slope. 462 
Consistent with our arguments above, the resulting dispersion-based diffusivities in Fig. 6 are 463 
larger than the encounter-volume-based diffusivities in Fig. 4 and reach values O(104 𝑚2/𝑑) in 464 
the energetic regions of the Gulf Stream and its extension, in agreement with the previous 465 
diffusivity estimates from the literature. In applications where the number of encounters is a 466 
more important quantity than the spread of particles, the encounter-volume-based diffusivity 467 
might be a more appropriate estimate to use. 468 
 469 
In the left panels of Fig. 4 we used the full velocity field to advect trajectories, so both the mean 470 
and the eddies contributed to the resulting encounter volumes and the corresponding 471 
diffusivities. But what is the contribution of the eddy field alone to this process? To answer this 472 
question, we have performed an additional simulation in the spirit of Rypina et al. (2012), where 473 
we advected trajectories using the altimetric time-mean velocity field, and then subtracted the 474 
resulting encounter volume, 𝑉𝑚𝑟𝑠𝑚, from the full encounter number, 𝑉. The result characterizes 475 
the contribution of eddies, although strictly speaking 𝑉𝑟𝑑𝑑𝑠 ≠ 𝑉 − 𝑉𝑚𝑟𝑠𝑚 because of non-476 
linearity. Note also that because we are interested in the Lagrangian-averaged effects of eddies 477 
following fluid parcels, 𝑉𝑟𝑑𝑑𝑠 cannot be estimated by simply advecting particles by the local 478 
eddy field alone (see an extended discussion of this effect in Rypina et al., 2012). Not 479 
surprisingly, the eddy-induced encounter volumes (upper right panel of Fig. 4) are smaller than 480 
the full encounter numbers, with the largest decrease near the Gulf Stream current, where both 481 
the mean velocity and the mean shear are large. In other geographical areas, specifically at the 482 
peripheries of the Gulf Stream rings, the decrease in 𝑉 is less significant, so the resulting map 483 
retains its overall qualitative spatial structure. The same is true for the diffusivities in the 2nd and 484 
3rd rows of Fig. 4. The overall spatial structure of the eddy diffusivity is preserved and matches 485 
that in left panels, but the values decrease, with the largest differences near the Gulf Stream, 486 
where some diffusivity values are now 𝑂(106) 𝑐𝑚2/𝑑 instead of 𝑂(107) 𝑐𝑚2/𝑑. In contrast, 𝜅 487 
only decreases, on average, by a factor of 2 (instead of an order of magnitude) near the 488 
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peripheries of the Gulf Stream rings. The long-time diffusive time scale 𝜏 generally increases, 489 
and the ratio 𝑡/𝜏 generally decreases throughout the domain, but the long-time asymptotic 490 
formula (38) still works well in high-𝑉 regions, specifically on the peripheries of the Gulf Stream 491 
rings where 𝜏 is still significantly less than 𝑡.  492 
 493 
4. Discussion and Summary  494 

With many new diagnostics being developed for characterizing mixing in fluid flows, it is 495 
important to connect them to the well-established conventional techniques. This paper is 496 
concerned with understanding the connection between the encounter volume, which quantifies 497 
the mixing potential of the flow, and diffusivity, which quantifies the intensity of the down-498 
gradient transfer of properties. Intuitively, both quantities characterize mixing and it is natural to 499 
expect a relationship between them, at least in some limiting sense. Here, we derived this 500 
anticipated connection for a diffusive process, and we showed how this connection can be used 501 
to produce maps of spatially-varying diffusivity, and to gain new insights into the mixing 502 
properties of eddies and the particle spreading regime in realistic oceanic flows.       503 

When applied to the altimetry-based velocities in the Gulf Stream region, the encounter volume 504 
and diffusivity maps show a number of interesting physical phenomena related to transport and 505 
mixing. Of particular interest are the transport properties of the Gulf Stream rings. The 506 
materially-coherent Lagrangian cores of these rings, characterized by very small diffusivity, are 507 
smaller than expected from earlier Eulerian diagnostics (Chelton et al., 2011). The periphery 508 
regions with enhanced diffusivity are, on the other hand, large, raising a question about whether 509 
the rings, on average, act to preserve coherent blobs of water properties or to speed up the 510 
mixing. The encounter volume, through the derived connection to diffusivity, might provide a 511 
way to address this question and to quantify the two effects, clarifying the role of eddies in 512 
transport and mixing.    513 

