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Abstract. In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the

dimension parameter n and the forcing parameter F . For F > 0 the first bifurcation is either a supercritical Hopf or a double-

Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number

increases linearly with n, but its period tends to a finite limit as n→∞. For F < 0 and odd n the first bifurcation is again

a supercritical Hopf bifurcation, but in this case the period of the traveling wave also grows linearly with n. For F < 0 and5

even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter

bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to standing waves

and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the double-

Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the same

parameter values n and F .10

Copyright statement. TEXT

1 Introduction

In this paper we study the Lorenz-96 model which is defined by the equations

dxj

dt
= xj−1(xj+1− xj−2)− xj + F, j = 0, . . . ,n− 1, (1)

together with the periodic “boundary condition” implied by taking the indices j modulo n. The dimension n ∈ N and the forcing15

parameter F ∈ R are free parameters. The model was introduced by Lorenz (2006) for numerical experiments in predictability

studies. In his paper, Lorenz interpreted the variables xj as values of some atmospheric quantity in n equispaced sectors of a

latitude circle, where the index j plays the role of “longitude”. Lorenz also remarked that the vectors (x0, . . . ,xn−1) can be

interpreted as wave profiles, and he observed that for F > 0 sufficiently large these waves slowly propagate “westward”, i.e.

in the direction of decreasing j. Figure 1 shows a Hovmöller diagram illustrating two traveling waves with wave number 5 for20

dimension n = 24 and the parameter values F = 2.75 (in the periodic regime) and F = 3.85 (in the chaotic regime).

Table 1 lists some recent papers with applications of the Lorenz-96 model. In most studies the dimension n is chosen ad hoc,

but n = 36 and n = 40 appear to be popular choices. Many applications are related to geophysical problems, but the model
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has also attracted the attention of mathematicians working in the area of dynamical systems for phenomenological studies in

high-dimensional chaos. Note that Eq. (1) is in fact a family of models parameterized by means of the discrete parameter n. An

important question is to what extent both the qualitative and quantitative dynamical properties of Eq. (1) depend on n. Answers

to these questions can be used in selecting the most appropriate values of n and F in specific applications. For example, the

statistics and predictability of extreme events can depend very much on the dynamical regime of a model (Holland et al., 2012;5

Sterk and Van Kekem, 2017).

In this paper we address the question how the spatiotemporal properties of waves, such as their period and wave number,

in the Lorenz-96 model depend on the dimension n and whether these properties tend to a finite limit as n→∞. We will

approach this question by studying waves represented by periodic attractors that arise through a Hopf bifurcation of a stable

equilibrium. Along various routes to chaos these periodic attractors can bifurcate into chaotic attractors representing irregular10

waves which “inherit” their spatiotemporal properties from the periodic attractor. For example, the wave shown in the left

panel of Fig. 1 bifurcates into a 3-torus attractor which breaks down and gives rise to the wave in the right panel. Note that

both waves have the same wave number. Figure 2 shows power spectra of these waves, and clearly their dominant peaks are

located at roughly the same period. Inheritance of spatiotemporal properties also manifests itself in a shallow water model

studied by Sterk et al. (2010) in which a Hopf bifurcation (related to baroclinic instability) explains the observed time scales15

of atmospheric low-frequency variability.

In addition to traveling waves, such as illustrated in Fig. 1, we will also show the existence of standing waves. In a recent

paper by Frank et al. (2014) standing waves have also been discovered in specific regions of the multi-scale Lorenz-96 model.

Their paper uses dynamical indicators such as the Lyapunov dimension to identify the parameter regimes with standing waves.

Moreover, we will explain two bifurcation scenarios by which waves with different spatiotemporal properties coexist. This20

paper complements the results of our previous work (Van Kekem and Sterk, 2017a) which restricted to the classical case

F > 0, and thereby we give a comprehensive picture of wave propagation in the Lorenz-96 model.

The remainder of this paper is organized as follows. In Sect. 2 we explain how to obtain an approximation of the periodic

attractor born at a Hopf bifurcation which allows us to derive spatiotemporal properties of the waves in the Lorenz-96 model. In

Sect. 3.1 we show that for F > 0 periodic attractors indeed represent traveling waves as suggested by Lorenz. Also for F < 025

and odd values of n periodic attractors represent traveling waves, as is demonstrated in Sect. 3.2. In Sect. 3.3, however, we

show analytically that for n = 6 and F < 0 standing waves occur. By means of numerical experiments we show in Sect. 3.4

that standing waves occur in general for even n and F < 0. In Sect. 4 we discuss the bifurcation scenarios by which stable

waves with different spatiotemporal properties can coexist for the same values of the parameter F .

