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Abstract. Hurricanes are complex systems that carry large amounts of energy. Their impact often 14 

produces natural disasters involving the loss of human lives and materials, such as infrastructure, 15 

valued in billions of US dollars. However, not everything about hurricanes is negative, as 16 

hurricanes are the main source of rainwater for the regions where they develop. This study shows 17 

a nonlinear analysis of the time series obtained from 1749 to 2012 of the occurrence of hurricanes 18 

in the Gulf of Mexico and the Caribbean Sea. The construction of the hurricane time series was 19 

carried out based on the hurricane database of the North Atlantic-basin Hurricane Database 20 

(HURDAT) and the published historical information. The hurricane time series provides a unique 21 

historical record on information about ocean-atmosphere interactions. The Lyapunov exponent 22 

indicated that the system presented chaotic dynamics, and the spectral analysis and nonlinear 23 

analyses of the time series of the hurricanes showed chaotic edge behavior. One possible 24 

explanation for this edge is the individual chaotic behavior of hurricanes, either by category or 25 

individually, regardless of their category and their behavior on a regular basis. 26 
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Introduction 27 

Hurricanes have been studied since ancient times, and their activity is related to disasters and loss 28 

of life. In recent years, there has been considerable progress in predicting their trajectory and 29 

intensity once tracking them has begun, as well as their number and intensity from one year to the 30 

next. However, their long-term and very short-term prediction remains a challenge (Halsey and 31 

Jensen, 2004), and the damage to both materials and lives remains considerable. Therefore, it is 32 

important to make a greater effort in the study of hurricanes to reduce the damage they cause. The 33 

periodic behavior of hurricanes and their relationships with other natural phenomena have usually 34 

been performed with linear-type analyzes which have provided valuable information. However, 35 

we decided to make a different contribution by carrying out a nonlinear analysis of a time series of 36 

hurricanes that occurred in the Gulf of Mexico and the Caribbean Sea, since the dynamics of the 37 

system is controlled by a set of variables of low dimensionality (Gratrix and Elgin, 2004; 38 

Broomhead and King, 1986). 39 

One of the core parts of this work was the elaborate time series that was built, especially for the 40 

oldest part of the registry, in which it was possible to have a substantial and robust collection. This 41 

gave our time series a number of data with which it was possible to perform this analysis; 42 

otherwise, it would have been impossible to study this natural phenomenon with a nonlinear 43 

analysis. 44 

Different methods have been used in the analysis of non-linear, non-stationary and non-Gaussian 45 

processes, including artificial neural networks (ASCE Task Committee, 2000, Maier and Dandy, 46 

2000, Maier et al., 2010, Taormina et al. 2015). Chen et al. (2015) use a hybrid neural network 47 

model to forecast the flow of the Altamaha River in Georgia; Gholami et al. (2015) simulate 48 

groundwater levels using dendrochronology and an artificial neural network model for the 49 

southern Caspian coast in Iran. On the other hand, theories of deterministic chaos and fractal 50 

structure have already been applied to atmospheric boundary data (Tsonis and Elsner, 1988; Zeng 51 

et al., 1992), e.g., to the pulse of severe rain time series (Sharifi et al., 1990; Zeng et al., 1992) and 52 

to the tropical cyclone trajectory (Fraedrich and Leslie, 1989; Fraedrich et al., 1990). Natural 53 

phenomena occur in nature within different contexts; however, they often exhibit common 54 

characteristics, or they may be understood using similar concepts. Deterministic chaos and fractal 55 

structure in dissipative dynamical systems are among the most important nonlinear paradigms 56 
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(Zeng et al., 1992). For a detailed analysis of deterministic chaos, the Lyapunov exponent is 57 

utilized as a key point and several methods have been developed to calculate it. It is possible to 58 

define different Lyapunov exponents for a dynamic system. The maximal Lyapunov exponent can 59 

be determined without the explicit construction of a time-series model. A reliable characterization 60 

requires that the independence of the embedded parameters and the exponential law for the growth 61 

of distances can be explicitly tested (Rigney et al., 1993; Rosenstein et al., 1993). This exponent 62 

provides a qualitative characterization of the dynamic behavior and the predictability measurement 63 

(Atari et al., 2003). The algorithms usually employed to obtain the Lyapunov exponent are those 64 

proposed by Wolf (1986), Eckmann and Ruelle (1992), Kantz (1994) and Rosenstein et al. (1993). 65 