Our encounter-volume-based diffusivity estimates are within the range of other available 514 
estimates from the literature, but are not among the highest. We provided an intuitive explanation 515 
for why the encounter-volume-based diffusivities might be smaller than the dispersion-based 516 
diffusivities, and we supported our explanation with theoretical developments based on a linear 517 
strain flow, and with numerical simulations. We note that in problems where the encounters 518 
between particles are of interest, rather than the particle spreading, the encounter-volume-based 519 
diffusivities would be more appropriate to use than the conventional dispersion-based estimates. 520 

Reliable data-based estimates of eddy diffusivity are needed for parameterizations in numerical 521 
models. The conventional estimation of diffusivity from Lagrangian trajectories via calculating 522 
particle dispersion requires large numbers of drifters or floats (LaCasce, 2008). It would be 523 
useful to have a technique that would work with fewer instruments. The derived connection 524 
between encounter volume and diffusivity might help in achieving this goal. Specifically, one 525 
could imagine that if an individual drifting buoy was equipped with an instrument that would 526 
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measure its encounter volume – the volume of fluid that came in contact with the buoy over time 527 
t – then the resulting encounter volume could be converted to diffusivity using the derived 528 
connection. This would allow estimating diffusivity using a single instrument. 529 

In the field of social encounters, it is becoming possible to construct large data sets by tracking 530 
cell phones, smart transit cards (Sun, et al. 2013), and bank notes (Brockmann, et al. 2006). As 531 
was the case for the Gulf Stream trajectories, some of the behavior appears to be diffusive and 532 
some not so. Where diffusive/random walk behavior is relevant, it may be easier to accumulate 533 
data on close encounters rather than on other metrics using, for example, autonomous vehicles 534 
and instruments that are able, through local detection capability, to count foreign objects that 535 
come within a certain range.  536 
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 686 
Fig. 1. Schematic diagram of trajectory encounters, showing trajectories of 9 particles, with dots indicating 687 
positions of particles at 3 time instances, at the release time, 𝒕𝟎, and at two later times, 𝒕𝟎 + 𝑻𝟏 and 𝒕𝟎 + 𝑻𝟐. 688 
The reference trajectory and the encounter sphere are shown in black, trajectories that do not encounter the 689 
reference trajectory are in grey, and trajectories that encounter the reference trajectory are in green if the 690 
encounter occur at 𝒕𝟎 + 𝑻𝟏, and in blue if encounters occur at 𝒕𝟎 + 𝑻𝟐. Time slices are schematically shown by 691 
dashed rectangles, and the encounter number, 𝑵, is indicated at the top of each time slice. 692 
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 708 

Figure 2. Schematic diagram in 1D (left) and 2D (right). Hatched areas show semi-infinite domains outside of the cliff. 709 
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 720 

Figure 3. Comparison between theoretical expression (red, green, blue) and numerical estimates (black) of the encounter 721 
volume for a random walk in 1D (left) and 2D (right). In both, 𝜿 = 𝟓 and 𝚫𝒕 = 𝟎.𝟓. In 2D, 𝝉 ≅ 𝟐𝟎. 722 
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 727 

Figure 4. Encounter number (1st row), exact diffusivity (2nd row), long-time diffusivity (3rd row) and diffusive time-scale (4-728 
th row) for the full flow (left) and for the eddy component of the flow (right). White shows land and thick black curve 729 
shows coastline. The encounter volume was computed on 11/01/2015 over 90 days with encounter radius of 30 km. 730 
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 734 

Figure 5. Comparison between numerically-computed 𝑽 (solid) and the exact (dotted) and long-time diffusive formulas 735 
(dashed) with the corresponding 𝜿 for the 3 reference trajectories located in the core, periphery and outside (black, red, 736 
blue) of a Gulf Stream ring. 737 
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 749 

Figure 6. Dispersion-based diffusivity, 𝜿𝑫. 750 


