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Abstract. In this paper we study the spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the

dimension parameter n and the forcing parameter F . For F > 0 the first bifurcation is either a supercritical Hopf or a double-

Hopf bifurcation and the periodic attractor born at these bifurcations represents a traveling wave. Its spatial wave number

increases linearly with n, but its period tends to a finite limit as n→∞. For F < 0 and odd n the first bifurcation is again

a supercritical Hopf bifurcation, but in this case the period of the traveling wave also grows linearly with n. For F < 0 and5

even n, however, a Hopf bifurcation is preceded by either one or two pitchfork bifurcations, where the number of the latter

bifurcations depends on whether n has remainder 2 or 0 upon division by 4. This bifurcation sequence leads to stationary

waves and their spatiotemporal properties also depend on the remainder after dividing n by 4. Finally, we explain how the

double-Hopf bifurcation can generate two or more stable waves with different spatiotemporal properties that coexist for the

same parameter values n and F .10

Copyright statement.

1 Introduction

In this paper we study the Lorenz-96 model which is defined by the equations

dxj

dt
= xj−1(xj+1 − xj−2)− xj +F, j = 0, . . . ,n− 1, (1)

together with the periodic “boundary condition” implied by taking the indices j modulon. The dimensionn ∈ N and the forcing15

parameter F ∈ R are free parameters. Lorenz (2006) interpreted the variables xj as values of some atmospheric quantity in

n equispaced sectors of a latitude circle, where the index j plays the role of “longitude”. Hence, a larger value of n can be

interpreted as a finer latitude grid. Lorenz also remarked that the vectors (x0, . . . ,xn−1) can be interpreted as wave profiles,

and he observed that for F > 0 sufficiently large these waves slowly propagate “westward”, i.e. in the direction of decreasing

j. Figure 1 shows a Hovmöller diagram illustrating two traveling waves with wave number 5 for dimension n= 24 and the20

parameter values F = 2.75 (in the periodic regime) and F = 3.85 (in the chaotic regime).

The Lorenz-96 model was introduced as a tool for numerical experiments in predictability studies, rather than as a physically

realistic model. Indeed, Lorenz (2006) wrote that “The physics of the atmosphere is present only to the extent that there are
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external forcing and internal dissipation, simulated by the constant and linear terms, while the quadratic terms, simulating

advection, together conserve the total energy [...]” The value of the Lorenz-96 model primarily lies in the fact that it has a very

simple implementation in numerical codes while at the same time it can exhibit very complex dynamics for suitable choices of

the parameters n and F . The famous Lorenz-63 model (Lorenz, 1963), which does have a clear physical interpretation (namely,

as the Galerkin projection of a fluid dynamical model describing Rayleigh-Bénard convection), has two disadvantages. Firstly,5

it consists of only three ordinary differential equations. Secondly, for the classical parameter values the model has Lyapunov

spectrum (0.91,0,−14.57), which makes the model very dissipative. Such properties are not typical for atmospheric models.

In contrast, the dimension of the Lorenz-96 model can be chosen arbitrarily large, and for suitable values of the parameters the

Lyapunov spectrum is similar to those observed in models obtained from discretizing partial differential equations. For those

reasons the Lorenz-96 model has become a test model for a wide range of geophysical applications.10

Table 1 lists some recent papers with applications of the Lorenz-96 model. In most studies the dimension n is chosen ad hoc,

but n= 36 and n= 40 appear to be popular choices. Many applications are related to geophysical problems, but the model

has also attracted the attention of mathematicians working in the area of dynamical systems for phenomenological studies in

high-dimensional chaos. Note that Eq. (1) is in fact a family of models parameterized by means of the discrete parameter n.

An important question is to what extent both the qualitative and quantitative dynamical properties of Eq. (1) depend on n. For15

example, the dimension n has a strong effect on the predictability of large amplitudes of traveling waves in weakly chaotic

regimes of the Lorenz-96 model (Sterk and Van Kekem, 2017). In general, the statistics of extreme events in dynamical systems

strongly depend on topological properties and recurrence properties of the system (Holland et al., 2012, 2016). Therefore, a

coherent overview of the dependence of spatiotemporal properties on the parameters n and F is useful to assess the robustness

of results when using the Lorenz-96 model in predictability studies.20

In this paper we address the question how the spatiotemporal properties of waves, such as their period and wave number,

in the Lorenz-96 model depend on the dimension n and whether these properties tend to a finite limit as n→∞. We will

approach this question by studying waves represented by periodic attractors that arise through a Hopf bifurcation of a stable

equilibrium. Along various routes to chaos these periodic attractors can bifurcate into chaotic attractors representing irregular

waves which “inherit” their spatiotemporal properties from the periodic attractor. For example, the wave shown in the left25

panel of Fig. 1 bifurcates into a 3-torus attractor which breaks down and gives rise to the wave in the right panel. Note that both

waves have the same wave number. Figure 2 shows power spectra of these waves, and clearly their dominant peaks are located

at roughly the same period. Inheritance of spatiotemporal properties also manifests itself in a shallow water model studied by

Sterk et al. (2010) in which a Hopf bifurcation (related to baroclinic instability) explains the observed time scales of atmo-

spheric low-frequency variability. The Hopf bifurcation plays a key role in explaining the physics of low-frequency variability30

in many geophysical contexts. Examples are the Atlantic Multidecadal Oscillation (Te Raa and Dijkstra, 2002; Dijkstra et al.,

2008; Frankcombe et al., 2009), the wind-driven ocean circulation (Simonnet et al., 2003a, b), and laboratory experiments

(Read et al., 1992; Tian et al., 2001).