The methods of Wolf (1986) and Eckmann and Ruelle (1992) assume that the data source is 66 

indeed a deterministic dynamic system and that irregular fluctuations in time-series data are due to 67 

deterministic chaos. A blind application of this algorithm to an arbitrary set of data will always 68 

produce numbers, i.e., these methods do not provide a strong test of whether the calculated 69 

numbers can actually be interpreted as Lyapunov exponents of a deterministic system (Kantz et 70 

al., 2013). The Rosenstein et al. (1993) method follows directly from the definition of the 71 

Lyapunov maximal exponent and is accurate because it takes advantage of all available data. The 72 

algorithm is fast, easy to implement, and robust to changes in the following quantities: embedded 73 

dimensions, data-set size, delay reconstruction, and noise level. The Kantz (1994) algorithm is 74 

similar to that of Rosenstein et al. (1993). 75 

We constructed a database of occurrences of hurricanes in the Gulf of Mexico and the Caribbean 76 

Sea to perform a nonlinear analysis of the time series, the results of which can help in the 77 

construction of hurricane occurrence models, and this in turn will help to reinforce the measures of 78 

prevention for this type of hydrometeorological phenomenon. 79 

 80 

2 Materials and methods 81 

2.1 Data set description 82 

A detailed analysis of the historical reports, provided by the ships that were used, was carried out 83 

in order to obtain the annual time series of the occurrence of hurricanes, from category one to five 84 

on the Saffir-Simpson scale, in the study region from 1749-2012. The time series was composed 85 
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by the historical ship track of all vessels sailing close to registered hurricanes, the aerial 86 

reconnaissance data for hurricanes since 1944 and the hurricanes reported by Fernández-Partagas 87 

and Díaz (1995a, 1995b; 1996a; 1996b; 1996c; 1997; 1999). All this information in addition to the 88 

database of the HURDAT re-analysis project (HURDAT is the official record of the United States 89 

for tropical storms and hurricanes occurring in the Atlantic Ocean, Gulf of Mexico and Caribbean 90 

Sea) was used in a comparative way in order to build our time series, which is so far the longest 91 

time series of hurricanes for the Gulf of Mexico and the Caribbean Sea. This makes our series 92 

ideal for performing a nonlinear analysis, which would be impossible with the records that are 93 

available in other regions. All this information was used to build the hurricane time series (Fig. 1). 94 

 95 

 96 

Figure 1. Hurricanes in the years 1749-2012. The line shows their linear trend (after Rojo-97 

Garibaldi et al., 2016). 98 

 99 

Historical hurricanes were included only if they were reported in two or more databases and met 100 

both of the following criteria: the reported hurricanes that touched land and those that remained in 101 

the ocean; on the other hand, the followed hurricanes were studied considering their average 102 

duration and their maximum time (9 and 19 days, respectively). This was done in order to avoid 103 

counting more than one specific hurricane reported in different places within a short period time; 104 

to do this, we followed the proposed method by Rojo-Garibaldi et al. (2016). 105 
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 106 

2.2 Data reduction and procedures 107 

Before performing the nonlinear analysis of the time series, we removed the trend; thus, the series 108 

was prepared according to what is required for this type of analysis. To know the properties of the 109 

system requires more than estimating the dimensions of the attractor (Jensen et al., 1985); so, three 110 

methods were applied in this study: 1) The Hurst exponent is a measure of the independence of the 111 

time series as an element to distinguish a fractal series. It is basically a statistical method that 112 

provides the number of occurrences of rare events and is usually called re-scaling (RS) rank 113 

analysis (Gutiérrez, 2008); in addition, according to Miramontes and Rohani (1998), the Hurst 114 

exponent provides another approximation that can be used to characterize the color of noise, and 115 

therefore, it could be applied to any time series. The RS helps to find the Hurst exponent, which 116 

provides the numerical value that makes it possible to determine the autocorrelation in a data 117 

series. 2) The Lyapunov exponent is invariant under soft transformations, because it describes 118 

long-term behavior, providing an objective characterization of the corresponding dynamics (Kantz 119 

and Schreiber, 2004). The presence of chaos in dynamic systems can be solved by this exponent, 120 

since it quantifies the exponential convergence or divergence of initially close trajectories in the 121 

state space and estimates the amount of chaos in a system (Rosenstein et al., 1993; Haken, 1981; 122 

Wolf, 1986). The Lyapunov exponent () can take one of the following four values:  < 0 123 

corresponds to a stable fixed point,  = 0 is for a stable limit cycle, 0 <  < ∞ indicates chaos and 124 

