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Abstract. Abstract. Hurricanes are complex systems that carry large amounts of energy. Their impact produces, the majority
of the time, natural disasters involving the loss of human lives and of materials and infrastructure in billions of US dollars.
However, not everything is negative, as hurricanes are the main source of rainwater for the regions where they develop. In this
study, we perform a nonlinear analysis of the time series obtained from 1749 to 2012 of the occurrence of hurricanes in the
Gulf of Mexico and the Caribbean Sea. The construction of the hurricane time series was carried out based on the hurricane
database of The North Atlantic-basin Hurricane Database (HURDAT), and the published historical information. The Lyapunov
exponent indicated that the system presented chaotic dynamics, and the time-series’ spectral analysis along with the nonlinear
analysis of the hurricanes time series showed chaotic edge behavior. One possible explanation for this edge is the individual
chaotic behavior of hurricanes, either by category or individually, regardless of their category, and their behavior on a regular

basis.

1 Introduction

Hurricanes have been studied since ancient times, their activity is related to disasters and loss of life. In recent years, there
has been considerable progress in predicting their trajectory and intensity, once their tracking began, as well as their number
and intensity from one year to the next. However, their long-term, and very short prediction remains a challenge (Halsey and
Jensen, 2004), and damage to both materials and lives remains considerable. Therefore, it is important to make a greater effort

in the study of hurricanes to reduce the damage they cause. The periodic behavior of hurricanes and their relationship with
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other natural phenomena have usually been performed with linear-type analyses, which have provided valuable information.
However, we decided to make a different contribution by carrying out a non-linear analysis of time series of hurricanes that
occurred in the Gulf of Mexico and the Caribbean Sea, since the dynamics of the system is controlled by a set of variables of
low dimensionality (Gratrix and Elgin, 2004; Broomhead and King, 1986). Theories of deterministic chaos and fractal structure
have already been applied to atmospheric boundary data (Tsonis and Elsner, 1988; Zeng et al., 1992), to the pulse of severe rain
time series (Sharifi et al., 1990; Zeng et al., 1992), and to the tropical cyclone trajectory (Fraedrich and Leslie, 1989; Fraedrich
et al., 1990). Natural phenomena occur in nature within different contexts; however, they often exhibit common characteristics,
or they may be understood using similar concepts. Deterministic chaos and fractal structure in dissipative dynamical systems
are among the most important non-linear paradigms (Zeng et al., 1992). For a detailed analysis of deterministic chaos, the
Lyapunov exponent is utilized as a key point and several methods have been developed to calculate it. It is possible to define
different Lyapunov exponents for a dynamic system. The maximal Lyapunov exponent can be determined without the explicit
construction of a time-series model. A reliable characterization requires that the independence of the embedded parameters
and the exponential law for the growth of distances can be explicitly tested (Rigney et al., 1993; Rosenstein et al., 1993). This
exponent provides a qualitative characterization of the dynamic behavior and also provides the predictability measurement
(Atari et al., 2003). The algorithms usually employed to obtain the Lyapunov exponent are those proposed by Wolf (1986),
Eckmann and Ruelle (1992), Kantz (1994), and Rosenstein et al. (1993). The methods of Wolf (1986) and Eckmann and Ruelle
(1992) assume that the data source is indeed a deterministic dynamic system and that irregular fluctuations in time-series data
are due to deterministic chaos. Blind application of this algorithm to an arbitrary set of data will always produce numbers, i.e.,
these methods do not provide a strong test of whether the calculated number can actually be interpreted as Lyapunov exponents
of a deterministic system (Kantz et al., 2013). The Rosenstein et al. (1993) method follows directly from the definition of the
Lyapunov maximal exponent and is accurate because it takes advantage of all available data. The algorithm is fast, easy-to-
implement, and robust for changes in the following quantities: embedded dimensions; data-set size; delay reconstruction, and
noise level. The Kantz (1994) algorithm is similar to that of Rosenstein et al. (1993).