2 Hopf bifurcations30

In this section we consider a general geophysical model in the form of a system of ordinary differential equations:

dx

dt
= f(x,µ), x ∈ Rn. (2)
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Figure 1. Hovmöller diagrams of a periodic attractor (left, F = 2.75) and a chaotic attractor (right, F = 3.85) in the Lorenz-96 model for

n = 24. The value of xj(t) is plotted as a function of t and j. For visualization purposes linear interpolation between xj and xj+1 has been

applied in order to make the diagram continuous in the variable j.
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Figure 2. Power spectra of the attractors of Fig. 1. Note that the maximum spectral power (indicated by a circle) is attained at nearly the

same period.

In this equation, µ ∈ R is a parameter modeling external circumstances such as forcing. Assume that for the parameter value

µ0 the system has an equilibrium solution x0, i.e. f(x0,µ0) = 0. In the context of geophysics x0 represents a steady flow,

and its linear stability is determined by the eigenvalues of the Jacobian matrix Df (x0,µ0). An equilibrium becomes unstable

when eigenvalues of the Jacobian matrix cross the imaginary axis upon variation of the parameter µ. Dijkstra (2005) provides

an extensive discussion of the physical interpretation of bifurcation behaviour.5

Assume that Df (x0,µ0) has eigenvalues ±ωi. Without loss of generality we may assume that the corresponding complex

eigenvectors u± iv have unit length. If the equilibrium x0 is stable for µ < µ0 and unstable for µ > µ0, then under suitable

nongenericity conditions a stable periodic orbit exists for µ > µ0 (Kuznetsov, 2004). For small values of ε =
√

µ−µ0 the

periodic orbit that is born at the Hopf bifurcation can be approximated by

x(t) = x0 + εRe
[
(u + iv)eiωt

]
+ O(ε2), (3)10

see Beyn et al. (2002). In the context of geophysical applications this first-order approximation of the periodic orbit can be

interpreted as a wave-like perturbation imposed on a steady mean flow. The spatiotemporal properties of this wave can now be

determined by the vectors x0,u,v and the frequency ω.

4
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Reference Application n

Basnarkov and Kocarev (2012) Forecast improvement 960

Danforth and Yorke (2006) Forecasting in chaotic systems 40

Dieci et al. (2011) Computing Lyapunov exponents 40

Gallavotti and Lucarini (2014) Non-equilibrium ensembles 32

Hallerberg et al. (2010) Bred vectors 1024

Hansen and Smith (2000) Operational constraints 40

Haven et al. (2005) Predictability 40

Karimi and Paul (2010) Chaos 4, . . . ,50

De Leeuw et al. (2017) Data assimilation 36

Lorenz (2006) Predictability 4,36

Lorenz (2005) Designing chaotic models 30

Lorenz and Emanuel (1998) Data assimilation 40

Lucarini and Sarno (2011) Ruelle linear response theory 40

Orrell et al. (2001) Model error 8

Orrell (2002) Metric in forecast error growth 8

Orrell and Smith (2003) Spectral bifurcation diagrams 4,8,40

Ott et al. (2004) Data assimilation 40,80,120

Pazó et al. (2008) Spatiotemporal chaos 128

Stappers and Barkmeijer (2012) Adjoint modelling 40

Sterk and Van Kekem (2017) Predictability of extremes 4,7,24

Sterk et al. (2012) Predictability of extremes 36

Trevisan and Palatella (2011) Data assimilation 40,60,80

Table 1. Recent papers with applications of the Lorenz-96 model and the values of n that were used.

3 Waves in the Lorenz-96 model

In this section we study waves in the Lorenz-96 model and how their spatiotemporal characteristics depend on the parameters

n and F .

3.1 Traveling waves for n ≥ 4 and F > 0

For all n ∈ N and F ∈ R the point xF = (F,. . . ,F ) is an equilibrium solution of Eq. (1). This equilibrium represents a steady5

flow, and since all components are equal the flow is spatially uniform. The stability of xF is determined by the eigenvalues of

the Jacobian matrix of Eq. (1). Note that the Lorenz-96 model is invariant under the symmetry xi → xi+1 while taking into

account the periodic boundary condition. As a consequence the Jacobian matrix evaluated at xF is circulant which means that

each row is a right cyclic shift of the previous row, and so the matrix is completely determined by its first row. If we denote

5
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this row by

(c0, c1, . . . , cn−1),

then it follows from Gray (2006) that the eigenvalues of the circulant matrix can be expressed in terms of roots of unity

ρj = exp(−2πij/n) as follows:

λj =
n−1∑

k=0

ckρk
j , j = 0, . . . ,n− 1. (4)5

An eigenvector corresponding to λj is given by

vj =
1√
n

(
1 ρj ρ2

j · · · ρn−1
j

)⊤
.

