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Abstract. We consider a plane fault with two asperities embedded in a shear zone, subject to a uniform strain rate owing

to tectonic loading. After an earthquake, the static stress field is relaxed by viscoelastic deformation in the asthenosphere.

We treat the fault as a discrete dynamical system with three degrees of freedom: the slip deficits of the asperities and the

variation of their difference due to viscoelastic deformation. The evolution of the fault is described in terms of interseismic

intervals and slip episodes, which may involve the slip of a single asperity or both. We consider the effect of stress transfers5

connected to earthquakes produced by neighbouring faults. The perturbation alters the slip deficits of both asperities and the

stress redistribution on the fault associated with viscoelastic relaxation. The interplay between the stress perturbation and the

viscoelastic relaxation significantly complicates the evolution of the fault and its seismic activity. We show that the presence

of viscoelastic relaxation prevents any simple correlation between the change of Coulomb stresses on the asperities and the

anticipation or delay of their failures. As an application, we study the effects of the 1999 Hector Mine, California, earthquake on10

the post-seismic evolution of the fault that generated the 1992 Landers, California, earthquake, which we model as a two-mode

event associated with the consecutive failure of two asperities.

Copyright statement. All authors have approved the manuscript for submission. The content of the manuscript has not been published or

submitted elsewhere.

1 Introduction15

Asperity models have long been acknowledged as an effective means to describe many aspects of fault dynamics (Lay et al.,

1982; Scholz, 2002). In such models, it is assumed that the bulk of energy release during an earthquake is due to the failure of

one or more regions on the fault characterized by a high static friction and a velocity-weakening dynamic friction. The stress

build-up on the asperities is governed by the relative motion of tectonic plates. Earthquakes that have been ascribed to the

slip of two asperities are the 1964 Alaska earthquake (Christensen and Beck, 1994), the 1992 Landers, California, earthquake20

(Kanamori et al., 1992), the 2004 Parkfield, California, earthquake (Twardzik et al., 2012) and the 2010 Maule, Chile, earth-
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quake (Delouis et al., 2010).

In the framework of asperity models, a critical role is played by stress accumulation on the asperities, fault slip at the asperi-

ties and stress transfer between the asperities. Accordingly, fault dynamics can be fruitfully investigated via discrete dynamical

systems whose essential components are the asperities (Ruff, 1992; Turcotte, 1997). Such an approach reduces the number of5

degrees of freedom required to describe the dynamics of the system, that is, the evolution of the fault (in terms of slip and stress

distribution) during the seismic cycle; also, it allows to visualize the state of the fault and follow its evolution via a geometrical

approach, by means of orbits in the phase space. Finally, a finite number of dynamic modes can be defined, each one describing

a particular phase of the evolution of the fault (e.g. tectonic loading, seismic slip, afterslip, etc.). Asperity models are capable to

reproduce the essential features of the seismic source, while sparing the more complicated characterization based on continuum10

mechanics.

In a number of recent works, modelling of different mechanical phenomena in a two-asperity fault system has been ad-

dressed, such as stress perturbations due to surrounding faults (Dragoni and Piombo, 2015) and the radiation of seismic waves

(Dragoni and Santini, 2015). In these models, the fault is treated as a discrete dynamical system with four dynamic modes: a15

sticking mode, corresponding to stationary asperities, and three slipping modes, associated with the separate or simultaneous

failure of the asperities.

In the framework of a discrete fault model, the impact of viscoelastic relaxation has first been studied by Amendola and

Dragoni (2013) and then further investigated by Dragoni and Lorenzano (2015), who considered a fault with two asperities of20

different strengths. The authors discussed the features of the seismic events predicted by the model and showed how the shape

of the associated source functions is related to the sequence of dynamic modes involved. In turn, the observation of the moment

rate provides an insight on the state of the system at the beginning of the event, that is, the particular stress distribution on the

fault from which the earthquake takes place.

25

However, no fault can be considered isolated; in fact, any fault is subject to stress perturbations associated with earthquakes

on neighbouring faults (Harris, 1998; Stein, 1999; Steacy et al., 2005). Whenever a fault slips, the stress field in the surround-

ing medium is altered. As a result, the occurrence time and the magnitude of next earthquakes may change with respect to the

unperturbed condition, which is governed by tectonic loading.

30

The aim of the present paper is to discuss the combined effects of viscoelastic relaxation and stress perturbations on a two-

asperity fault in the framework of a discrete fault model. In order to deal with such a problem, we base on the results achieved

by Dragoni and Piombo (2015) and Dragoni and Lorenzano (2015). In the former work, the authors considered a two-asperity

fault with purely elastic rheology and discussed the effect of stress perturbations due to earthquakes on neighbouring faults. The

fault was treated as a discrete dynamical system whose state is described by two variables, the slip deficits of the asperities. In35
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the latter work, viscoelastic relaxation on the fault was dealt with by adding a third state variable, the variation in the difference

between the slip deficits of the asperities during interseismic intervals. In the present paper, we introduce stress perturbations

as modelled by Dragoni and Piombo (2015) in the framework of the two-asperity fault considered by Dragoni and Lorenzano

(2015). Accordingly, the present work represents a three-dimensional generalization of the model devised by Dragoni and

Piombo (2015). As further complications with respect to previous works, elastic wave radiation and additional constraints on5

the state of the fault are taken into account.

In the framework of the present model, seismic events generated by the fault are discriminated according to the number

and sequence of slipping modes involved and the seismic moment released; these features are related to the particular state

of the system at the beginning of the interseismic interval preceding the event. We discuss how stress perturbations affect the10

evolution of the fault in terms of changes in the state of the system and in the duration of the interseismic time, highlighting

the complications arising from the ongoing post-seismic deformation process with respect to the purely elastic case considered

by Dragoni and Piombo (2015). As an application, we consider the stress perturbation imposed by the 1999 Hector Mine,

California, earthquake (Jónsson et al., 2002; Salichon et al., 2004) to the fault that originated the 1992 Landers, California,

earthquake, which we model as a two-mode event due to the consecutive failure of two asperities and that was followed by15

remarkable viscoelastic relaxation (Kanamori et al., 1992; Freed and Lin, 2001). We propose a means to estimate the stress

transfer from the knowledge of the relative positions and faulting styles of the two faults. As a further novelty with respect to

the work presented by Dragoni and Lorenzano (2015), we show how the knowledge of the time interval elapsed after the 1999

earthquake can be used to constrain the admissible set of states that may have given rise to the 1992 event. We discuss the

possible subsequent evolution of the Landers fault after the stress transfer from the Hector Mine earthquake, pointing out the20

main differences with respect to an unperturbed scenario.

2 The model

We consider a plane fault containing two asperities of equal areas A and different strengths that we name asperity 1 and asper-

ity 2 (Fig. 1). The fault is enclosed in a homogeneous and isotropic shear zone behaving as a Poisson solid and is subject to a

uniform strain rate owing to the relative motion of two tectonic plates, taking place at a constant rate V . In order to describe25

the viscoelastic relaxation in the asthenosphere, we assume a Maxwell viscoelastic behaviour with a characteristic relaxation

time Θ. Finally, we characterize the seismic efficiency of the fault by means of an impedance γ. All quantities are expressed in

nondimensional form.