We constructed a database of occurrences of hurricanes in the Gulf of Mexico and the Caribbean Sea to make a nonlinear
analysis of the time series, the results can help in the construction of models of occurrence of hurricanes and this in turn, will

help to reinforce the measures of prevention before this type of hydrometeorological phenomena.

2 Materials and methods
2.1 Data set description

A historical database of hurricane occurrence in the Gulf of Mexico and the Caribbean Sea was constructed. A detailed analysis
of the recorded hurricanes’ historical reports was provided by the ships sailing near the reported hurricanes; aerial reconnais-
sance data for recent hurricanes were obtained from 1749-2012. The aerial surveys began in 1944. Finally, the hurricanes
reported by Ferndndez-Partagas and Diaz (1995a; 1995b; 1996a; 1996b; 1996¢; 1997; 1999), were added, along with informa-

tion obtained from the HURDAT re-analysis project. All that information was used to build the hurricane time series (Fig. 1).
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Figure 1. Hurricanes from the years 1749-2012. The line shows their linear trend (afther Rojo-Garibaldi et al., 2016).

Only historical hurricanes that were reported in two or more databases were considered valid; on the other hand, the hurricane
trajectory was followed to avoid counting, more than, once a specific hurricane that was reported in different places within a
very short time. This was done in order to avoid overcounting the number of hurricanes; to do this, we follow the proposed

method by Rojo-Garibaldi et al. (2016).
2.2 Data reduction and procedures

To know the properties of the system requires more than estimating the dimension of the attractor (Jensen et al., 1985); so three
methods were applied in this study: 1) the Hurst exponent, which is a measure of the independence of the time series as an
element to distinguish fractal series. It is basically a statistical method which provide the number of occurrence of rare events
and is usually called re-scaling (RS) rank analysis (Gutiérrez, 2008), therefore it could be applied to any time series. The RS
helps to find the Hurst exponent, which provides the numerical value which makes possible to determine the autocorrelation in
a data series. 2) The Lyapunov exponent is invariant under soft transformations, because it describes the long-term behavior,
providing an objective characterization of the corresponding dynamics (Kantz and Schreiber, 2004). The presence of chaos
in dynamic systems can be solved by this exponent, since it quantifies the exponential convergence or divergence of initially
close trajectories in the state space and estimates the amount of chaos in a system (Rosenstein et al., 1993; Haken, 1981; Wollf,

1986). The Lyapunov exponent (A) can take one of the following four values: A < 0 corresponds to a stable fixed point, A =0
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which is for a stable limit cycle, 0 < A < oo indicates chaos and A = oo for a Brownian process, which agrees with the fact
that the entropy of a stochastic process is infinite (Kantz and Schreiber, 2004). 3). The Iterated Function Analysis (IFS) is
an easier and simpler way to visualize the fine structure of the time series, it can reveal correlations in the data and help to
characterize its color, referring to color to the type of noise (Miramontes et al., 2001). Together with the Lyapunov exponent,
the phase diagrams, the False Close Neighbors method, the Space-Time Separation plot, the Correlation Integral plot, and
the Correlation Dimension were taken into account, the latter two to identify whether the system attractor was fractal type.
It is important to emphasize that in order to compute the Lyapunov exponent the algorithms proposed by Kantz (1994) and
Rosenstein et al. (1993) were used in this study.

To detect some kind of chaotic behavior we plotted the Poincar surface, known as a strobe map, which can be interpreted as a
discrete dynamic system in a state space with a smaller dimension than the original continuous system, i.e. once a dimensional
hyperplane (m — 1) is taken in the dimensional space (embedded) m, a compressed time series of only the intersections of
the continuous time path is created with this hyperplane in a predefined orientation (Kantz and Schreiber, 2004; Hegger et
al., 1999). Using these method three types of trajectories can be obtained: 1) A simple periodic orbit of the original dynamic
system that becomes a single fixed point of the section of Poincar, 2) a quasi-periodical trajectory that becomes the image of a

closed curve, and 3) a chaotic movement that becomes a zone of erratically distributed points.