In particular, for the Lorenz–96 model Eq. (1) we have that the Jacobian matrix at xF has only three nonzero elements on

its first row, viz. c0 =−1, c1 = F , cn−2 =−F . Hence, the eigenvalues λj can be expressed in terms of n and F as follows:

λj =−1 + Ff(2πj/n)+ Fg(2πj/n)i,10

where the functions f and g are defined as

f(x) = cos(x)− cos(2x),

g(x) =−sin(x)− sin(2x). (5)

For F = 0 the equilibrium xF is stable as Reλj =−1 for all j = 0, . . . ,n− 1. The real part of the eigenvalue λj changes sign

if the equation

F =
1

f(2πj/n)
(6)15

is satisfied. The graph of f in Fig. 3 shows that for F > 0 Eq. (6) can have at most four solutions. Since f is symmetric around

x = π it follows that if j is a solution of Eq. (6) then so is n− j. This means that the equilibrium xF becomes unstable for

F > 0 when either a pair or a double pair of eigenvalues becomes purely imaginary. The main result is summarized in the

following theorem.

Theorem 1. Assume that n≥ 4 and l ∈N satisfies 0 < l < n
2 , l 6= n

3 . Then the l-th eigenvalue pair (λl,λn−l) of the trivial20

equilibrium xF crosses the imaginary axis at the parameter value FH(l,n) := 1/f(2πl/n) and thus xF bifurcates through

either a Hopf or a double-Hopf bifurcation. A double-Hopf bifurcation, with two pairs of eigenvalues crossing the imaginary

axis, occurs if and only if there exist l1, l2 ∈ N such that

cos
(

2πl1
n

)
+ cos

(
2πl2
n

)
=

1
2
. (7)

Otherwise, a Hopf bifurcation occurs. Moreover, the first Hopf bifurcation of xF is always supercritical.25
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Figure 3. Graphs of the functions f and g as defined in Eq. (5). The eigenvalues of the equilibrium xF = (F, . . . ,F ) are given by λj =

−1+ Ff(2πj/n) +Fg(2πj/n)i for j = 0, . . . ,n− 1. The shapes of the graphs of f and g imply that the equilibrium xF can only lose

stability through either a Hopf or a double-Hopf bifurcation for F > 0.

The proof of Theorem 1 can be found in Van Kekem and Sterk (2017a) in which also an expression for the first Lyapunov

coefficient is derived which determines for which l the Hopf bifurcation is sub- or supercritical. Observe that Theorem 1 implies

that a double-Hopf bifurcation occurs for n = 10m (with l1 = m,l2 = 3m,F = 2) and n = 12m (with l1 = 2m, l2 = 3m,

F = 1). In Sect. 4 we will explain how double-Hopf bifurcations lead to the coexistence of two or more stable traveling waves

with different wave numbers.5

From the eigenvalues that cross the imaginary axis and the corresponding eigenvectors we can deduce the physical charac-

teristics of the periodic orbit that arises after a Hopf bifurcation. When the l-th eigenvalue pair (λl,λn−l) crosses the imaginary

axis we can write

λl =
g(2πl/n)
f(2πl/n)

i =−cot(πl/n)i, λn−l = λ̄l = cot(πl/n)i.

If we set ω = cot(πl/n), then according to Eq. (3) an approximation of the periodic orbit is given by10

xj(t) = F + εRe
ei(ωt−2πijl/n)

√
n

+ O(ε2)

= F +
ε√
n

cos(ωt− 2πjl/n)+ O(ε2).

7
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This is indeed the expression for a traveling wave in which the spatial wave number and the period are given by respectively

l and T = 2π/ω = 2π tan(πl/n). Thus the index of the eigenpair that crosses the imaginary axis determines the propagation

characteristics of the wave.

Note that Hopf bifurcations of an unstable equilibrium will result in an unstable periodic orbit. Therefore, not all waves that

are guaranteed to exist by Theorem 1 will be visible in numerical experiments. Equation (6) implies that for F > 0 the first5

Hopf bifurcation occurs for the eigenpair (λl,λn−l) with index

l+1 (n) = argmax
0<j<n/3

f(2πj/n). (8)

In Appendix A1 it is shown that, except for n = 7, the integer l+1 (n) satisfies the bounds

n

6
≤ l+1 (n)≤ n

4
, (9)

which means that the wave number increases linearly with the dimension n. Since the function f has a maximum at x =10

arccos(1
4 ) we have

lim
n→∞

2πl+1 (n)
n

= arccos(1
4 ),

which is consistent with Eq. (9). As a corollary we find that the period of this wave tends to a finite limit as n→∞:

T∞ = lim
n→∞

2π tan
(

πl+1 (n)
n

)
= 2π tan(1

2 arccos(1
4 ))≈ 4.867.

Figure 4 shows a graph of the period and the wave number as a function of n. Note that the period settles down on the value15

T∞.

3.2 Traveling waves for odd n ≥ 4 and F < 0

Now assume that n is odd. For F < 0 Eq. (6) has precisely two solutions which implies that the first bifurcation of xF is a

supercritical Hopf bifurcation. The index of the first bifurcating eigenpair (λl,λn−l) follows by minimizing the value of the

function f in Eq. 5:20

l−1 (n) =
n− 1

2
.

Again, the wave number increases linearly with n, but at a faster rate than in the case F > 0. Now the period of the wave is

given by

T = 2π tan
(

π(n− 1)
2n

)
= O(4n),

where the last equality sign follows from the computations in Appendix A2. This implies that contrary to the case F > 0 the25

period increases monotonically with n and does not tend to a limiting value as n→∞.