In addition to traveling waves, such as illustrated in Fig. 1, we will also show the existence of stationary waves. In a

recent paper by Frank et al. (2014) stationary waves have also been discovered in specific regions of the multi-scale Lorenz-9635
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Figure 1. Hovmöller diagrams of a periodic attractor (left, F = 2.75) and a chaotic attractor (right, F = 3.85) in the Lorenz-96 model for

n= 24. The value of xj(t) is plotted as a function of t and j. For visualization purposes linear interpolation between xj and xj+1 has been

applied in order to make the diagram continuous in the variable j.

model. Their paper uses dynamical indicators such as the Lyapunov dimension to identify the parameter regimes with stationary

waves. Moreover, we will explain two bifurcation scenarios by which waves with different spatiotemporal properties coexist.

This paper complements the results of our previous work (Van Kekem and Sterk, 2018) which considers only the case F > 0;

these two manuscripts together give a comprehensive picture of wave propagation in the Lorenz-96 model.

The remainder of this paper is organized as follows. In Sect. 2 we explain how to obtain an approximation of the periodic5

attractor born at a Hopf bifurcation, which enables us to derive spatiotemporal properties of the waves in the Lorenz-96 model.

In Sect. 3.1 we show that, for F > 0, periodic attractors indeed represent traveling waves as suggested by Lorenz. Also for

F < 0 and odd values of n, periodic attractors represent traveling waves, as is demonstrated in Sect. 3.2. In Sect. 3.3, however,
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Figure 2. Power spectra of the attractors of Fig. 1. Note that the maximum spectral power (indicated by a circle) is attained at nearly the

same period.

we show analytically that, for n= 6 and F < 0, stationary waves occur. By means of numerical experiments we show in

Sect. 3.4 that stationary waves occur in general for even n and F < 0. In Sect. 4 we discuss the bifurcation scenarios by which

stable waves with different spatiotemporal properties can coexist for the same values of the parameters n and F .

2 Hopf bifurcations

In this section we consider a general geophysical model in the form of a system of ordinary differential equations:5

dx

dt
= f(x,µ), x ∈ R

n. (2)

In this equation, µ ∈ R is a parameter modeling external circumstances such as forcing. Assume that for the parameter value

µ0 the system has an equilibrium x0; this means that f(x0,µ0) = 0 and hence x0 is a time-independent solution of eq. (2). In

the context of geophysics x0 represents a steady flow, and its linear stability is determined by the eigenvalues of the Jacobian

matrix Df(x0,µ0). An equilibrium becomes unstable when eigenvalues of the Jacobian matrix cross the imaginary axis upon10

variation of the parameter µ. Dijkstra (2005) provides an extensive discussion of the physical interpretation of bifurcation

behaviour.

Assume thatDf (x0,µ0) has two eigenvalues±ωi on the imaginary axis. This indicates the occurrence of a Hopf bifurcation,

i.e. the birth of a periodic solution from an equilibrium that changes stability. If the equilibrium x0 is stable for µ < µ0 and
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Reference Application n

Basnarkov and Kocarev (2012) Forecast improvement 960

Danforth and Yorke (2006) Forecasting in chaotic systems 40

Dieci et al. (2011) Computing Lyapunov exponents 40

Gallavotti and Lucarini (2014) Non-equilibrium ensembles 32

Hallerberg et al. (2010) Bred vectors 1024

Hansen and Smith (2000) Operational constraints 40

Haven et al. (2005) Predictability 40

Karimi and Paul (2010) Chaos 4, . . . ,50

De Leeuw et al. (2017) Data assimilation 36

Lorenz (2006) Predictability 4,36

Lorenz (2005) Designing chaotic models 30

Lorenz and Emanuel (1998) Data assimilation 40

Lucarini and Sarno (2011) Ruelle linear response theory 40

Orrell et al. (2001) Model error 8

Orrell (2002) Metric in forecast error growth 8

Orrell and Smith (2003) Spectral bifurcation diagrams 4,8,40

Ott et al. (2004) Data assimilation 40,80,120

Pazó et al. (2008) Spatiotemporal chaos 128

Stappers and Barkmeijer (2012) Adjoint modelling 40

Sterk and Van Kekem (2017) Predictability of extremes 4,7,24

Sterk et al. (2012) Predictability of extremes 36

Trevisan and Palatella (2011) Data assimilation 40,60,80

Table 1. Recent papers with applications of the Lorenz-96 model and the values of n that were used.

unstable for µ > µ0, then under suitable non-degeneracy conditions the Hopf bifurcation is supercritical, which means that a

stable periodic orbit exists for µ > µ0 (Kuznetsov, 2004). For small values of ε=
√
µ−µ0 the periodic orbit that is born at the

Hopf bifurcation can be approximated by

x(t) = x0 + εRe
[

(u+ iv)eiωt
]

+O(ε2), (3)

see Beyn et al. (2002). Without loss of generality we may assume that the corresponding complex eigenvectors u± iv of the5

matrix Df (x0,µ0) have unit length. In the context of geophysical applications this first-order approximation of the periodic

orbit can be interpreted as a wave-like perturbation imposed on a steady mean flow. The spatiotemporal properties of this wave

can now be determined by the vectors x0,u,v and the frequency ω.
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3 Waves in the Lorenz-96 model

In this section we study waves in the Lorenz-96 model and how their spatiotemporal characteristics depend on the parameters

n and F .