3 Results and discussions

Figure 1 shows the evolution of the number of hurricanes from 1749 to 2012 and their linear trend. In order to have a qualitative
idea of the number of hurricanes that occurred in the Gulf of Mexico and the Caribbean Sea between 1749 to 2012 a phase
diagram was performed using the "delay method" (Fig. 2). This was also used to elucidate the time lag for an optimal embedding
in the dataset.

The optimal time lag (7) obtained from Fig. 2 was equal to 9. In our case, the hurricane dynamics were not distinguish
through with the phase diagram; however, since any hurricane trajectory starts at a close point location on the attractor dataset
that diverges exponentially, it is a primary evidence of a chaotic motion according to Thompson and Stewart (1986).

Another way to visualize the dynamics of the system is through the Poincare Surface Section (Fig. 3), which helped us to
observe the presence of chaos involved in our data. We observed that the points are scattered in the constructed plane, indicating
that there is a chaotic behavior. However, the most robust method to identify chaos within the system is the Lyapunov exponent.
Prior to obtaining the exponent, it was necessary to calculate the time lag using the Theiler window and the embedding
dimension. The time lag was obtained with three different methods: 1) The method of constructing delays, 2) The method
of mutual information, which yields a more reliable result since it works with the nonlinear part of the systems, and 3) The
autocorrelation function methods (Fig. 4).

There are two ways to obtain the time lag from the autocorrelation function. We used the criterion of the first zero, because
the exponent of Hurst (/7 = 0.032) indicated that it was a short memory process; therefore, the criterion of the first zero is

optimal method in this type of cases. The Hurst exponent aids us to identify the criteria to find a time lag, and it also describes
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Figure 2. Phase diagrams corresponding to the time series of hurricanes that occurred between the years 1749 and 2012 in the Gulf of Mexico

and the Caribbean Sea. The z-axis in the four plots indicates the time lag (7).

system behavior (Quintero and Delgado, 2011), this could indicate that the system does not have chaotic behavior; however,
the remaining methods have indicated the opposite and as mentioned previously, the Lyapunov exponent is considered the most
appropriate method for this type of dataset. Therefore, different methods will provide different results, but the time series will
indicate the best method and the result we should use.

It was possible to observe the difference in the time lag obtained by both methods; however, it is necessary to use only one
result. Through the space-time separation graphic and the False Close Neighbors method, we obtained embedding dimensions
of m=4forar =9, and m = 5 for » = 10 and the Theiler window (Fig. 5).

The idea of the False Close Neighbors algorithm is that at each point in the time series, S; its neighbour S; should be

searched in a m-dimensional space. Thus, the distance ||.S; — .S} || is calculated iterating both points, given by:

Sit1—958j+1

Ri: — =
155 = 5

ey

Therefore, it may have some False Close Neighbours even when working with the correct embedding dimension. The result

of this analysis may depend on the time lag (Kantz and Schreiber, 2004).
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Figure 3. Poincare surface section for the time series of hurricanes that occurred between the years 1749 and 2012 in the Gulf of Mexico and

the Caribbean Sea.

The Lyapunov (A) exponents were obtained using the Kantz and Rosenstein methods taking the time lag and the embedding
dimension. The Kantz (1994) method using a value of m = 4 and r = 9 give us an exponent of A = 0.48392 and for m = 5 and
r = 10 the exponent was of A = 0.48392. Since A is a positive value, it was inferred that our system is chaotic. In addition, the
value of A obtained for both imbibing dimensions was the same, suggesting that our result is accurate. Using the Rosenstein
et al. (1993) method, the value obtained for m = 4 and » = 9 was of A =0.1056 and for m = 5 and r = 10, the exponent was
A =0.1123 (Fig. 6).

There was a difference between placing the attractor in an embedding dimension of m =4 and one of m =5, a better
unfolding of the attractor in the embedding dimension was observed in m = 4. Continuing with the analysis, the Integral
Correlation was obtained for the occurrence of hurricanes in our study area (Fig. 7).