Note that for even n and F < 0 the first bifurcation is not a Hopf bifurcation since λn/2 =−1− 2F is a real eigenvalue that

changes sign at F = 1
2 . Surprisingly, the case n = 4 is not analytically tractable. The case n = 6 will be studied analytically in

Sect. 3.3. In Sect. 3.4 we will numerically study the bifurcations for other values of n and F < 0.

8
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Figure 4. As the equilibrium xF = (F, . . . ,F ) loses stability through a (double-)Hopf bifurcation for F > 0 a periodic attractor is born

which represents a traveling wave. The spatial wave number increases linearly with n, whereas the period tends to a finite limit.

3.3 Standing waves for n = 6 and F < 0

We now consider the dimension n = 6. At F =− 1
2 the eigenvalue λ3 changes sign. Note that the equilibrium xF cannot

exhibit a saddle-node bifurcation since xF continues to exist for F <− 1
2 . Instead, at F =− 1

2 there must be a branching point

which is associated to either a pitchfork or a transcritical bifurcation. If we try for F <− 1
2 an equilibrium solution of the form5

xP = (a,b,a,b,a,b) then it follows that a and b must satisfy the equations

b(b− a)− a + F = 0,

a(a− b)− b + F = 0.

Of course a = b = F is a solution to these equations, but this would lead to the already known equilibrium xF = (F,F,F,F,F,F ).

There is an additional pair of solutions which is given by

a =
−1 +

√
−1− 2F

2
,

b =
−1−

√
−1− 2F

2
. (10)10

With these values of a and b we obtain two new equilibria xP,1 = (a,b,a,b,a,b) and xP,2 = (b,a,b,a,b,a) that exist for

F <− 1
2 in addition to the equilibrium xF . This means that a pitchfork bifurcation occurs at F =− 1

2 .

9
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As F decreases, each of the new equilibria x1,2
P may bifurcate again. We first consider the equilibrium xP,1 for which the

Jacobian matrix is given by

J =




−1 b 0 0 −b b− a

a− b −1 a 0 0 −a

−b b− a −1 b 0 0

0 −a a− b −1 a 0

0 0 −b b− a −1 b

a 0 0 −a a− b −1




.

Note that J is no longer circulant: in addition to shifting each row in a cyclic manner, the values of a and b also need to be5

interchanged. In particular, this means that the eigenvalues can no longer be determined by means of Eq. (4). Symbolic ma-

nipulations with the computer algebra package Mathematica (Wolfram Research, Inc., 2016) show that an eigenvalue crossing

occurs for F =− 7
2 in which case a = 1

2 (−1 +
√

6) and b = 1
2 (−1−

√
6) and the characteristic polynomial of J is given by

det(J −λI) = 468 + 219λ+ 246λ2 + 91λ3 + 33λ4 + 6λ5 + λ6

= (3 + λ2)(12 + λ+ λ2)(13 + 5λ+ λ2).

This expression shows that J has two purely imaginary eigenvalues ±i
√

3 and the remaining four complex eigenvalues have10

negative real part. Therefore the equilbrium xP,1 undergoes a Hopf bifurcation at F =− 7
2 . Numerical experiments with Math-

ematica show that the matrix J − i
√

3I has a null vector of the form

v =
(
v0 v1 v0e

2πi/3 v1e
2πi/3 v0e

−2πi/3 v1e
−2πi/3

)⊤
,

where we can take

v0 = 6
√

2+ 2i and v1 = 3
√

2 + 5
√

3− (5 +
√

6)i.15

Hence, using Eq. (3) the periodic orbit can be approximated as

x0(t) =
−1 +

√
6

2
+

ε

‖v‖ Re v0e
i
√

3t + O(ε2),

x1(t) =
−1−

√
6

2
+

ε

‖v‖ Re v1e
i
√

3t + O(ε2),

x2(t) =
−1 +

√
6

2
+

ε

‖v‖ Re v0e
i(
√

3t+2π/3) + O(ε2),

x3(t) =
−1−

√
6

2
+

ε

‖v‖ Re v1e
i(
√

3t+2π/3) + O(ε2),

x4(t) =
−1 +

√
6

2
+

ε

‖v‖ Re v0e
i(
√

3t−2π/3) + O(ε2),

x5(t) =
−1−

√
6

2
+

ε

‖v‖ Re v1e
i(
√

3t−2π/3) + O(ε2).
(11)
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Figure 5. As Fig. 1, but for two periodic attractors for n = 6 and F =−3.6. These attractors are born at Hopf bifurcations of the equilibria

xP,1 (left) and xP,2 (right) at F =−7/2. Note that the waves do not travel “eastward” or “westward”. The pitchfork bifurcation changed the

mean flow which in turn changes the propagation of the wave.

Note that if ε =
√
− 7

2 −F is sufficiently small, then xj(t) is always positive (resp. negative) for j = 0,2,4 (resp. j = 1,3,5).