3.1 Traveling waves for n ≥ 4 and F > 0

For all n ∈ N and F ∈ R the point xF = (F,. . . ,F ) is an equilibrium solution of Eq. (1). This equilibrium represents a steady5

flow, and since all components are equal the flow is spatially uniform. The stability of xF is determined by the eigenvalues of

the Jacobian matrix of Eq. (1). Note that the Lorenz-96 model is invariant under the symmetry xi → xi+1 while taking into

account the periodic boundary condition. As a consequence the Jacobian matrix evaluated at xF is circulant which means that

each row is a right cyclic shift of the previous row, and so the matrix is completely determined by its first row. If we denote

this row by (c0, c1, . . . , cn−1), then it follows from Gray (2006) that the eigenvalues of the circulant matrix can be expressed in10

terms of roots of unity ρj = exp(−2πij/n) as follows:

λj =

n−1
∑

k=0

ckρ
k
j , j = 0, . . . ,n− 1. (4)

An eigenvector corresponding to λj is given by

vj =
1√
n

(

1 ρj ρ2j · · · ρn−1
j

)⊤
.

In particular, for the Lorenz-96 model in Eq. (1) the Jacobian matrix at xF has only three nonzero elements on its first row,15

viz. c0 =−1, c1 = F , cn−2 =−F . Hence, the eigenvalues λj can be expressed in terms of n and F as follows:

λj =−1+Ff(2πj/n)+Fg(2πj/n)i,

where the functions f and g are defined as

f(x) = cos(x)− cos(2x),

g(x) =−sin(x)− sin(2x). (5)

For F = 0 the equilibrium xF is stable as Reλj =−1 for all j = 0, . . . ,n− 1. The real part of the eigenvalue λj changes sign20

if the equation

F =
1

f(2πj/n)
(6)

is satisfied. The graph of f in Fig. 3 shows that for F > 0 Eq. (6) can have at most four solutions. Since f is symmetric around

x= π it follows that if j is a solution of Eq. (6) then so is n− j. This means that the equilibrium xF becomes unstable for

F > 0 when either a pair or a double pair of eigenvalues becomes purely imaginary. The main result is summarized in the25

following theorem.
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Figure 3. Graphs of the functions f and g as defined in Eq. (5). The eigenvalues of the equilibrium xF = (F, . . . ,F ) are given by λj =

−1+Ff(2πj/n) +Fg(2πj/n)i for j = 0, . . . ,n− 1. The shapes of the graphs of f and g imply that the equilibrium xF can only lose

stability through either a Hopf or a double-Hopf bifurcation for F > 0, see main text.

Theorem 1. Assume that n≥ 4 and l ∈N satisfies 0< l < n
2 , l 6= n

3 . Then the l-th eigenvalue pair (λl,λn−l) of the trivial

equilibrium xF crosses the imaginary axis at the parameter value FH(l,n) := 1/f(2πl/n) and thus xF bifurcates through

either a Hopf or a double-Hopf bifurcation. A double-Hopf bifurcation, with two pairs of eigenvalues crossing the imaginary

axis, occurs if and only if there exist l1, l2 ∈ N such that

cos

(

2πl1
n

)

+cos

(

2πl2
n

)

=
1

2
. (7)5

Otherwise, a Hopf bifurcation occurs. Moreover, the first Hopf bifurcation of xF is always supercritical.

The proof of Theorem 1 can be found in Van Kekem and Sterk (2018) in which also an expression for the first Lyapunov

coefficient is derived which determines for which l the Hopf bifurcation is sub- or supercritical. Observe that Theorem 1 implies

that a double-Hopf bifurcation occurs for n= 10m (with l1 =m,l2 = 3m,F = 2) and n= 12m (with l1 = 2m, l2 = 3m,

F = 1). In Sect. 4 we will explain how double-Hopf bifurcations lead to the coexistence of two or more stable traveling waves10

with different wave numbers.

From the eigenvalues that cross the imaginary axis and the corresponding eigenvectors we can deduce the physical charac-

teristics of the periodic orbit that arises after a Hopf bifurcation. When the l-th eigenvalue pair (λl,λn−l) crosses the imaginary
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axis we can write

λl =
g(2πl/n)

f(2πl/n)
i=−cot(πl/n)i, λn−l = λ̄l = cot(πl/n)i.

If we set ω = cot(πl/n), then according to Eq. (3) an approximation of the periodic orbit is given by

xj(t) = F + εRe
ei(ωt−2πijl/n)

√
n

+O(ε2)

= F +
ε√
n
cos(ωt− 2πjl/n)+O(ε2).

This is indeed the expression for a traveling wave in which the spatial wave number and the period are given by respectively5

l and T = 2π/ω = 2π tan(πl/n). Thus the index of the eigenpair that crosses the imaginary axis determines the propagation

characteristics of the wave.

Note that Hopf bifurcations of an unstable equilibrium will result in an unstable periodic orbit. Therefore, not all waves that

are guaranteed to exist by Theorem 1 will be visible in numerical experiments. Equation (6) implies that for F > 0 the first

Hopf bifurcation occurs for the eigenpair (λl,λn−l) with index10

l+1 (n) = argmax
0<j<n/3

f(2πj/n). (8)

In Appendix A1 it is shown that, except for n= 7, the integer l+1 (n) satisfies the bounds

n

6
≤ l+1 (n)≤

n

4
, (9)

which means that the wave number increases linearly with the dimension n. Since the function f has a maximum at x=

arccos(14 ) we have15

lim
n→∞

2πl+1 (n)

n
= arccos(14 ),

which is consistent with Eq. (9). As a corollary we find that the period of this wave tends to a finite limit as n→∞:

T∞ = lim
n→∞

2π tan

(

πl+1 (n)

n

)

= 2π tan(12 arccos(
1
4 ))≈ 4.867.