In the present model we do not consider aseismic slip on the fault. It has been treated in the framework of a discrete fault30

model by Dragoni and Lorenzano (2017), who considered a region slipping aseismically for a finite time interval and calculated

the effect on the stress distribution and the subsequent evolution of the fault. Of course, if the amplitude of aseismic slip has
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the same order of magnitude as that of seismic slip, the fault evolution may be affected.

In accordance with the assumptions of asperity models, we ascribe the generation of earthquakes on the fault to the failure

of the sole asperities, neglecting any contribution of the surrounding weaker region to the seismic moment. Also, we do not

describe friction, slip and stress at every point of the fault, but only consider their average values on each asperity.5

The fault is treated as a dynamical system with three state variables, functions of time T : the slip deficits X(T ) and Y (T )

of asperity 1 and 2, respectively, and the variable Z(T ) representing the temporal variation of the difference Y −X between

the slip deficits of the asperities during interseismic intervals of the fault, due to the stress redistribution associated with vis-

coelastic relaxation in the asthenosphere. The slip deficit of an asperity is defined as the slip that an asperity should undergo at10

a given instant in time in order to recover the relative displacement of tectonic plates occurred up to that moment.

We assume the simplest form of rate-dependent friction and associate the asperities with constant static and dynamic fric-

tions, the latter considered as the average value during slip. The static friction on asperity 2 is a fraction β of that on asperity

1 and dynamic frictions are a fraction ε of static frictions for both asperities. Letting fs1 and fd1 be the static and dynamic15

frictions on asperity 1, respectively, and fs2 and fd2 be the static and dynamic frictions on asperity 2, respectively, we have

β =
fs2
fs1

=
fd2
fd1

, ε=
fd1
fs1

=
fd2
fs2

. (1)

We acknowledge that the values of friction after a seismic event might be different from the initial ones, even though it is

probable that the change is remarkable only after several seismic cycles. We neglect this possible change, because we focus

on other sources of irregularity in the seismic cycles. However, the model could easily incorporate a change in friction after20

each event: new values could be given to static and dynamic frictions after the event and the subsequent evolution could be

calculated accordingly.

During a global stick mode, the tangential forces acting on the asperities in the slip direction are (in units of static friction

on asperity 1)25

F1 =−X +αZ, F2 =−Y −αZ. (2)

In these expressions, the terms −X and −Y represent the effect of tectonic loading and have the same sign for both asperities,

whereas the terms ±αZ are the contributions of stress transfer between the asperities. In the framework of the present model,

stress is transferred by one asperity to the other as a result of coseismic slip; in the subsequent interseismic interval, the static

stress field generated by asperity slip undergoes a certain amount of relaxation owing to viscoelasticity. The parameter α is30

a measure of the degree of coupling between the asperities: for smaller values of α, the stress transfer from one asperity to

the other is less efficient. In the limit case α= 0, the asperities are completely independent from one another and the slip of

one of them does not affect the state of the other: the evolution of the asperities is thus governed by tectonic loading only. By
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comparison with a model based on continuum mechanics, the specific value of α can be estimated as (Dragoni and Tallarico,

2016)

α=
Avs

2ė
(3)

where A is the area of the asperities, v is the velocity of the tectonic plates, s is the tangential traction (per unit moment)

imposed on one asperity by the slip of the other and ė is the tangential strain rate on the fault due to tectonic loading.5

An effective way to characterize fault mechanics is provided by the concept of Coulomb stress (Stein, 1999). It is defined as

the difference between the shear stress σt in the direction of fault slip and the static friction τs on the fault surface:

σC = σt− τs. (4)

Accordingly, σC is negative during an interseismic interval and a seismic event occurs when σC vanishes. In our model, the10

presence of two asperities makes it necessary to assign a value of Coulomb stress to each of them. By definition, the Coulomb

forces on asperity 1 and 2 are, respectively,

FC1 =−F1− 1, FC2 =−F2−β. (5)

Using Eq. (2), they can be rewritten as

FC1 =X −αZ − 1, FC2 = Y +αZ −β. (6)15

To sum up, the system is described by the set of six parameters α,β,γ,ε,Θ and V , with α≥ 0, 0< β < 1, γ ≥ 0, 0< ε < 1,

Θ> 0 and V > 0. At any instant T in time, the state of the system may be univocally expressed by the tern (X,Y,Z) or by one

of the couples (F1,F2),(FC1 ,F
C
2 ).

When considering the fault dynamics during the seismic cycle, it is possible to identify four dynamic modes, each one de-20

scribed by a different system of autonomous ODEs: a sticking mode (00), corresponding to stationary asperities, and three

slipping modes, associated with the slip of asperity 1 alone (mode 10), the slip of asperity 2 alone (mode 01) and the simul-

taneous slip of the asperities (mode 11). A seismic event generally consists in n slipping modes and involves one or both the

asperities.

2.1 The sticking region25

The sticking region of the system is defined as the set of states in which both asperities are stationary. During a global stick

phase (mode 00), the rates Ẋ, Ẏ and Ż are negligible with respect to their values when the asperities are slipping; thus, the

sticking region is a subset of the space XY Z.
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The slip of asperity 1 occurs when

F1 =−1, (7)

while the slip of asperity 2 takes place when

F2 =−β. (8)

Combining these conditions with the expressions (2) of the forces, we obtain two planes in the XY Z space,5

X −αZ − 1 = 0 (9)

Y +αZ −β = 0, (10)

which we name Π1 and Π2, respectively. Of course, the Coulomb forces FC1 and FC2 vanish on Π1 and Π2, respectively;

furthermore, their gradients10

∇FC1 = (1,0,−α) , ∇FC2 = (0,1,α) (11)

are orthogonal to Π1 and Π2, respectively.

We exclude overshooting during the slipping modes: accordingly, we assume X ≥ 0 and Y ≥ 0. As a consequence, the

tangential forces on the asperities must always be in the same direction as the velocity of tectonic plates, i.e. F1 ≤ 0 and15

F2 ≤ 0. From Eq. (2), the limit cases F1 = 0 and F2 = 0 correspond to two planes in the XY Z space,

X −αZ = 0 (12)

Y +αZ = 0, (13)

which we name Γ1 and Γ2, respectively.20

To sum up, the sticking region of the system is the subset of theXY Z space enclosed by the planesX = 0,Y = 0,Γ1,Γ2,Π1

and Π2: a convex hexahedron H. Its vertices are the origin (0,0,0) and the points

A=

(
0,1,− 1

α

)
, B =

(
β,0,

β

α

)
, C =

(
β+ 1,0,

β

α

)
(14)

25

D =

(
0,β+ 1,− 1

α

)
, E = (1,0,0) , F = (0,β,0) . (15)
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The sticking region is shown in Fig. (2) for a particular choice of the parameters α and β. Its volume can be expressed as a

function of the parameters of the system as β(β+1)/2α. Accordingly, the subset of the state space corresponding to stationary

asperities decreases with the degree of coupling between the asperities and with the asymmetry of the system (β→ 0). By

definition, every orbit of mode 00 is enclosed within H and eventually reaches one of its faces AECD or BCDF , belonging

to the planes Π1 and Π2, respectively, where an earthquake starts. In these cases, the system switches from mode 00 to mode5

10 or mode 01, respectively. In the particular case in which the orbit of mode 00 reaches the edge CD, the system passes from

mode 00 to mode 11.