As observed in Fig. 7, as m increases, the structure eventually becomes invariant in high embedding dimensions; this is an
indicator that no extra variables are needed to elucidate the dynamics of the system. The Integral of Correlation was obtained for
a total of 10 different dimensions. There was a linear correspondence among the dimension; however, after the 4" dimension
the behavior becomes invariable, which was something expected according to the method of False Neighbors and the results
obtained from the Lyapunov exponent. Here it was also confirmed that the minimal dimension needed to study the system

dynamics was fourth dimension. Fig. 8 shows the Correlation Dimension D for multiple length scales.
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Figure 4. The left panel shows the Mutual Information Method, the x-axis indicates the time lag against the Mutual Information Index (MII),
the arrow indicates the first most pronounced minimal with a value of r = 9. The right panel shows the autocorrelation function, the z-axis
indicates the time lag versus the value of the autocorrelation function, and the arrow denotes where the first zero of the function r = 10 was

obtained.

The right panel on Fig. 9 shows the slope trend of the majority of the slopes of the Correlation Integral (¢). In the range
of 1 < e < 10 requires to have straight lines as an indicator of the self-similar geometry. The value obtained here correspond
to Dy = 2.20 which is the aforementioned slope value. Another method to see the attractor dimension is the Kaplan-Yorke

Dimension (Dy,) which is given by:

k
g
5 Dy, =k 2
ky +;‘)\k—l| ()

Where £ is the maximal integer, such that the sum of the k£ major exponents is not negative. The fractal dimension with this
method yielded a value of Dy, = 2.26, which is similar to the one obtained previously.

10 Even when all the requirements necessary to apply the non-linear analysis to our time series are present, one final requirement

must be fulfilled to know whether we can obtain a dimension and whether the complete spectrum of Lyapunov exponents still

need to be employed (another method to visualize chaos). Eckmann and Ruelle (1992) discuss the size of the dataset required
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Figure 5. False Close Neighbors with a time lag of 10, where of the embedding dimension of 5 has a 9.4%, and the embedding dimension of
4 has a 16.66% False Close Neighbors (lower line). False Close Neighbors with a time lag of 9, where of the embedding dimension of 5 has
a20.15%, and the embedding dimension of 4 has a 20.12% False Close Neighbors (upper line). The values in each line indicate the optimal

dimension for each lag.

to estimate Lyapunov dimensions and exponents. When these measure the divergence rate with near-initial conditions, they
require a number of neighbors for a given reference point. These neighbors may be within a sphere of radius r, and of a given

diameter (d) the reconstructed attractor; Therefore:

r
I 1 3
=P << (3)

Eckmann and Ruelle (1992) suggested that p should be maximum around 0.1. In addition, the number of candidates for

neighbors (I'(r)), must be much greater than one. Therefore:

L(r)y>>1 “)
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Figure 6. Left panel: Lyapunov exponent with m =4, r = 9 and m=5, r=10, with the Kantz method. Right panel: Lyapunov exponent with

the same values with the Rosenstein method.

where:
[(r) ~ constant x r” &)
5 Then:
I(d)~ N (6)

Where D is the attractor dimension and N is the number of points or data. The following relation was then obtained from

10 equations (4) and (6):

L(r)y~N(=)P >>1 (7)
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Figure 7. Integral Correlation for the occurrence of Hurricanes between the years 1749 and 2012 in the Gulf of Mexico and the Caribbean

Sea. Each slope is a different m-value; m takes values from 1 to 10.

Finally, on combining equations (3) and (7), this yields to the Eckmann and ruelle (1992) condition to obtain the Lyapunov

exponents:

5 log(N) > Dlog(%) (3)

For p = 0.1 in equation (8), N may be chosen such that:

N > 107 9)

10

Where N is the number of data and D, the dimension of the attractor. Our time series met this requirement; therefore, it

support our previous results.