Figure 4 shows a graph of the period and the wave number as a function of n. Note that the period settles down on the value

T∞.20

3.2 Traveling waves for odd n ≥ 4 and F < 0

Now assume that n is odd. For F < 0 Eq. (6) has precisely two solutions which implies that the first bifurcation of xF is a

supercritical Hopf bifurcation. The index of the first bifurcating eigenpair (λl,λn−l) follows by minimizing the value of the

function f in Eq. 5:

l−1 (n) =
n− 1

2
.25

8



 3

 3.5

 4

 4.5

 5

 5.5

 6

 6.5

 0  20  40  60  80  100

 5

 10

 15

 20

 25
Pe

ri
od

W
av

e 
 n

um
be

r

n

Period
Wave number

Figure 4. As the equilibrium xF = (F, . . . ,F ) loses stability through a (double-)Hopf bifurcation for F > 0 a periodic attractor is born

which represents a traveling wave. The spatial wave number increases linearly with n, whereas the period tends to a finite limit.

Again, the wave number increases linearly with n, but at a faster rate than in the case F > 0. Now the period of the wave is

given by

T = 2π tan

(

π(n− 1)

2n

)

=O(4n),

where the last equality follows from the computations in Appendix A2. This implies that contrary to the case F > 0 the period

increases monotonically with n and does not tend to a limiting value as n→∞.5

Note that for even n and F < 0 the first bifurcation is not a Hopf bifurcation since λn/2 =−1− 2F is a real eigenvalue that

changes sign at F = 1
2 . Surprisingly, the case n= 4 is not analytically tractable. The case n= 6 will be studied analytically in

Sect. 3.3. In Sect. 3.4 we will numerically study the bifurcations for other values of n and F < 0.

3.3 Stationary waves for n = 6 and F < 0

We now consider the dimension n= 6. At F =− 1
2 the eigenvalueλ3 changes sign. Note that the equilibriumxF cannot exhibit10

a saddle-node bifurcation since xF continues to exist for F <− 1
2 . Instead, at F =− 1

2 there must be a branching point which

is either a pitchfork or a transcritical bifurcation. If we try for F <− 1
2 an equilibrium solution of the form xP = (a,b,a,b,a,b)

then it follows that a and b must satisfy the equations

b(b− a)− a+F = 0,

a(a− b)− b+F = 0.

9



Of course a= b = F is a solution to these equations, but this would lead to the already known equilibriumxF = (F,F,F,F,F,F ).

There is an additional pair of solutions which is given by

a=
−1+

√
−1− 2F

2
,

b=
−1−

√
−1− 2F

2
. (10)

With these values of a and b we obtain two new equilibria xP,1 = (a,b,a,b,a,b) and xP,2 = (b,a,b,a,b,a) that exist for

F <− 1
2 in addition to the equilibrium xF . This means that a pitchfork bifurcation occurs at F =− 1

2 .5

As F decreases, each of the new equilibria xP,1,2 may bifurcate again. We first consider the equilibrium xP,1 for which the

Jacobian matrix is given by

J =

























−1 b 0 0 −b b− a

a− b −1 a 0 0 −a

−b b− a −1 b 0 0

0 −a a− b −1 a 0

0 0 −b b− a −1 b

a 0 0 −a a− b −1

























.

Note that J is no longer circulant: in addition to shifting each row in a cyclic manner, the values of a and b also need to be

interchanged. In particular, this means that the eigenvalues can no longer be determined by means of Eq. (4). Symbolic ma-10

nipulations with the computer algebra package Mathematica (Wolfram Research, Inc., 2016) show that an eigenvalue crossing

occurs for F =− 7
2 in which case a= 1

2 (−1+
√
6) and b= 1

2 (−1−
√
6) so that the characteristic polynomial of J is given by

det(J −λI) = 468+ 219λ+246λ2+91λ3+33λ4+6λ5 +λ6

= (3+λ2)(12+λ+λ2)(13+ 5λ+λ2).

This expression shows that J has two purely imaginary eigenvalues ±i
√
3 and the remaining four complex eigenvalues have

negative real part. Therefore the equilbrium xP,1 undergoes a Hopf bifurcation at F =− 7
2 . Numerical experiments with Math-15

ematica show that the matrix J − i
√
3I has a null vector of the form

v =
(

v0 v1 v0e
2πi/3 v1e

2πi/3 v0e
−2πi/3 v1e

−2πi/3
)⊤

,

where we can take

v0 = 6
√
2+ 2i and v1 = 3

√
2+ 5

√
3− (5+

√
6)i.
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Hence, using Eq. (3) the periodic orbit can be approximated as

x0(t) =
−1+

√
6

2
+

ε

‖v‖ Re v0e
i
√
3t +O(ε2),

x1(t) =
−1−

√
6

2
+

ε

‖v‖ Re v1e
i
√
3t +O(ε2),

x2(t) =
−1+

√
6

2
+

ε

‖v‖ Re v0e
i(
√
3t+2π/3) +O(ε2),

x3(t) =
−1−

√
6

2
+

ε

‖v‖ Re v1e
i(
√
3t+2π/3) +O(ε2),

x4(t) =
−1+

√
6

2
+

ε

‖v‖ Re v0e
i(
√
3t−2π/3) +O(ε2),

x5(t) =
−1−

√
6

2
+

ε

‖v‖ Re v1e
i(
√
3t−2π/3) +O(ε2).