3 Dynamic modes and slip in a seismic event

Let P0 ∈H be the state of the system at the beginning of an interseismic interval. The specific location of P0 inside the

sticking region allows the prediction of the first slipping mode involved in the next seismic event on the fault. In fact, Dragoni10

and Lorenzano (2015) illustrated the existence of a transcendental surface Σ within H, expressed by the equation

VΘ[W (γ1)−W (γ2)] +Y −X + 1−β = 0, (16)

where W is the Lambert function with arguments

γ1 =
αZ

VΘ
e−

1−X
VΘ , γ2 =− αZ

VΘ
e−

β−Y
VΘ . (17)

The surface Σ divides H in two subsets H1 and H2 (Fig. 3). The seismic event starts with mode 10 if P0 ∈H1 or with mode15

01 if P0 ∈H2; in the particular case in which P0 ∈Σ, the seismic event starts with mode 11.

Mode 00 terminates at a point P1 on the face AECD or BCDF of H. The number and sequence of slipping modes in-

volved in the subsequent seismic event can be discriminated from the specific position of P1. If we consider the face AECD

(Fig. 4), the earthquake will be a one-mode event 10 if P1 belongs to the trapezoid Q1; it will be a two-mode event 10-01 if20

P1 belongs to the segment s1; it will be a three-mode event 10-11-01 or 10-11-10 if P1 belongs to the trapezoid R1, where

the precise sequence must be evaluated numerically and depends on the particular combination of the parameters α,β,γ and ε.

The remaining portion of the face would lead to overshooting. Analogous considerations can be made for the subsets Q2,s2

and R2 on the face BCDF . In the particular case in which P1 belongs to the edge CD, the earthquake will be a two-mode

event 11-01. In fact, by definition, friction on asperity 2 is smaller than friction on asperity 1 (0< β < 1); if the asperities start25

slipping simultaneously, asperity 1 is then bound to stop the first, while asperity 2 continues to slip. As a result, mode 11 is

followed by mode 01 and the slip of the weaker asperity has a longer duration. The opposite would hold if asperity 2 were

stronger than asperity 1 (β > 1), so that the slip event resulting from states P1 ∈ CD would be a two-mode event 11-10.

In addition, the knowledge of the position of P1 allows to establish the total amount of slip of the asperities and the seismic30

moment associated with the earthquake. Let us consider an event made up of n dynamic modes and let Pi = (Xi,Yi,Zi) be the
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state of the system at time T = Ti, when the i−th mode starts (i= 1,2, ...n). The final slip amplitudes of asperity 1 and 2 are,

respectively,

U1 =X1−Xn+1, U2 = Y1−Yn+1. (18)

Accordingly, the final seismic moment can be calculated as

M0 =M1
U1 +U2

U
, (19)5

where M1 and U are the seismic moment and slip amplitude associated with a one-mode event 10 in the limit case γ = 0,

respectively, with

U = 2
1− ε
1 +α

. (20)

The possible values of U1,U2 and M0 are summarized in Table 1: the effect of wave radiation is characterized by means of the

quantity10

κ=
1

2

(
1 + e−

γTs
2

)
(21)

where Ts is the duration of slip in a one-mode event (Dragoni and Santini, 2015).

As for the evolution of the variable Z(T ) during the earthquake, it changes according to the equation Z̈ = Ÿ − Ẍ , since the

relaxation process is negligible during the slip of the asperities.15

4 Stress perturbations from neighbouring faults

We now consider the perturbations of the state of the fault caused by the coseismic slip on surrounding faults. Following Drag-

oni and Piombo (2015), we assume that: (1) the perturbations occur during an interseismic interval; (2) the stress transfer takes

place over a time interval negligible with respect to the duration of the interseismic interval; (3) at the time of the perturbation,

the state of the fault is sufficiently far from the failure conditions and the stress transfer is small enough that the onset of motion20

of either asperity is not achieved immediately.

Let (X,Y,Z) ∈H be the state of the fault at the time of the perturbation. Generally speaking, the system undergoes a

transition to a new state

(X ′,Y ′,Z ′) = (X,Y,Z) + (∆X,∆Y,∆Z) . (22)25

Since the stress transfer takes place over a time interval short with respect to the interseismic interval (assumption 2), vis-

coelastic relaxation is negligible during the perturbation and the rheology can be reasonably considered as purely elastic as the

perturbation takes place. Accordingly, we set

∆Z = ∆Y −∆X. (23)
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The change of state is then associated with a vector in the XY Z space,

∆R = (∆X,∆Y,∆Z) . (24)

The components of ∆R generally have different magnitudes and may have different signs, as a consequence of the inhomo-

geneity of the stress field produced by an earthquake. They can be written in terms of the tangential forces ∆F1 and ∆F2

exerted by the perturbing source on asperity 1 and 2, respectively: from Eq. (2), we have5

∆F1 =−∆X +α∆Z = α∆Y − (1 +α)∆X (25)

∆F2 =−∆Y −α∆Z = α∆X − (1 +α)∆Y. (26)

Combining these expressions together, we get

∆X =− 1 +α

1 + 2α
∆F1−

α

1 + 2α
∆F2 (27)10

∆Y =− α

1 + 2α
∆F1−

1 +α

1 + 2α
∆F2 (28)

∆Z =
1

1 + 2α
(∆F1−∆F2) . (29)

We conclude that the variations in tangential stress alter the orbit of the system.15

The components of ∆R can also be related to the orientation of the vector in the state space. With reference to Fig. (5), we

have

∆X = ∆Rcosδ cosθ, ∆Y = ∆Rcosδ sinθ, ∆Z = ∆R sinδ. (30)

Introducing the assumption (23), the angle δ may be expressed in terms of the angle θ as20

δ = arctan(sinθ− cosθ) . (31)

In writing Eq. (31), we took into account that

δ 6= π

2
,
3π

2
(32)

or it would result

∆Z =±∆R, ∆X = ∆Y = 0 (33)25
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which is a meaningless circumstance. From Eq. (30), the tangential forces (25)-(26) can be rewritten as

∆F1 =
αsinθ− (1 +α)cosθ√

2− sin2θ
∆R (34)

∆F2 =
αcosθ− (1 +α)sinθ√

2− sin2θ
∆R. (35)

Following the variations in normal stress, the static and dynamic frictions on each asperity are altered. Letting f ′s1 and f ′s2 be5

the new static frictions on asperity 1 and 2, respectively, we define

β1 =
f ′s1
fs1

, β2 =
f ′s2
fs1

. (36)

The changes in static frictions are then

∆β1 = β1− 1, ∆β2 = β2−β (37)

on asperity 1 and 2, respectively.10

Since the stress perturbation does not alter the friction coefficients of rocks, it is reasonable to assume that the ratio ε between

dynamic and static friction is unchanged on both asperities. Therefore, letting f ′d1 and f ′d2 be the new dynamic frictions on

asperity 1 and 2, respectively, we have

f ′d1
fs1

= ε
f ′s1
fs1

= εβ1,
f ′d2
fs1

= ε
f ′s2
fs1

= εβ2. (38)15

The consequent changes in dynamic frictions are ε∆β1 and ε∆β2 on asperity 1 and 2, respectively.