This implies that the periodic orbit represents a standing wave rather than a traveling wave. The period of the wave is T =

2π/
√

3 and the spatial wave number is 3. These spatiotemporal properties are clearly visible in the left panel of Fig. 5.

The computations for the equilibrium xP,2 are similar and show that another Hopf bifurcation takes place at F =− 7
2 . This5

means that for F <− 7
2 there exists a second stable period orbit which coexists with the stable periodic orbit born at the Hopf

bifurcation of xP,1. Its first-order approximation is almost identical to Eq. (11): only the numerators 1−
√

6 and 1+
√

6 need to

be interchanged and therefore the complete expression will be omitted. Hence, the two coexisting stable waves that arise from

the two Hopf bifurcations of the equilibria xP,1 and xP,2 have the same spatiotemporal properties, but they differ in spatial

11
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Figure 6. Bifurcation diagrams obtained by continuation of the equilibrium xF = (F, . . . ,F ) for F < 0 for the dimensions n = 4 and n = 6.

Stable (unstable) branches are marked by solid (dashed) lines. For n = 4 two pitchforks in a row occur before the Hopf bifurcation, whereas

for n = 6 only one pitchfork occurs before the Hopf bifurcation. The bifurcation diagram for n = 4k with k ∈ N (resp. n = 4k + 2) is

qualitatively similar to the bifurcation diagram for n = 4 (resp. n = 6), see the main text.

phase which is indeed visible in the Hovmöller diagrams in Fig. 5. These results show how the pitchfork bifurcation changed

the mean flow and hence also the propagation characteristics of the wave. In the next section we will explore spatiotemporal

properties of waves for F < 0 and other even values of n.

3.4 Standing waves for even n ≥ 4 and F < 05

The case n = 4 turns out to be more complicated than the case n = 6. If n = 4, then the equilibrium xF = (F,F,F,F ) under-

goes a pitchfork bifurcation at F = − 1
2 since λ2 = 0. Just as in the case n = 6 two new branches of equilibria appear which

are given by

xP,1 = (a,b,a,b), xP,2 = (b,a,b,a),

where a,b are again given by Eq. (10). The Jacobian matrix at the equilibrium xP,1 is given by10

J =




−1 b −b b− a

a− b −1 a −a

−b b− a −1 b

a −a a− b −1
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Figure 7. Parameter values of the first Hopf bifurcation (left) and the periods of the periodic attractor (right) that appears after the Hopf

bifurcation for F < 0 and even values of the dimension n. For clarity the cases n = 4k and n = 4k +2 have been marked with different

symbols in order to emphasize the differences.

For F =−3, in which case a = (−1+
√

5)/2 and b = (−1−
√

5)/2, the characteristic polynomial of the matrix J is given by

det(J −λI) = λ(30 + 13λ+ 4λ2 + λ3),

which implies that a real eigenvalue of J becomes zero at F =−3. For the equilibrium xP,2 we obtain the same result. Since the

equilibria xP,1 and xP,2 continue to exist for F <−3 a saddle-node bifurcation is ruled out. Numerical continuation using the5

software package AUTO-07p (Doedel and Oldeman, 2007) shows that again a pitchfork bifurcation takes place at F =−3. It

is not feasible to derive analytic expressions for the new branches of equilibria as in Eq. (10). Continuation of the four branches

while monitoring their stability indicates that at F ≈−3.853 in total four Hopf bifurcations occur (one at each branch). Figure

6 shows the bifurcation diagrams for the cases n = 4 and n = 6.

The question is whether the results described above persist for even dimensions n > 6. To that end we conducted the fol-10

lowing numerical experiment. For all even dimensions 4≤ n≤ 50 we used the software package AUTO-07p to numerically

continue the equilibrium xF = (F,. . . ,F ) for F < 0 while monitoring the eigenvalues to detect bifurcations. At each pitchfork

bifurcation we performed a branch switch in order to follow the new branches of equilibria and detect their bifurcations. Once

a Hopf bifurcation is detected we can compute the period of the wave as T = 2π/ω from the eigenvalue pair ±ωi. The results

of this experiment reveal that the cases n = 4k and n = 4k + 2 are different both qualitatively and quantitatively.

13

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-56
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 9 October 2017
c© Author(s) 2017. CC BY 4.0 License.