(11)

Note that if ε=
√

− 7
2 −F is sufficiently small, then xj(t) is always positive (resp. negative) for j = 0,2,4 (resp. j = 1,3,5).

This implies that the periodic orbit represents a stationary wave rather than a traveling wave. The period of the wave is

T = 2π/
√
3 and the spatial wave number is 3. These spatiotemporal properties are clearly visible in the left panel of Fig. 5.5

The computations for the equilibrium xP,2 are similar and show that another Hopf bifurcation takes place at F =− 7
2 . This

means that for F <− 7
2 there exists a second stable periodic orbit which coexists with the stable periodic orbit born at the Hopf

bifurcation of xP,1. Its first-order approximation is almost identical to Eq. (11): only the numerators 1−
√
6 and 1+

√
6 need to

be interchanged and therefore the complete expression will be omitted. Hence, the two coexisting stable waves that arise from

the two Hopf bifurcations of the equilibria xP,1 and xP,2 have the same spatiotemporal properties, but they differ in spatial10

phase which is indeed visible in the Hovmöller diagrams in Fig. 5. These results show how the pitchfork bifurcation changes

the mean flow and hence also the propagation characteristics of the wave. In the next section we will explore spatiotemporal

properties of waves for F < 0 and other even values of n.

3.4 Stationary waves for even n ≥ 4 and F < 0

The case n= 4 turns out to be more complicated than the case n= 6. If n= 4, then the equilibrium xF = (F,F,F,F ) under-15

goes a pitchfork bifurcation at F = − 1
2 since λ2 = 0. Just as in the case n= 6 two new branches of equilibria appear which

are given by

xP,1 = (a,b,a,b), xP,2 = (b,a,b,a),

where a,b are again given by Eq. (10). The Jacobian matrix at the equilibrium xP,1 is given by

J =















−1 b −b b− a

a− b −1 a −a

−b b− a −1 b

a −a a− b −1















20
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for n= 6 only one pitchfork occurs before the Hopf bifurcation. The bifurcation diagram for n= 4k with k ∈ N (resp. n= 4k+2) is

qualitatively similar to the bifurcation diagram for n= 4 (resp. n= 6), see the main text.

For F =−3, in which case a= (−1+
√
5)/2 and b= (−1−

√
5)/2, the characteristic polynomial of the matrix J is given by

det(J −λI) = λ(30+ 13λ+4λ2+λ3),

which implies that a real eigenvalue of J becomes zero at F =−3. For the equilibrium xP,2 we obtain the same result. Since

the equilibria xP,1 and xP,2 continue to exist for F <−3 a saddle-node bifurcation is ruled out. Numerical continuation

using the software package AUTO-07p (Doedel and Oldeman, 2007) shows that again a pitchfork bifurcation takes place at5

F =−3. It is not feasible to derive analytic expressions for the new branches of equilibria as in Eq. (10). Continuation of the

four branches while monitoring their stability indicates that at F ≈−3.853 in total four Hopf bifurcations occur (one at each

branch). Figure 6 shows the bifurcation diagrams for the cases n= 4 and n= 6.

The question is whether the results described above persist for even dimensions n > 6. To that end we conducted the fol-

lowing numerical experiment. For all even dimensions 4≤ n≤ 50 we used the software package AUTO-07p to numerically10

continue the equilibrium xF = (F,. . . ,F ) for F < 0 while monitoring the eigenvalues to detect bifurcations. At each pitchfork

bifurcation we performed a branch switch in order to follow the new branches of equilibria and detect their bifurcations. Once

a Hopf bifurcation is detected we can compute the period of the wave as T = 2π/ω from the eigenvalue pair ±ωi. The results

of this experiment reveal that the cases n= 4k and n= 4k+2 are different both qualitatively and quantitatively.
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Figure 7. Parameter values of the first Hopf bifurcation (left) and the periods of the periodic attractor (right) that appears after the Hopf

bifurcation for F < 0 and even values of the dimension n. For clarity the cases n= 4k and n= 4k+2 have been marked with different

symbols in order to emphasize the differences between the two cases.

If n= 4k+2 for some k ∈N, then one pitchfork bifurcation occurs at F =−0.5. This follows directly from Eq. (4) for the

eigenvalues of the equilibrium xF : for even n we have λn/2 =−1− 2F which changes sign at F =− 1
2 . From the pitchfork

bifurcation two new branches of stable equilibria emanate. Each of these equilibria is of the form

(a,b,a,b,a,b, . . . ) (12)

with a > 0 and b < 0; the other equilibrium just follows by interchanging a and b. Each of the two equilibria undergoes a Hopf5

bifurcation, which leads to the coexistence of two stable waves. Figure 7 (left panel) suggests that the value of F at which

this bifurcation occurs is not constant, but tends to −3 as n→∞. The period of the periodic attractor that is born at the Hopf

bifurcation increases almost linearly with n: fitting the function T (n) = α+ βn to the numerically computed periods gives

α= 0.36 and β = 0.59, see Fig. 7 (right panel).

If n= 4k for some k ∈ N, then two Pitchfork bifurcations in a row occur at F =−0.5 and F =−3. After the second10

pitchfork bifurcation there are four branches of equilibria. Each of these equilibria is of the form

(a,b,c,d,a,b,c,d, . . . ) (13)

where a, b, c, and d alternate in sign; the other equilibria are obtained by applying a circulant shift. Each of the four stable

equilibria undergoes a Hopf bifurcation at the same value of the parameter F , which leads to the coexistence of four stable
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waves. Figure 7 (left panel) suggests that the value of F at which this bifurcation occurs is not constant, but tends to −3.64

as n→∞. Contrary to the case n= 4k+2, the period of the periodic attractor that appears after the Hopf bifurcation settles

down and tends to 1.92 as n→∞.