4.1 Effects of the perturbation

The stress transfer resulting from earthquakes on neighbouring faults alters several parameters of the model. A first remarkable

change concerns the strength of the asperities. After the perturbation, we can define a new ratio

β′ =
f ′s2
f ′s1

=
f ′d2
f ′d1

=
β2
β1

(39)20

which differs from the original value β given in Eq. (1). Moreover, the stress transfer may be so intense that the weaker asperity

may become the stronger one: that is, it may result β′ > 1.

The variations in static frictions entail different conditions for the onset of motion of the asperities. Taking Eq. (36) into

account, Eq. (7) and Eq. (8) become, respectively,25

F1 =−β1, F2 =−β2. (40)
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By combination with Eq. (2), these conditions define the planes

X −αZ −β1 = 0 (41)

Y +αZ −β2 = 0 (42)

that we call Π′1 and Π′2, respectively. Conversely, the planes Γ1 and Γ2 are not affected by the stress perturbation, since they5

do not depend on frictions. We conclude that changes in normal stress modify the sticking region of the system, describing a

new hexahedron H′ in the state space. The coordinates of its vertices are

A′ =

(
0,β1,−

β1
α

)
, B′ =

(
β2,0,

β2
α

)
, C ′ =

(
β1 +β2,0,

β2
α

)
(43)

D′ =

(
0,β1 +β2,−

β1
α

)
, E′ = (β1,0,0) , F ′ = (0,β2,0) . (44)10

The volume of H′ is β1β2(β1 +β2)/2α: thus, the set of states corresponding to stationary asperities is enlarged or reduced,

depending on how normal stresses on the asperities are modified.

Following the changes in static frictions, the surface Σ in Eq. (16) is replaced by a new surface Σ′ expressed by

VΘ[W (γ′1)−W (γ′2)] +Y −X +β1−β2 = 0, (45)15

where

γ′1 =
αZ

VΘ
e−

β1−X
VΘ , γ′2 =− αZ

VΘ
e−

β2−Y
VΘ . (46)

As a result, the sticking region H′ is split in two subsets H′1 and H′2; furthermore, its faces A′E′C ′D′ and B′C ′D′F ′ are

divided into subsets Q′1,s
′
1, R′1 and Q′2,s

′
2, R′2, respectively.

20

As a consequence of the changes in dynamic frictions, the amount of slip that asperities undergo during a seismic event is

modified. In turn, the perturbation alters the seismic moment associated with an earthquake. The variations in the final slip

amplitudes U1 and U2 of asperity 1 and asperity 2, respectively, and in the final seismic moment M0 associated with the

different seismic events predicted by the model are listed in Table 2.

4.1.1 Changes in Coulomb forces25

The variations in tangential stresses and static frictions discussed so far entail a change in the Coulomb forces assigned to the

asperities. Combining Eq. (5) with Eq. (25) and Eq. (26), these changes are given by

∆FC1 =−∆F1−∆β1 = (1 +α)∆X −α∆Y −∆β1 (47)
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∆FC2 =−∆F2−∆β2 = (1 +α)∆Y −α∆X −∆β2 (48)

or, exploiting Eq. (34) and Eq. (35),

∆FC1 =
(1 +α)cosθ−αsinθ√

2− sin2θ
∆R−∆β1 (49)

5

∆FC2 =
(1 +α)sinθ−αcosθ√

2− sin2θ
∆R−∆β2. (50)

The sign of ∆FCi (i= 1,2) determines whether the perturbation brings an asperity closer to or farther from the failure; specif-

ically, positive variations entail that slip if favoured, and vice-versa. Equations (49) and (50) clearly point out that this effect is

regulated by the orientation of the vector ∆R in the state space. Bearing in mind the observations made in section 2.1, we find

that: ∆FC1 is maximum when ∆R is perpendicular to plane Π1 and points toward it; it vanishes when ∆R is parallel to plane10

Π1; it is minimum when ∆R is perpendicular to plane Π1 and points away from it. Analogous considerations can be made for

∆FC2 .

On the whole, the effect of the stress perturbation can be discussed in terms of the quantity

∆FC = ∆FC2 −∆FC1 = (1 + 2α)(∆Y −∆X) + ∆β1−∆β2. (51)

Let us assume that the system is at a certain state (X, Y, Z) ∈H1 before the perturbation; accordingly, the next seismic event15

on the fault will start with the failure of asperity 1. If ∆FC > 0, the perturbation favours the slip of asperity 2 more than the

slip of asperity 1: therefore, the system is brought to a state closer to the condition for the simultaneous failure of the asperities

and thus to the Σ surface. On the contrary, perturbations for which ∆FC < 0 take the system farther from the Σ surface. The

opposite holds for an unperturbed state (X, Y, Z) ∈H2.

4.1.2 Changes in the duration of the interseismic interval20

As already stated, stress perturbations can anticipate or delay the occurrence of an earthquake produced by a certain asperity.

We now quantify this effect in terms of the variation in the duration of the interseismic interval. Generally speaking, the pertur-

bation vector ∆R may cross the Σ surface and thus bring the system from an unperturbed state within H1 (H2) to a perturbed

state within H′2 (H′1). For the sake of simplicity, we consider here only the particular case in which the perturbation vector

∆R does not cross the Σ surface. An example of a more general case will be shown in section 5 for a real fault.25

Let us first focus on the case in which the unperturbed state (X, Y, Z) ∈H1. The time required by the orbit of the system to

reach plane Π1, triggering the failure of asperity 1, was calculated by Amendola and Dragoni (2013) as

T1 = ΘW (γ1) +
1−X
V

(52)
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with γ1 given in Eq. (17). If the stress perturbation brings the system to a state (X ′, Y ′, Z ′) ∈H′1 and the static friction on

asperity 1 to β1, the time required by the orbit to reach plane Π′1 is

T ′1 = ΘW (γ′1) +
β1−X ′

V
(53)

with γ′1 given in Eq. (46). The difference between the two times is

∆T1 = T ′1−T1 = Θ[W (γ′1)−W (γ1)]− ∆FC1 +α∆Z

V
(54)5

where Eq. (47) has been employed.

If instead (X, Y, Z) ∈H2, the time required by the orbit of the system to reach plane Π2, triggering the failure of asperity 2,

is given by (Amendola and Dragoni, 2013)

T2 = ΘW (γ2) +
β−Y
V

(55)

with γ2 given in Eq. (17). If the stress perturbation takes the system to a state (X ′, Y ′, Z ′) ∈H′2 and the static friction on10

asperity 2 to β2, the time required to reach plane Π′2 is

T ′2 = ΘW (γ′2) +
β2−Y ′

V
(56)

with γ′2 given in Eq. (46). The difference between the two times is

∆T2 = T ′2−T2 = Θ[W (γ′2)−W (γ2)]− ∆FC2 −α∆Z

V
(57)

where Eq. (48) has been employed. Positive values of ∆T1 and ∆T2 correspond to a delay in the occurrence of an earthquake15

on asperity 1 and 2, respectively, and vice-versa.

4.1.3 Discussion

According to the model, rock rheology plays a critical role in the response to stress perturbations. In the case of purely elastic

coupling between the asperities, Dragoni and Piombo (2015) showed that the changes in the duration of the interseismic interval

prior to the failure of asperity 1 and 2 are, respectively,20

∆T1 =−∆FC1
V

, ∆T2 =−∆FC2
V

(58)

Accordingly, an increase in the Coulomb force associated with a given asperity (∆FCi > 0) directly yields the anticipation of

the slip of that asperity, and vice-versa. What is more, the variation in the duration of the interseismic interval is proportional

to the change in the Coulomb force associated with the asperity.