10
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Figure 8. Correlation dimension D> corresponding to the occurrence of hurricanes in the years 1749-2012 in the Gulf of Mexico and
the Caribbean Sea. Left-panel curves for different dimensions of the attractor (y-axis). Right panel, same information for the D, with a

logarthmic scale on the z-axis

The attractor dimension was mainly obtained because this value tells us the number of parameters or degrees of freedom
necessary to control or understand the temporal evolution of our system in the phase space, and helps us to know how chaotic
our system is. Using the previous methods, a final dimension of Dy = 2.2 was obtained for the fractal dimension. Following
the embedding laws, it must be fulfilled that m > 2D, but, in the case of the correlation dimension, it is sufficient if it satisfies
m > Dy (Sauer and Yorke, 1993; Kantz and Schreiber, 2004). Finally, the results indicated that at least three parameters are
needed to characterize our system, since the 2.2 dimension indicates that the attractor dimension falls between 2 and 3.

The spectrum of the Lyapunov exponent gives: 0.09983, -0.07443, -0.23387 and -0.73958; therefore, the total sum was
of > \; = —0.9480, and, according to the previous theory, it is enough have at least one positive exponent in the spectrum
of our system in order to have a chaotic behavior. Finally, the total sum of the spectrum of the Lyapunov exponents was
negative, indicating that there is a stable attractor, as mentioned previously. However, since the stable attractor was not easily
distinguished, we used a final method in order to confirm this result. This method comprised the Iterated Functions System test
(IFS) (Fig. 10).

Using Fig. 10, it can be observed that the points representing our system occupy the entire space; according to this, the
distribution could be described as a white noise signal, in systems without experimental noise the point distribution gives a

single curve (Jensen et al., 1985). However, the previous Hurst exponent obtained was not equal to zero; then, the white noise

11
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Figure 9. Left panel; slopes that indicate possible fractal dimensions of the attractor. Right panel; the slope that covers the majority of the

slopes of the Correlation Integral.

was also discarded with the autocorrelation function. On the other hand, our IFS test was not flat and does not appear to be
flattened by increasing the embedding dimension, which according to Rosenstein et al. (1993), our system would not be chaotic.
It was then also possible to obtain a dimension of the attractor and a positive Lyapunov exponent. Fraedrich and Leslie (1989)
analyses the trajectories of hurricanes in the region of Australia and calculate the dimensionality of this process, obtaining a
result of between 6 and 8, i.e., a chaotic process of high dimensionality, which is similar to what we find with this method. On
the other hand, Halsey and Jensen (2004) postulate that hurricanes contain a large number of dimensions in phase space.

Our results were not easy to interpret because the series presented certain periodic characteristics in oscillatory fashion, and
chaotic behavior at the same time. An explanation is that the occurrence of hurricanes in the Gulf of Mexico and the Caribbean
Sea is high- dimensionality -chaotic, and the system is localized within a boundary where chaos and order are separated; this
boundary is commonly known as the "edge of chaos" (Langton, 1990; Miramontes et al., 2001). Miramontes et al. (2001)
found this type of behavior in ants of the genus Leptohorax, when studying them individually and in groups. For the former
case, the behavior was periodic, while for the second case, the behavior was chaotic. In our case, the chaotic behavior is due to

the individual behavior or by hurricane category, while the periodic response is due to the behavior of hurricanes as a whole.

12
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Figure 10. Iterated Functions System (IFS) test applied to the time series of the number of hurricanes that occurred in the Gulf of Mexico

and the Caribbean Sea between the years 1749 and 2012.

4 Conclusions

The results obtained with the non-linear analysis suggested a chaotic behaviour in our system, mainly based on the Lyapunov
exponents and correlation dimension, among others. However, the Hurst exponent indicated that our system did not follow a
chaotic behaviour, and in order to be able to corroborate our results, we employed the IFS method, which led us to think that

5 the hurricanes time series in the Gulf of Mexico and the Caribbean Sea from 1749 to 2012 has a chaotic edge.
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