In spite of the aforementioned quantitative differences between the cases n= 4k+2 and n= 4k, the wave numbers depend

in the same way on n in both cases. Equations (12) and (13) show that the n components of the equilibrium that undergoes5

the Hopf bifurcation alternate in sign. Therefore, sufficiently close to the Hopf bifurcation the components x0(t), . . . ,xn−1(t)

of the periodic orbit will also alternate in sign. Hence, the resulting stationary waves consists of n/2 “troughs” and “ridges”

which means that their wave number equals n/2.

4 Multi-stability: coexistence of waves

The results of Sect. 3.4 show that for even n and F < 0 either two or four stable periodic orbits coexist for the same parameter10

values. This phenomenon is referred to as multi-stability in the dynamical systems literature. An overview of the wide range of

applications of multi-stability in different disciplines of science is given by Feudel (2008).

Multi-stability also occurs when F > 0, but for a very different reason. For n= 12, Theorem 1 implies that the first bi-

furcation of the equilibrium xF = (F,. . . ,F ) for F > 0 is not a Hopf bifurcation, but a double-Hopf bifurcation. Indeed, at

F = 1 we have two pairs of purely imaginary eigenvalues, namely (λ2,λ10) = (−i
√
3, i

√
3) and (λ3,λ9) = (−i, i). Note that15

the double-Hopf bifurcation is a codimension-2 bifurcation which means that generically two parameters must be varied in

order for the bifurcation to occur (Kuznetsov, 2004). However, symmetries such as those in the Lorenz-96 model can reduce

the codimension of a bifurcation.

In previous work (Van Kekem and Sterk, 2018) we have introduced an embedding of the Lorenz-96 model in a 2-parameter

family by adding a diffusion-like term multiplied by an additional parameter G:20

dxj

dt
= xj−1(xj+1 − xj−2)− xj +G(xj−1 − 2xj + xj+1)+F, j = 0, . . . ,n− 1. (14)

Note that by setting G= 0 we retrieve the original Lorenz-96 model in Eq. (1). Since the Jacobian matrix of Eq. (14) is again

a circulant matrix we can use Eq. (4) to determine its eigenvalues:

λj =−1− 2G(1− cos(2πj/n))+Ff(2πj/n)+Fg(2πj/n)i (15)

Also note that xF = (F,. . . ,F ) remains an equilibrium solution of Eq. (14) for all (F,G). The Hopf bifurcations of xF25

described in Theorem 1 now occur along the lines

G=
Ff(2πj/n)− 1

2(1− cos(2πj/n))
, (16)

and the intersection of two such lines leads to a double-Hopf bifurcation.

Figure 8 shows a local bifurcation diagram of the 2-parameter Lorenz-96 model in the (F,G)-plane for n= 12 which was

numerically computed using MATCONT (Dhooge et al., 2011). A double-Hopf point is located at (F,G) = (1,0) which is30
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indeed implied by Theorem 1. The normal form of a double-Hopf bifurcation depends on the values of two coefficients which

determine the unfolding of the bifurcation. In total, there are eleven different bifurcation scenarios to consider. The normal

form computation of the double-Hopf bifurcation for n= 12 and (F,G) = (1,0) in Van Kekem and Sterk (2018) shows that

the unfolding of this particular case is of “type I in the simple case” as described by Kuznetsov (2004). This means that

from the double-Hopf point only two curves of Neı̆mark-Sacker bifurcations emanate. In discrete-time dynamical systems5

a Neı̆mark-Sacker bifurcation is the birth of a closed invariant curve when a fixed point changes stability through a pair of

complex eigenvalues crossing the unit circle in the complex plane. From a continuous-time system, such as eq. (14), we can

construct a discrete-time dynamical system by defining a Poincaré return map of a periodic orbit, in which case a Neı̆mark-

Sacker bifurcation refers to the birth of an invariant 2-dimensional torus when the periodic orbit changes stability by a pair of

Floquet multipliers crossing the unit circle in the complex plane.10

In order to explain the dynamics in a neighbourhood around the double-Hopf point, we now use Fig. 8 to describe the

successive bifurcations that occur forG= 0.1 fixed and increasingF . At F = 1.1 the equilibrium xF becomes unstable through

a supercritical Hopf bifurcation (the blue line given by G= F − 1) and a stable periodic orbit with wave number 2 is born.

At F = 1.2 the now unstable equilibrium undergoes second Hopf bifurcation (the red line given by G= 1
2 (F − 1)) and an

unstable periodic orbit with wave number 3 is born. The latter periodic orbit becomes stable at F ≈ 1.58 through a subcritical15

Neı̆mark-Sacker bifurcation (orange curve) and an unstable 2-dimensional invariant torus is born. Hence, for parameter values

F > 1.58 two stable waves with wave numbers 2 and 3 coexist until one of these waves becomes unstable in a bifurcation. For

all fixed values of 0<G< 0.15 the same bifurcation scenario occurs, but the values of F are different. For −0.06<G< 0

the roles of the two Hopf bifurcations and periodic orbits have to be interchanged.

The scenario described above shows how the presence of two subcritical Neı̆mark-Sacker bifurcation emanating from a20

double-Hopf bifurcation determines a region of the (F,G)-plane in which two stable periodic orbits coexist with an unstable

2-dimensional invariant torus. We will refer to this region as the “multi-stability lobe”. The scenario described above is not

limited to the special case of the Lorenz-96 model, but occurs near a double-Hopf bifurcation of type I in any dynamical system

(Kuznetsov, 2004).