25

Conversely, in the viscoelastic case there is no straightforward connection between the sign of ∆FCi and the anticipation

or delay of an earthquake on the associated asperity. In fact, the expressions (54) and (57) obtained for ∆T1 and ∆T2 in the

previous section indicate that the net effect depends in a non trivial way on the particular state of the fault at the time of the

stress perturbation and right after it. This result points out the complex interplay between the post-seismic evolution of a fault

in the presence of viscoelastic relaxation and the stress transfer from neighbouring faults.30
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5 An application: perturbation of the 1992 Landers fault by the 1999 Hector Mine earthquake

We study the effects of the 16 October 1999 Mw 7.1 Hector Mine, California, earthquake on the post-seismic evolution of

the fault that generated the 28 June 1992 Mw 7.3 Landers, California, earthquake. The geometry of the two faults is shown in

Fig. (6).

5

The 1992 Landers earthquake was a right-lateral strike-slip event that can be approximated as the result of the slip of two

coplanar asperities (Kanamori et al., 1992): a northern one (asperity 1) and a southern one (asperity 2), with average slips

u1 = 6m and u2 = 3m, respectively. Following Dragoni and Tallarico (2016), we assume a common area A= 300km2 for

both the asperities. We place the centres of asperity 1 and asperity 2 at (34.46◦ N, 116.52◦ W) and (34.20◦ N, 116.44◦ W),

respectively, with a common depth of 8 km. The earthquake initiated with the failure of asperity 2, followed by the failure of10

asperity 1. We characterize the event by strike, dip and rake angles of 345◦,85◦ and 180◦, respectively, an average of the values

provided by Kanamori et al. (1992) for the two phases of the earthquake.

The 1992 event was followed by remarkable post-seismic deformation, which can be interpreted as the result of several

processes. For the sake of the present application, we assume viscoelastic relaxation as the most significant mechanism. We15

assign a viscosity η = 5 ·1018 Pas to the lower crust at Landers, averaging the estimates provided by Deng et al. (1998), Pollitz

et al. (2000), Freed and Lin (2001) and Masterlark and Wang (2002). With a rigidity µ= 30GPa, the corresponding Maxwell

relaxation time is τ = η/µ' 5a.

We model the 1992 earthquake as a two-mode event 01-10 starting from mode 00. Accordingly, the orbit of the system20

during mode 00 lies inside the subset H2 of the sticking region and the state P1 at the beginning of the earthquake belongs to

segment s2 (Fig. 4). The coordinates of P1 are

X1 = αZ1 + 1−αβκU, Y1 = β−αZ1, Z1 (59)

with

Za ≤ Z1 ≤ Zb, (60)25

where the extreme values Za and Zb correspond to the end points of s2:

Za =
κU(αβ+ 1)− 1

α
, Zb =

β(1−κU)

α
. (61)

At the end of mode 01, the system is at point P2 with coordinates

X2 =X1, Y2 = Y1−βκU, Z2 = Z1−βκU, (62)

where mode 10 starts. As Z1 varies in the interval given in Eq. (60), an infinite number of points P2 describe a segment r2 on30

the subset Q1 of the face AECD and parallel to the edge CD. Mode 10 terminates at point P3 with coordinates

X3 =X2−κU, Y3 = Y2, Z3 = Z2 +κU. (63)

14



Again, asZ1 varies in the interval given in Eq. (60), there is an infinite number of points P3 defining another segment q2 parallel

to the edgeCD. This segment is situated within the sticking region and crosses the surface Σ for Z1 = Zc, with Za < Zc < Zb.

Dragoni and Tallarico (2016) studied the 1992 Landers earthquake under the hypothesis of purely elastic coupling between

the asperities. Following the authors, we take α= 0.1, β = 0.5, γ = 1.5 and ε= 0.7, a set of values yielding modelled moment5

rate and seismic spectrum comparable with the observations. Thus, we have U ' 0.546 and κ' 0.52. As for viscoelastic

relaxation, it can be characterized by the product VΘ (Amendola and Dragoni, 2013), which can be estimated as

VΘ =
κUvτ

u1
, (64)

where v = 3cma−1 is the relative plate velocity at Landers (Wallace, 1990). Accordingly, we have VΘ' 0.007.

10

Every state P1 on segment s2, where the 1992 earthquake begun, corresponds to a specific state P3 on segment q2, where the

1992 earthquake ended. Exploiting Eq. (62), we can express the coordinates (63) of P3 as a function of Z1. Since q2 crosses

the surface Σ, the state P3 can belong to H1,H2 or Σ, in correspondence to Zc < Z1 ≤ Zb, Za ≤ Z1 < Zc and Z1 = Zc,

respectively. In the first case, the next event will start with the failure of asperity 1; in the second case, with the failure of

asperity 2; in the third case, with the simultaneous failure of the asperities. With the values of α,β,κ and U listed above, we15

find Za '−7.02, Zb ' 3.58 and Zc ' 0.78. Accordingly, only about one fourth of segment q2 lies inside the subset H1 of the

sticking region. Without any further discussion and neglecting the stress perturbation caused by the Hector Mine earthquake,

we would infer that future events on the 1992 fault are more likely to start with the failure of asperity 2.

5.1 Stress perturbation by the 1999 Hector Mine earthquake

The 1999 Hector Mine earthquake was generated by right-lateral strike-slip faulting located at (34.59◦ N, 116.27◦ W), about20

20 km northeast from the Landers fault (Jónsson et al., 2002; Salichon et al., 2004). We characterize the event averaging the

data available in the SRCMOD database and assume: strike, dip and rake angles of 330◦, 80◦ and 180◦, respectively; a depth

of 10 km; a seismic moment of 6.62 · 1019 Nm.

The stress transferred to the asperities at Landers can be evaluated employing the model of Appendix A, taking25

φ1 = 345◦, φ2 = 330◦, ψ1 = 85◦, ψ2 = 80◦, λ1 = λ2 = 180◦. (65)

As a result, the normal and tangential components of the perturbing stress on asperity 1 are

σ1n ' 0.14MPa, σ1t ' 0.39MPa. (66)

Accordingly, the static friction on asperity 1 is reduced and right-lateral slip is favoured. As for asperity 2, the components of

the perturbing stress are30

σ2n ' 0.18MPa, σ2t '−0.17MPa, (67)
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suggesting that static friction on asperity 2 is reduced and right-lateral slip is inhibited.