If n = 4k + 2 for some k ∈N, then one pitchfork bifurcation occurs at F =−0.5. This follows directly from Eq. (4) for the

eigenvalues of the equilibrium xF : for even n we have λn/2 =−1− 2F which changes sign at F =− 1
2 . From the pitchfork

bifurcation two new branches of stable equilibria emanate. Each of these equilibria is of the form

(a,b,a,b,a,b, . . . ) (12)5

with a > 0 and b < 0; the other equilibrium just follows by interchanging a and b. Each of the two equilibria undergoes a Hopf

bifurcation, which leads to the coexistence of two stable waves. Figure 7 (left panel) suggests that the value of F at which

this bifurcation occurs is not constant, but tends to −3 as n→∞. The period of the periodic attractor that is born at the Hopf

bifurcation increases almost linearly with n: fitting the function T (n) = α + βn to the numerically computed periods gives

α = 0.36 and β = 0.59, see Fig. 7 (right panel).10

If n = 4k for some k ∈ N, then two Pitchfork bifurcations in a row occur at F =−0.5 and F =−3. After the second

pitchfork bifurcation there are four branches of equilibria. Each of these equilibria is of the form

(a,b,c,d,a,b,c,d, . . . ) (13)

where a,b,c,d alternate in sign; the other equilibria are obtained by applying a circulant shift. Each of the four stable equilibria

undergoes a Hopf bifurcation at the same value of the parameter F , which leads to the coexistence of four stable waves. Figure15

7 (left panel) suggests that the value of F at which this bifurcation occurs is not constant, but tends to −3.64 as n→∞.

Contrary to the case n = 4k + 2, the period of the periodic attractor that appears after the Hopf bifurcation settles down and

tends to 1.92 as n→∞.

In spite of the aforementioned quantitative differences between the cases n = 4k +2 and n = 4k, the wave numbers depend

in the same way on n in both cases. Equations (12) and (13) show that the n components of the equilibrium that undergoes the20

Hopf bifurcation alternate in sign. Therefore, sufficiently close to the Hopf bifurcation the components x0(t), . . . ,xn−1(t) of

the periodic orbit will also alternate in sign. Hence, the resulting standing waves consists of n/2 “troughs” and “ridges” which

means that their wave number equals n/2.

4 Multi-stability: coexistence of waves

The results of Sect. 3.4 show that for even n and F < 0 either two or four stable periodic orbits coexist for the same parameter25

values. This phenomenon is referred to as multi-stability in the dynamical systems literature. An overview of the wide range of

applications of multi-stability in different disciplines of science is given by Feudel (2008).

Multi-stability also occurs for F > 0 but due to a very different reason. For n = 12 Theorem 1 implies that the first bifurcation

of the equilibrium xF = (F,. . . ,F ) for F > 0 is not a Hopf bifurcation, but a double-Hopf bifurcation. Indeed, at F = 1 we

have two pairs of purely imaginary eigenvalues, namely (λ2,λ10) = (−i
√

3, i
√

3) and (λ3,λ9) = (−i, i). Note that the double-30

Hopf bifurcation is a codimension-2 bifurcation which means that generically two parameters must be varied in order for the

bifurcation to occur (Kuznetsov, 2004). However, symmetries such as those in the Lorenz-96 model can reduce the codimension

of a bifurcation.
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In previous work (Van Kekem and Sterk, 2017a) we have introduced an embedding of the Lorenz-96 model in a 2-parameter

family by adding a diffusion-like term multiplied by an additional parameter G:

dxj

dt
= xj−1(xj+1− xj−2)− xj + G(xj−1− 2xj + xj+1)+ F, j = 0, . . . ,n− 1. (14)

Note that by setting G = 0 we retrieve the original Lorenz-96 model in Eq. (1). Since the Jacobian matrix of Eq. (14) is again5

a circulant matrix we can use Eq. (4) to determine its eigenvalues:

λj =−1− 2G(1− cos(2πj/n))+ Ff(2πj/n)+ Fg(2πj/n)i (15)

Also note that xF = (F,. . . ,F ) remains an equilibrium solution of Eq. (14) for all (F,G). The Hopf bifurcations of xF

described in Theorem 1 now occur along the lines

G =
Ff(2πj/n)− 1

2(1− cos(2πj/n))
, (16)10

and the intersection of two such lines leads to a double-Hopf bifurcation.

Figure 8 shows a local bifurcation diagram of the 2-parameter Lorenz-96 model in the (F,G)-plane for n = 12 which was

numerically computed using MATCONT (Dhooge et al., 2011). A double-Hopf point is located at (F,G) = (1,0) which is

indeed implied by Theorem 1. Computing the normal form of this bifurcation shows that the unfolding of the bifurcation is of

“type I” as described by Kuznetsov (2004). This means that from the double-Hopf point only two curves of Neı̆mark-Sacker15

bifurcations emanate. These curves bound a region of the (F,G)-plane in which two stable periodic attractors coexist with an

unstable 2-torus. We will refer to this region as the “multi-stability lobe”. Figure 9 shows two periodic attractors with wave

numbers 2 and 3 in the multi-stability lobe for n = 12 and (F,G) = (1.5,0).

Double-Hopf bifurcations are abundant in the 2-parameter Lorenz-96 model of Eq. (14). The lines described in Eq. (16) have

a different slope for all 0 < j < n/2 and j 6= n/3, and hence they mutually intersect each other. This implies that the number of20

double-Hopf points in the (F,G)-plane grows quadratically with n, see Appendix A3. However, not all these points will have

an influence on the dynamics: if xF is already unstable, then any dynamical object born through the double-Hopf bifurcation

will also be unstable. In what follows, we only consider the double-Hopf bifurcations through which xF can change from

stable to unstable. We can find such points as follows. Starting from the line in Eq. (16) with j = l+1 (n) as defined by Eq. (8),

we first compute double-Hopf points by computing the intersections with all other lines. From these intersections we select25

those that satisfy the condition max{Reλj : j = 0, . . . ,n− 1}= 0.