Double-Hopf bifurcations are abundant in the 2-parameter Lorenz-96 model of Eq. (14). The lines described in Eq. (16) have25

a different slope for all 0< j < n/2 and j 6= n/3, and hence they mutually intersect each other. This implies that the number of

double-Hopf points in the (F,G)-plane grows quadratically with n, see Appendix A3. However, not all these points will have

an influence on the dynamics: if xF is already unstable, then any dynamical object born through the double-Hopf bifurcation

will also be unstable. In what follows, we only consider the double-Hopf bifurcations through which xF can change from

stable to unstable. We can find such points as follows. Starting from the line in Eq. (16) with j = l+1 (n) as defined by Eq. (8),30

we first compute double-Hopf points by computing the intersections with all other lines. From these intersections we select

those that satisfy the condition max{Reλj : j = 0, . . . ,n− 1}= 0.

Figure 9 shows the G-coordinates of these double-Hopf points as a function of n. Clearly, for large n there exist double-

Hopf points which are very close to the F -axis which suggests that the multi-stability lobe that emanates from such points can

intersect the F -axis and hence influence the dynamics of the original Lorenz-96 model for G= 0. Moreover, Fig. 9 shows that35
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Figure 8. Bifurcation diagram of the 2-parameter system (14) in the (F,G)-plane for n= 12. A double-Hopf bifurcation point is located at

the point (F,G) = (1,0) due to the intersection of two Hopf bifurcation lines. From this codimension-2 point two Neı̆mark-Sacker bifurcation

curves emanate which bound a “lobe-shaped” region in which two periodic attractors coexist.

for n > 12 there are always two double-Hopf points by which xF can change from stable to unstable. It is then possible that

two multi-stability lobes intersect each other which leads to a region in the (F,G)-plane in which at least three stable waves

coexist.

Figures 10–12 show bifurcation diagrams of three periodic orbits as a function of F for G= 0 for n= 40,60,80. For each

periodic orbit the continuation is started from a Hopf bifurcation of the equilibrium xF . If xF is unstable, then so will be the5

periodic orbit. However, when the boundary of a multi-stability lobe is crossed a Neı̆mark-Sacker bifurcation occurs by which

a periodic orbit can gain stability. For specific intervals of the parameter F three stable periodic orbits coexist. Since Fig. 9

shows that for large values of n the double-Hopf bifurcations are close to the F -axis, we expect that the coexistence of three

or more stable waves is typical for the Lorenz-96 model.

The double-Hopf bifurcation has been reported in many works on fluid dynamical models. A few examples are baroclinic10

flows (Moroz and Holmes, 1984), rotating cylinder flows (Marqués et al., 2002, 2003), Poiseuille flows (Avila et al., 2006),

rotating annulus flows (Lewis and Nagata, 2003; Lewis, 2010), and quasi-geostrophic flows (Lewis and Nagata, 2005). In all

of these examples, the coexistence of multiple waves is reported where the nature of these waves depends on the specific model.
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Figure 9. G-coordinates of double-Hopf points as a function of n. Only those double-Hopf points are shown which destabilize the equilibrium

xF . For large values of n the double-Hopf bifurcations are close to the F -axis in the (F,G)-plane, which means that these points are likely

to affect the dynamics of the Lorenz-96 model for G= 0.

5 Conclusions

In this paper we have studied spatiotemporal properties of waves in the Lorenz-96 model and their dependence on the dimension

n. For F > 0 the first bifurcation of the equilibriumxF = (F,. . . ,F ) is either a supercritical Hopf or a double-Hopf bifurcation

and the periodic attractor born at the Hopf bifurcation represents a traveling wave. The spatial wave number is determined by

the index of the eigenpair that crosses the imaginary axis and increases linearly with n, but the period tends to a finite limit as5

n→∞. For F < 0 and n odd the first bifurcation of xF is always a supercritical Hopf bifurcation and the periodic attractor

that appears after the bifurcation is again a traveling wave. In this case the wave number equals (n− 1)/2 and the period is

O(4n).

For n even and F < 0 the first bifurcation of xF is a pitchfork bifurcation which occurs at F =− 1
2 and leads to two

stable equilibria. If n= 4k+2 for some k ∈ N, then each of these equilibria undergoes a Hopf bifurcation which leads to the10

coexistence of two stationary waves. The role of the pitchfork bifurcation is to change the mean flow which in turn changes the

propagation of the wave. If n= 4k for some k ∈ N, then two pitchfork bifurcations take place at F =− 1
2 and F =−3 before

a Hopf bifurcation occurs which leads to the coexistence of four stationary waves.