We now introduce the effect of the perturbation in the framework of the discrete model. The changes in the tangential forces

(2) on the asperities are

∆F1 =−σ1t
fs1

A, ∆F2 =−σ2t
fs1

A. (68)5

The static friction fs1 on asperity 1 can be evaluated as (Dragoni and Santini, 2012)

fs1 =
Ku1
κU

(69)

where the constant

K =
µA

d
(70)

is an expression of the coupling between the asperities and the tectonic plates. With d= 80 km (Masterlark and Wang, 2002),10

it results fs1/A' 7.9 MPa. Hence, we have

∆F1 '−0.05, ∆F2 ' 0.02. (71)

From Eq. (27) – (29), the components of the perturbation vector ∆R are

∆X ' 0.043, ∆Y '−0.016, ∆Z '−0.059. (72)

As a result, the orientation of ∆R in the state space is characterized by angles θ '−0.35 rad and δ '−0.91 rad. The changes15

in static frictions (37) can be calculated as

∆β1 =−ksσ1n
fs1

A, ∆β2 =−ksσ2n
fs1

A, (73)

where ks is the effective static friction coefficient on asperity 1. Assuming ks = 0.4, we get

∆β1 '−0.0073, ∆β2 '−0.0092. (74)

Finally, from Eq. (47) and Eq. (48), the changes in Coulomb forces on the asperities are20

∆FC1 ' 0.057, ∆FC2 '−0.012. (75)

At the time of the Hector Mine earthquake, the Landers fault was at a state P4 resulting from the post-seismic evolution of any

of the possible states P3 ∈ q2 where the 1992 event ended. The coordinates of P4 can be calculated from the solution to the

equations of mode 00 given by Dragoni and Lorenzano (2015) and taking into account that the time interval t̃ elapsed between

the 1992 Landers and 1999 Hector Mine earthquakes amounts to about 7.3 years:25

X4 =X3 +VΘ T̃, Y4 = Y3 +VΘ T̃, Z4 = Z3e
−T̃ , (76)
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where

T̃ =
t̃

τ
≈ 1.5. (77)

Making use of Eq. (62) and Eq. (63), we can express the coordinates of P4 as a function of Z1 ∈ [Za,Zb]. Accordingly, there is

an infinite number of points P4 defining a vector t2 inside the sticking region. At T = T̃ , the perturbation vector ∆R moves

every state P4 to a new state P ′4 with coordinates5

X ′4 =X4 + ∆X, Y ′4 = Y4 + ∆Y, Z ′4 = Z4 + ∆Z (78)

which can be expressed as a function of Z1 ∈ [Za,Zb]. As a result, a new vector t′2 identifies the state of the Landers fault after

the Hector Mine earthquake.

In order to characterize the effect of the perturbation, let us consider the difference ∆FC defined in Eq. (51): from Eq. (75),10

we get ∆FC '−0.069. Since ∆FC < 0, we conclude that the stress perturbation is such that: states P4 ∈H1 are moved to

H′1; the state P4 ∈Σ enters H′1; states P4 ∈H2 are shifted towards the Σ surface and some of them enter H′1. Specifically, we

find that P ′4 belongs to H′1, H′2 and Σ′ in correspondence to Z ′c < Z1 ≤ Zb, Za ≤ Z1 < Z ′c and Z1 = Z ′c, with Z ′c ' 0.50. On

the whole, we can draw the preliminary conclusion that the stress perturbation is such that future events on the Landers fault

starting with the slip of asperity 1 are favoured over events starting with the slip of asperity 2. A deeper discussion is provided15

in the following.

5.2 Constraints due to the seismic history to date

In order to improve our knowledge on the state that gave rise to the 1992 Landers earthquake and on the possible future events

generated by that fault, we exploit the seismic history between 1999 and the present date. After the perturbation caused by the

Hector Mine earthquake, the interseismic time T ′is of the Landers fault can be calculated from Eq. (53) and Eq. (56) for states20

P ′4 belonging to H′1 and H′2, respectively:

T ′is =

 ΘW (γ′1) +
β1−X′4
V , Z ′c < Z1 ≤ Zb

ΘW (γ′2) +
β2−Y ′4
V , Za ≤ Z1 < Z ′c

, (79)

where

γ′1 =
αZ ′4
VΘ

e−
β1−X

′
4

VΘ , γ′2 =−αZ
′
4

VΘ
e−

β2−Y
′
4

VΘ . (80)

Since no earthquakes have been produced by the Landers fault after the occurrence of the Hector Mine event, up to year 2016,25

we can exclude the states on the segment s2 yielding an expected interseismic time (79) shorter than or equal to t′is = 17 years.

The requirement

T ′is >
t′is
τ

Θ≈ 3.5Θ (81)

17



is satisfied by states on segment s2 in the subset Z̃a ≤ Z1 ≤ Z̃b, with Z̃a '−1.17 and Z̃b ' 2.19.

As a consequence, we can constrain the admissible states on the segment t2. A comparison between the intervals [Z̃a,Zc]

and [Zc, Z̃b] points out that more than one half of the acceptable subset of t2 belongs to H2. Hence, before the stress perturba-

tion caused by the Hector Mine earthquake, future events on the 1992 Landers fault were more likely to start with the failure5

of asperity 2.

In turn, the refinement of t2 limits the acceptable states on the segment t′2. From the amplitude of the intervals [Z̃a,Z
′
c] and

[Z ′c, Z̃b], we deduce that the acceptable subset of t′2 is almost equally divided between H′1 and H′2. Therefore, if we consider

the influence of the Hector Mine earthquake on future events generated by the 1992 Landers fault, we conclude that the stress

perturbation yielded homogenization in the probability of events starting with the failure of asperity 1 or asperity 2. This result10

is in agreement with the observation that the perturbation vector ∆R shifted the whole segment t2 towards the subset H′1 of

the sticking region.

These conclusions would have to be reconsidered if new stress perturbations from neighbouring faults were to affect the

post-seismic evolution of the Landers fault in the future. In addition, if no earthquakes were to be observed for some time on15

the Landers fault, the refining procedure discussed above could be repeated and the admissible subsets of segments s2, t2 and

t′2 could be constrained with further precision.

5.3 Effects of the stress perturbation on future earthquakes

Finally, we discuss the features of the next seismic event generated by the 1992 Landers fault, highlighting the changes due to

the Hector Mine earthquake.20

Every state P1 ∈ s2 where the 1992 earthquake begun corresponds to a particular state P4 ∈ t2 and P ′4 ∈ t′2 before and after

the stress perturbation associated with the Hector Mine earthquake, respectively. Since the segment t2 intersects the surface

Σ, the state P4 can belong to H1,H2 or Σ (Fig. 3), thus affecting the asperity that will fail the first at the beginning of the

next earthquake on the fault. In the first case, the next event will start with the failure of asperity 1, in the second case with the25

failure of asperity 2, in the third case with the simultaneous failure of the asperities. Analogous considerations hold for states

P ′4 in H′1,H
′
2 and Σ′, respectively.

The number and the sequence of dynamic modes in the earthquake depend on the subinterval of Z1 considered. The details

are summarized in Table 3 for both the unperturbed and perturbed cases. Taking these specifics into account and referring to30

Table 1 and Table 2, we evaluate the seismic moments M0 and M ′0 associated with the expected future earthquake on the 1992

fault before and after the Hector Mine earthquake, respectively. In Fig. (7), we show the difference

∆M0 =M ′0−M0 (82)
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as a function of Z1 ∈ [Z̃a, Z̃b]. Owing to the translation imposed to the segment t2 by the perturbation vector ∆R, the sign of

∆M0 changes across the different subintervals of Z1. The energy released by the earthquake is increased for Z1 ∈ [0.43,0.71],

while it is reduced elsewhere.