Figure 10 shows the G-coordinates of these double-Hopf points as a function of n. Clearly, for large n there exist double-

Hopf points which are very close to the F -axis which suggests that the multi-stability lobe that emanates from such points can

intersect the F -axis and hence influence the dynamics of the original Lorenz-96 model for G = 0. Moreover, Fig. 10 shows that

for n > 12 there are always two double-Hopf points by which xF can change from stable to unstable. It is then possible that30

two multi-stability lobes intersect each other which leads to a region in the (F,G)-plane in which at least three stable waves

coexist.

Figures 11–13 show bifurcation diagrams of three periodic orbits as a function of F for G = 0 for n = 40,60,80. For each

periodic orbit the continuation is started from a Hopf bifurcation of the equilibrium xF . If xF is unstable, then so will be the
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Figure 8. Bifurcation diagram of the 2-parameter system (14) in the (F,G)-plane for n = 12. A double-Hopf bifurcation point is located at

the point (F,G) = (1,0) due to the intersection of two Hopf bifurcation lines. From this codimension-2 point two Neı̆mark-Sacker bifurcation

curves emanate which bound a “lobe-shaped” region in which two periodic attractors coexist.

periodic orbit. However, when the boundary of a multi-stability lobe is crossed a Neı̆mark-Sacker bifurcation occurs by which

a periodic orbit can gain stability. For specific intervals of the parameter F three stable periodic orbits coexist. Since Fig. 10

shows that for large values of n the double-Hopf bifurcations are close to the F -axis, we expect that the coexistence of three

or more stable waves is typical for the Lorenz-96 model.5

5 Conclusions

In this paper we have studied spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension

n. For F > 0 the first bifurcation of the equilibrium xF = (F,. . . ,F ) is either a supercritical Hopf or a double-Hopf bifurcation

and the periodic attractor born at the Hopf bifurcation represents a traveling wave. The spatial wave number is determined by

the index of the eigenpair that crosses the imaginary axis and increases linearly with n, but the period tends to a finite limit as10

n→∞. For F < 0 and n odd the first bifurcation of xF is always a supercritical Hopf bifurcation and the periodic attractor

that appears after the bifurcation is again a traveling wave. In this case the wave number equals (n− 1)/2 and the period is

O(4n).

For n even and F < 0 the first bifurcation of xF is a pitchfork bifurcation which occurs at F =− 1
2 and leads to two

stable equilibria. If n = 4k + 2 for some k ∈ N, then each of these equilibria undergoes a Hopf bifurcation which leads to the

16
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Figure 9. Projections onto the (x1,x2)-plane of coexisting periodic attractors for dimensions n = 12 and (F,G) = (1.5,0), which is inside

the multi-stability lobe of Fig. 8.
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Figure 10. G-coordinates of double-Hopf points as a function of n. Only those double-Hopf points are shown which destabilize the equilib-

rium xF . For large values of n the double-Hopf bifurcations are close to the F -axis in the (F,G)-plane, which means that these points are

likely to affect the dynamics of the Lorenz-96 model for G = 0.
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Figure 11. Continuation of periodic orbits for n = 40 and G = 0. The period of the orbit is plotted as a function of F . Stable (resp.

unstable) orbits are indicated by solid (resp. dashed) lines. Circles denote Neı̆mark-Sacker bifurcations and triangles denote period doubling

bifurcations. The Hopf bifurcations generating the waves with wave numbers 8, 9, 7 occur at respectively F = 0.894, F = 0.902, and

F = 0.959. Clearly, for 1.15 < F < 2.79 three stable periodic orbits coexist.

coexistence of two standing waves. The role of the pitchfork bifurcation is to change the mean flow which in turn changes the

propagation of the wave. If n = 4k for some k ∈ N, then two pitchfork bifurcations take place at F =− 1
2 and F =−3 before

a Hopf bifurcation occurs which leads to the coexistence of four standing waves.

The occurrence of pitchfork bifurcations before the Hopf bifurcation leads to multi-stability, i.e. the coexistence of different5

waves for the same parameter settings. A second scenario that leads to multi-stability is via the double-Hopf bifurcation. For

n = 12 the equilibrium xF loses stability through a double-Hopf bifurcation. By adding a second parameter G to the Lorenz-96

model we have studied the unfolding of this codimension-2 bifurcation. Two Neı̆mark-Sacker bifurcation curves emanating

from the double-Hopf point bound a lobe-shaped region in the (F,G)-plane in which two stable traveling waves with different

wave numbers coexist. For dimensions n > 12 we find double-Hopf bifurcations near the F -axis, which can create two multi-10

stability lobes intersecting each other, and in turn this can lead to the coexistence of three stable waves coexisting for G = 0

and a range of F -values. Hence, adding a parameter G to the Lorenz-96 model helps to explain the dynamics which is observed

in the original model for G = 0.