The occurrence of pitchfork bifurcations before the Hopf bifurcation leads to multi-stability, i.e. the coexistence of different

waves for the same parameter settings. A second scenario that leads to multi-stability is via the double-Hopf bifurcation. For15

n= 12 the equilibriumxF loses stability through a double-Hopf bifurcation. By adding a second parameterG to the Lorenz-96

18



 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 0.5  1  1.5  2  2.5  3  3.5  4

Pe
ri

od

F

wave nr. 8
wave nr. 9
wave nr. 7

Figure 10. Continuation of periodic orbits for n= 40 and G= 0. The period of the orbit is plotted as a function of F . Stable (resp.

unstable) orbits are indicated by solid (resp. dashed) lines. Circles denote Neı̆mark-Sacker bifurcations and triangles denote period doubling

bifurcations. The Hopf bifurcations generating the waves with wave numbers 8, 9, 7 occur at respectively F = 0.894, F = 0.902, and

F = 0.959. Clearly, for 1.15 < F < 2.79 three stable periodic orbits coexist.

model we have studied the unfolding of this codimension-2 bifurcation. Two Neı̆mark-Sacker bifurcation curves emanating

from the double-Hopf point bound a lobe-shaped region in the (F,G)-plane in which two stable traveling waves with different

wave numbers coexist. For dimensions n > 12 we find double-Hopf bifurcations near the F -axis, which can create two multi-

stability lobes intersecting each other, and in turn this can lead to the coexistence of three stable waves coexisting for G= 0

and a range of F -values. Hence, adding a parameter G to the Lorenz-96 model helps to explain the dynamics which is observed5

in the original model for G= 0.

Our results provide a coherent overview of the spatiotemporal properties of the Lorenz-96 model for n≥ 4 and F ∈ R.

Since the Lorenz-96 model is often used as a model for testing purposes, our results can be used to select the most appropriate

values of n and F for a particular application. The periodic attractors representing traveling or stationary waves can bifurcate

into chaotic attractors representing irregular versions of these waves, and their spatiotemporal properties are inherited from10

the periodic attractor, see for example Fig. 1 and Fig. 2. This means that our results on the spatiotemporal properties of waves

apply to broader parameter ranges of the parameter F than just in a small neighbourhood of the Hopf bifurcation.

The results presented in this paper also illustrate another important point: both qualitative and quantitative aspects of the

dynamics of the Lorenz-96 model depend on the parity of n. This phenomenon also manifests itself in discretized partial

differential equations. For example, for discretisations of Burgers’ equation Basto et al. (2006) observed that for odd degrees of15
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Figure 11. As Fig. 10, but for n= 60. For 1.01 < F < 2.03 three stable periodic orbits coexist. The Hopf bifurcations generating the waves

with wave numbers 13, 12, 14 occur at respectively F = 0.891, F = 0.894, and F = 0.923.
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Figure 12. As Fig. 10, but for n= 80. For 0.93 < F < 2.78 three stable periodic orbits coexist. The Hopf bifurcations generating the waves

with wave numbers 17, 16, 18 occur at respectively F = 0.889, F = 0.894, and F = 0.902.
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freedom the dynamics was confined to an invariant subspace, whereas for even degrees of freedom this was not the case. For the

Lorenz-96 model the parity of n also determines the possible symmetries of the model. We will investigate these symmetries,

and their consequences on bifurcation sequences using techniques from equivariant bifurcation theory in forthcoming work

(Van Kekem and Sterk, 2017).

Code availability. The scripts used for continuation with AUTO-07p are available upon request from Alef Sterk.5

Appendix A

A1 Bounds on the wave number for F > 0

First note that for all n≥ 4, with the exception of n= 7, there exists at least one integer j ∈ [n6 ,
n
4 ]. Indeed, for n= 4,5,6 this

follows by simply taking j = 1, and for n= 8,9,10,11 this follows by taking j = 2. For n≥ 12 it follows from the fact that the

interval [n6 ,
n
4 ] has a width larger than 1 and hence must contain an integer. We now claim that these observations also imply10

that

l+(n) = argmax
0<j<n/3

f(2πj/n) ∈ [n6 ,
n
4 ], n 6= 7.

Note that x ∈ [π3 ,
π
2 ] implies that f(x)≥ 1 and x ∈ (0, π3 )∪ (π2 ,

2π
3 ) implies 0< f(x)< 1. Moreover, j ∈ [n6 ,

n
4 ] implies that

2πj
n ∈ [π3 ,

π
2 ]. Therefore, f(2πj/n) is maximized for some integer j ∈ [n6 ,

n
4 ].

A2 Asymptotic period for even n and F < 015

Using l’Hopital’s 0/0 rule gives

lim
x→π/2

(12π− x)tan(x) = lim
x→π/2

(12π− x)sin(x)

cos(x)

= lim
x→π/2

−sin(x)+ (12π− x)cos(x)

−sin(x)

= 1.

Writing x= π/2− π/2n implies

lim
n→∞

2π tan

(

π
2 − π

2n

)

4n
= 1,

which in particular implies that20

2π tan

(

π

2
− π

2n

)

=O(4n).
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A3 The number of Hopf and double-Hopf bifurcations

The number of Hopf bifurcations of the equilibrium xF = (F,. . . ,F ) for a given dimension n is exactly equal to the number

of conjugate eigenvalue pairs which satisfy Theorem 1:

NH =











⌈n
2 ⌉− 1 if n 6= 3m,

⌈n
2 ⌉− 2 if n= 3m,

(A1)

where we need the ceiling-function if n is odd. Note that if n is a multiple of 3, then f(2πn3 ) = g(2πn3 ) = 0 which does give a5

proper complex conjugate pair crossing the imaginary axis and hence the number of Hopf bifurcations has to be decreased by

1.

For the 2-parameter system we can count the number of double-Hopf bifurcations by counting the intersections of the lines

in Eq. (16). Since all the lines have a different slope, the number of such intersections is given by

NHH = 1
2NH(NH − 1) =











1
2 (⌈n

2 ⌉− 1)(⌈n
2 ⌉− 2) if n 6= 3m,

1
2 (⌈n

2 ⌉− 2)(⌈n
2 ⌉− 3) if n= 3m,

(A2)10

which shows that the number of double-Hopf points grows quadratically with n.
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