Another significant result of the stress perturbation concerns the variation in the interseismic time before the next seismic5

event. As in section 5.2, we consider the post-seismic evolution from 1999 onwards and set the origin of times at the occurence

of the Hector Mine earthquake. The expected interseismic time Tis prior to the stress perturbation can be calculated from

Eq. (52) and Eq. (55) for states P4 belonging to H1 and H2, respectively:

Tis =

 ΘW (γ1) + 1−X4

V , Zc < Z1 ≤ Z̃b
ΘW (γ2) + β−Y4

V , Z̃a ≤ Z1 < Zc
, (83)

where10

γ1 =
αZ4

VΘ
e−

1−X4
VΘ , γ2 =−αZ4

VΘ
e−

β−Y4
VΘ . (84)

The interseismic time T ′is after the stress perturbation has been given in Eq. (79). The difference

∆T = T ′is−Tis (85)

is shown in Fig. (8) as a function of Z1 ∈ [Z̃a, Z̃b]. For states P4 ∈H1 corresponding to P ′4 ∈H′1 and states P4 ∈H2 corre-

sponding to P ′4 ∈H′2, this difference coincides with (54) and (57), respectively.15

Some peculiar features stand out. First, we notice that, for all states P4 ∈H2 corresponding to P ′4 ∈H′2, that is, for Z1 ∈
[Z̃a,Z

′
c], the interseismic time is increased by the stress perturbation, in agreement with the inhibiting effect on asperity 2

suggested by Eq. (75). On the other hand, Eq. (75) suggests that the failure of asperity 1 is promoted, but this is not verified

by all states P ′4 ∈H′1, that is, for Z1 ∈ [Z ′c, Z̃b]. In fact, the interseismic time is reduced only for Z1 ∈ (0.53, Z̃b], while it is

increased for Z1 ∈ [Z ′c,0.53). In the particular case Z1 = 0.53, there is no change in the interseismic time. This is a remarkable20

result, showing that the presence of viscoelastic relaxation at the time of the stress perturbation entails the unpredictability of

the consequent influence in terms of anticipation/delay of future earthquakes, on the basis of the sole knowledge of the change

in Coulomb stress.

At the occurrence of the next earthquake produced by the Landers fault, the number and sequence of dynamic modes25

involved and the energy released will reveal more about the state of the system, thus allowing a further refinement of the

specific conditions that gave rise to the 1992 event.

6 Conclusions

We considered a plane fault embedded in a shear zone, subject to a uniform strain rate owing to tectonic loading. The fault is

characterized by the presence of two asperities with equal areas and different frictional resistance. The coseismic static stress30
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field due to earthquakes produced by the fault is relaxed by viscoelastic deformation in the asthenosphere.

The fault was treated as a discrete dynamical system with three degrees of freedom: the slip deficits of the asperities and the

variation of their difference due to viscoelastic deformation. The dynamics of the system was described in terms of one sticking

mode and three slipping modes. In the sticking mode, the orbit of the system lies in a convex hexahedron in the space of the5

state variables, while the number and the sequence of slipping modes during a seismic event are determined by the particular

state of the system at the beginning of the interseismic interval preceding the event. The amount of slip of the asperities and

the energy released during an earthquake generated by the fault can be predicted accordingly.

The effect of stress transfer due to earthquakes on neighbouring faults was studied in terms of a perturbation vector yielding10

changes to the state of the system, its sticking region and the energy released during a subsequent seismic event. The specific

effect on the evolution of the fault is related with the orientation of this vector in the state space.

We investigated the interplay between the ongoing viscoelastic relaxation on the fault and a stress perturbation imposed

during an interseismic interval. Following a stress perturbation due to earthquakes on neighbouring faults, an increase in the15

Coulomb stress associated with a given asperity directly yields the anticipation of the slip of that asperity, and vice-versa, if a

purely elastic rheology is assumed for the receiving fault (Dragoni and Piombo, 2015). According to the present model, this

property no longer holds if the change in Coulomb stress occurs while viscoelastic relaxation is taking place on the receiving

fault. In fact, even if the change in the interseismic intervals of the asperities can still be evaluated from a theoretical point of

view, the specific effect of the stress perturbation could be univocally inferred only if the particular states of the fault at the20

time of the stress perturbation and right after it were known. The information on the change in Coulomb stress on the fault do

not suffice any more.

We applied the model to the stress perturbation imposed by the 1999 Hector Mine, California, earthquake to the fault that

originated the 1992 Landers, California, earthquake, which was due to the failure of two asperities and was followed by25

significant viscoelastic relaxation. We modelled the 1992 Landers earthquake as a two-mode event associated with the separate

slip of the asperities and showed how the event is compatible with a number of possible initial states of the fault, which can

be screened on the basis of the seismic history to date. The details of the stress transfer associated with the 1999 Hector Mine

earthquake were calculated using the relative positions and faulting styles of the two faults as a starting point. We discussed

the effect of the stress perturbation, pointing out the complexity of its influence on the possible future events generated by the30

1992 Landers fault in terms of the associated energy release, the sequence of dynamic modes involved and the duration of the

interseismic interval. Specifically, we showed that the consequences of the 1999 Hector Mine earthquake on the post-seismic

evolution of the 1992 Landers fault depend on the specific state of the Landers fault at the time of the 1999 earthquake and

immediately after it, even if the variations in the Coulomb stress on the asperities at Landers are known. On the whole, the

application allowed to exemplify the critical unpredictability of the effect of a stress perturbation occurring while viscoelastic35

20



relaxation is taking place.

Another source of complication may be represented by the interaction between viscoelastic relaxation and stable creep on

the fault. This problem is beyond the scope of the present work, but it may be object of future research by combining elements

of the present model with the one of Dragoni and Lorenzano (2017).5
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List of Figure Captions

Fig. 1 - Sketch of the model of a plane fault with two asperities. The rectangular frame is the fault border. The state of the

asperities is described by their slip deficits X(T ) and Y (T ), while the variable Z(T ) represents the temporal variation of the

difference between the slip deficits of the asperities due to viscoelastic deformation in the interseismic interval following an

earthquake on the fault.5

Fig. 2 - The sticking region of the system, defined as the subset of the state space XY Z in which both asperities are at rest: a

convex hexahedron H (α= 1,β = 1).

Fig. 3 - The surface Σ that splits the sticking region H in two subsets H1 (below) and H2 (above) (α= 1,β = 1,VΘ = 1). It

allows to discriminate the first slipping mode during an earthquake.

Fig. 4 - The faces AECD and BCDF of the sticking region H, where seismic events start, and their subsets (α= 1,β =10

1,γ = 1, ε= 0.7). The events taking place on the face AECD(BCDF ) start with mode 10 (01). The trapezoids Qi corre-

spond to events involving a single asperity; the segments si correspond to events associated with the consecutive slips of the

asperities; the trapezoids Ri correspond to events involving the simultaneous slips of the asperities.

Fig. 5 - The vector ∆R and its orientation in the state space XY Z, characterizing the stress perturbation imposed on the

system by earthquakes produced by neighbouring faults.15

Fig. 6 - Geometry of the Landers (LAN) and Hector Mine (HM), California, faults that generated the 1992 and 1999 earth-

quakes, respectively. The stars indicate the hypocentres of the seismic events. The labels 1 and 2 identify the asperities on the

Landers fault.

Fig. 7 - Change in the seismic moment released during the next event on the 1992 Landers, California, fault, as a result of the

stress perturbation due to the 1999 Hector Mine, California, earthquake. On the horizontal axis, the variable Z1 describing the20

initial state of the 1992 event. The kinds of seismic event predicted by the model, corresponding to different intervals of Z1,

are listed in Table 3. The values Z1 = Zc and Z1 = Z ′c correspond to the largest possible earthquakes before and after the stress

perturbation, respectively.