Our results provide an overview of the spatiotemporal properties of the Lorenz-96 model for n≥ 4 and F ∈ R. Since the

Lorenz-96 model is often used as a model for testing purposes, our results can be used to select the most appropriate values of15

n and F for a particular application. The periodic attractors representing traveling or standing waves can bifurcate into chaotic
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Figure 12. As Figure 11, but for n = 60. For 1.01 < F < 2.03 three stable periodic orbits coexist. The Hopf bifurcations generating the

waves with wave numbers 13, 12, 14 occur at respectively F = 0.891, F = 0.894, and F = 0.923.
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Figure 13. As Figure 11, but for n = 80. For 0.93 < F < 2.78 three stable periodic orbits coexist. The Hopf bifurcations generating the

waves with wave numbers 17, 16, 18 occur at respectively F = 0.889, F = 0.894, and F = 0.902.
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attractors representing irregular versions of these waves, and their spatiotemporal properties are inherited from the periodic

attractor, see for example Fig. 1 and Fig. 2. This means that our results on the spatiotemporal properties of waves apply to

broader parameter ranges of the parameter F than just in a small neighbourhood of the Hopf bifurcation.

The results presented in this paper also illustrate another important point: both qualitative and quantitative aspects of the5

dynamics of the Lorenz-96 model depend on the parity of n. This phenomenon also manifests itself in discretized partial

differential equations. For example, for discretisations of Burgers’ equation Basto et al. (2006) observed that for odd degrees of

freedom the dynamics was confined to an invariant subspace, whereas for even degrees of freedom this was not the case. For the

Lorenz-96 model the parity of n also determines the possible symmetries of the model. We will investigate these symmetries,

and their consequences on bifurcation sequences using techniques from equivariant bifurcation theory in forthcoming work10

(Van Kekem and Sterk, 2017b).

Code availability. The scripts used for continuation with AUTO-07p are available upon request from Alef Sterk.

Appendix A

A1 Bounds on the wave number for F > 0

First note that for all n≥ 4, with the exception of n = 7, there exists at least one integer j ∈ [n
6 , n

4 ]. Indeed, for n = 4,5,6 this15

follows by simply taking j = 1, and for n = 8,9,10,11 this follows by taking j = 2. For n≥ 12 it follows from the fact that the

interval [n
6 , n

4 ] has a width larger than 1 and hence must contain an integer. We now claim that these observations also imply

that

l+(n) = argmax
0<j<n/3

f(2πj/n) ∈ [n
6 , n

4 ], n 6= 7.

Note that x ∈ [π
3 , π

2 ] implies that f(x)≥ 1 and x ∈ (0, π
3 )∪ (π

2 , 2π
3 ) implies 0 < f(x) < 1. Moreover, j ∈ [n

6 , n
4 ] implies that20

2πj
n ∈ [π

3 , π
2 ]. Therefore, f(2πj/n) is maximized for some integer j ∈ [n

6 , n
4 ].

A2 Asymptotic period for even n and F < 0

Using l’Hopital’s 0/0 rule gives

lim
x→π/2

(1
2π− x)tan(x) = lim

x→π/2

(1
2π− x)sin(x)

cos(x)

= lim
x→π/2

−sin(x)+ (1
2π− x)cos(x)

−sin(x)

= 1.
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Writing x = π/2− π/2n implies

lim
n→∞

2π tan
(

π
2 − π

2n

)

4n
= 1,

which in particular implies that

2π tan
(

π

2
− π

2n

)
= O(4n).5

A3 The number of Hopf and double-Hopf bifurcations

The number of Hopf bifurcations of the equilibrium xF = (F,. . . ,F ) for a given dimension n is exactly equal to the number

of conjugate eigenvalue pairs which satisfy Theorem 1:

NH =




⌈n

2 ⌉− 1 if n 6= 3m,

⌈n
2 ⌉− 2 if n = 3m,

(A1)

where we need the ceiling-function if n is odd. Note that if n is a multiple of 3, then f(2πn
3 ) = g(2πn

3 ) = 0 which does give a10

proper complex conjugate pair crossing the imaginary axis and hence the number of Hopf bifurcations has to be decreased by

1.

For the 2-parameter system we can count the number of double-Hopf bifurcations by counting the intersections of the lines

in Eq. (16). Since all the lines have a different slope, the number of such intersections is given by

NHH = 1
2NH(NH − 1) =





1
2 (⌈n

2 ⌉− 1)(⌈n
2 ⌉− 2) if n 6= 3m,

1
2 (⌈n

2 ⌉− 2)(⌈n
2 ⌉− 3) if n = 3m,

(A2)15

which shows that the number of double-Hopf points grows quadratically with n.
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