Fig. 8 - Change in the interseismic time before the next event on the 1992 Landers, California, fault, as a result of the stress

perturbation due to the 1999 Hector Mine, California, earthquake. On the horizontal axis, the variable Z1 describing the initial25

state of the 1992 event. The kinds of seismic event predicted by the model, corresponding to different intervals of Z1, are

listed in Table 3. The values Z1 = Zc and Z1 = Z ′c correspond to the largest possible earthquakes before and after the stress

perturbation, respectively.

Fig. A1 - Geometry of the model employed to study the stress transfer between neighbouring faults. Fault 1 is the perturbing

fault, while fault 2 is the receiving fault. The coordinates (E,N,D) are the UTM coordinates and depth of the centres of the30

faults, respectively, whereas the axes (x,y,z) correspond with the directions of dip, strike and normal on fault 1, respectively.

The angles φ and ψ are the strike and dip angles of the faults, respectively.
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Tables

Table 1. Final slip amplitudes U1 and U2 of asperity 1 and 2 and seismic moment M0 during a seismic event made up of n slipping modes,

as a function of the state P1 where the event started. The entry e.n. is the abbreviation for evaluated numerically.

State P1 n U1 U2 M0

P1 ∈Q1 1 κU 0 κM1

P1 ∈Q2 1 0 βκU βκM1

P1 ∈ s1 ∨P1 ∈ s2 2 κU βκU κM1(1 +β)

P1 ∈R1 ∨P1 ∈R2 3 e.n. e.n. e.n.

Table 2. Changes in the final slip amplitudes U1 and U2 of asperity 1 and 2 and in the seismic moment M0 associated with the different

seismic events predicted by the model, after a stress perturbation from neighbouring faults. The entry e.n. is the abbreviation for evaluated

numerically.

Kind of event ∆U1 ∆U2 ∆M0

one-mode 10 ∆β1κU - ∆β1κM1

one-mode 01 - ∆β2κU ∆β2κM1

two-mode 10-01/01-10 ∆β1κU ∆β2κU κM1(∆β1 + ∆β2)

involving mode 11 e.n. e.n. e.n.
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Table 3. Future earthquakes generated by the 1992 Landers, California, fault, as functions of the variable Z1 describing the initial state of

the 1992 event, with Z1 ∈ [Z̃a, Z̃b] = [−1.16,2.19]. The results predicted by the model before and after the stress perturbation associated

with the 1999 Hector Mine, California, earthquake are shown. The values Z1 = Zc = 0.78 and Z1 = Z′
c = 0.50 correspond to the largest

possible earthquakes before and after the stress perturbation, respectively.

Future earthquake Unperturbed condition Perturbed condition

1-mode event 01 Z̃a ≤ Z1 < 0.71 Z̃a ≤ Z1 < 0.43

2-mode event 01-10 Z1 = 0.71 Z1 = 0.43

3-mode event 01-11-01 0.71< Z1 < Zc 0.43< Z1 < Z′
c

2-mode event 11-01 Z1 = Zc Z1 = Z′
c

3-mode event 10-11-01 Zc < Z1 < 0.92 Z′
c < Z1 < 0.64

2-mode event 10-01 Z1 = 0.92 Z1 = 0.64

1-mode event 10 0.92< Z1 ≤ Z̃b 0.64< Z1 ≤ Z̃b

32



Appendix A: Estimate of the stress perturbation

We consider two plane faults, namely fault 1 and fault 2, embedded in an infinite, homogeneous and isotropic Poisson medium

of rigidity µ (Fig. A1). Following the slip of fault 1 (perturbing fault), stress is transferred to fault 2 (receiving fault). We cal-

culate the normal traction σn and the tangential traction in the direction of slip σt transferred to the receiving fault, estimated

as the average value at its centre.5

We define a coordinate system (x,y,z) with axes corresponding with the directions of dip, strike and normal on fault 1,

respectively. Fault 1 lies on the plane z = 0 and its centre is in the origin of the coordinate system. Accordingly, the unit vector

perpendicular to fault 1 is n1i = (0,0,1). We call φ1, ψ1 and λ1 the strike, dip and rake angles of fault 1, respectively. The slip

direction of fault 1 is then given by10

m1i = (−sinλ1,cosλ1,0) . (A1)

Fault 2 is characterized by strike and dip angles φ2 and ψ2, respectively. Accordingly, the unit vector perpendicular to fault 2

is given by

n2i = (sin∆ψ cos∆φ,−sin∆ψ sin∆φ,cos∆ψ) (A2)

where15

∆φ= φ2−φ1, ∆ψ = ψ2−ψ1. (A3)

Let λ2 be the preferred rake angle on fault 2, correlated with the orientation of tectonic loading: λ2 = 0◦ for left-lateral strike-

slip, λ2 = 180◦ for right-lateral strike-slip, λ2 =−90◦ for normal dip-slip and λ2 = 90◦ for reverse dip-slip. The corresponding

slip direction is

m2x = cosλ2 sin∆φ− sinλ2 cos∆ψ cos∆φ (A4)20

m2y = cosλ2 cos∆φ+ sinλ2 cos∆ψ sin∆φ (A5)

m2z = sinλ2 sin∆ψ. (A6)

We name (Ei,Ni) and Di the UTM coordinates and depths of the centres of the faults, respectively. In our reference system,25

the coordinates of the centre of fault 2 are identified by the following three steps:

1. placing the origin at the centre of fault 1:

x′ = E2−E1, y′ =N2−N1, z′ =D2−D1 (A7)
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2. clockwise rotation about the z axis by the angle φ1:

x′′ = x′ cosφ1− y′ sinφ1 y′′ = x′ sinφ1 + y′ cosφ1, z′′ = z′ (A8)

3. counterclockwise rotation about the y axis by the angle ψ1:

x= x′′ cosψ1− z′′ sinψ1, y = y′′, z = x′′ sinψ1 + z′′ cosψ1. (A9)

The perturbing fault is treated as a point-like dislocation source (a double-couple of forces) located at the origin. This is5

good approximation for nonoverlapping regions (Dragoni and Lorenzano, 2016). Let m0 be the scalar seismic moment of the

dislocation. The i-th component of the static displacement field generated by the slip of fault 1 is

ui =−MjkGij,k (A10)

where Mij is the moment tensor associated with the dislocation source

Mij =m0 (m1in1j +m1jn1i) (A11)10

and Gij is the Somigliana tensor

Gij =
1

8πµ

(
2

r
δij −

2

3
r,ij

)
(A12)

with

r =
√
x2 + y2 + z2. (A13)

The components of the stress field are given by15

σij = µ(ekkδij + 2eij), (A14)

where eij is the strain field associated with the displacement field (A10). Finally, the normal traction σn and the tangential

traction in the direction of slip σt on fault 2 are

σn = σijn2in2j , σt = σijm2in2j . (A15)

The signs of σn and σt define the effect of the stress transfer on fault 2. If σn > 0, the amount of compressional stress on the20

receiving fault is reduced, and vice-versa. If σt > 0, the slip of the receiving fault is promoted, and vice-versa.
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