 = ∞ is a Brownian process, which agrees with the fact that the entropy of a stochastic process is 125 

infinite (Kantz and Schreiber, 2004). 3) The iterated function analysis (IFS) is an easier and 126 

simpler way to visualize the fine structure of the time series because it can reveal correlations in 127 

the data and help to characterize its color, referring to color to the type of noise (Miramontes et al., 128 

2001). Together with the Lyapunov exponent, the phase diagrams, the False Close Neighbors 129 

method, the Space-Time Separation plot, the Correlation Integral plot, and the Correlation 130 

Dimension were taken into account, the latter two to identify whether the system attractor was a 131 

fractal type. It is important to compute the Lyapunov exponent, so we used the algorithms 132 

proposed by Kantz (1994) and Rosenstein et al. (1993) to calculate it. 133 

 134 
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3 Results and discussions 135 

Figure 1 shows the evolution of the number of hurricanes from 1749 to 2012 and the linear trend. 136 

To have a qualitative idea of the behavior of the number of hurricanes that occurred in the Gulf of 137 

Mexico and the Caribbean Sea from 1749 to 2012, a phase diagram was performed using the 138 

“delay method” (Fig. 2). This was also used to elucidate the time lag for an optimal embedding in 139 

the dataset. The optimal time lag (τ) obtained visually from Fig. 2 was equal to 9, since it was the 140 

time in which the curves of the system were better divided. We must not forget that this was only 141 

a visual inspection, and the delay time will be obtained quantitatively through other methods. In 142 

our case, the hurricane dynamics were not distinguished through the phase diagram; however, 143 

since any hurricane trajectory starts at a close point location on the attractor dataset that diverges 144 

exponentially, the phase diagram is a primary evidence of a chaotic motion according to 145 

Thompson and Stewart (1986). 146 

The most robust method to identify chaos within the system is the Lyapunov exponent. Prior to 147 

obtaining the exponent, it was necessary to calculate the time lag and the embedding dimension, 148 

and for the latter, the window of Theiler was used. The time lag was obtained with three different 149 

methods: 1) the method of constructing delays, which is observed visually in Figure 2; 2) the 150 

method of mutual information, which yields a more reliable result since it takes into account 151 

nonlinear dynamic correlations; here, the delay time was obtained by taking the first minimum of 152 

the function; in this case  = 9; and 3) the autocorrelation function method, which is based solely 153 

on linear statistics (Fig. 3). 154 

There are two ways to obtain the time lag from the autocorrelation function: 1) the first zero of the 155 

function, and 2) the moment in which the autocorrelation function decays as 1/𝑒  (Kantz and 156 

Schreiber, 2004). We used the criterion of the first zero because the Hurst exponent (H = 0.032) 157 

indicated that it was a short memory process; therefore, the criterion of the first zero is the optimal 158 

method in this type of case. By this method, the value that was obtained was  = 10. The value of 159 

this parameter is very important, since if it turns out to be very small, then each coordinate is 160 

almost the same and the reconstructed trajectories look like a line (the phenomenon is known as 161 

redundancy). On the other hand, if the delay time is quite large, then due to the sensitivity of the 162 

chaotic movement, the coordinates appear to be independent and the reconstructed phase space 163 



7 
 

looks random or complex (a phenomenon known as irrelevance) (Bradley and Kantz, 2015). 164 

 165 

 166 
Figure 2. Phase diagrams corresponding to the time series of hurricanes that occurred between the 167 

years 1749 and 2012 in the Gulf of Mexico and the Caribbean Sea. The x - axis in the four plots 168 

indicates the time lag (τ). 169 

 170 

The Hurst exponent helps us to identify the criteria to find a time lag, and it also describes the 171 

system behavior (Quintero and Delgado, 2011). This could indicate that the system does not have 172 

chaotic behavior; however, the remaining methods have indicated the opposite, and as mentioned 173 

previously, the Lyapunov exponent is considered the most appropriate method for this type of 174 

dataset. Therefore, different methods will provide different results, but the time series will indicate 175 

the best method and the result we should use. 176 

It was possible to observe the difference in the time lag obtained through the autocorrelation 177 
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function and the mutual information; however, it is necessary to use only one result. Through the 178 

space-time separation graphic and the False Close Neighbors method, we obtained embedding 179 

dimensions of m = 4 for a  = 9 and m = 5 for  = 10, and the Theiler window with a value of W = 180 

16 for  = 9 and W = 18 for  = 10 (Fig. 4). The choice of this window is very important so as not 181 

to obtain subsequent spurious dimensions in the attractor. According to Bradley and Kantz (2015), 182 

the Theiler window ensures that the time spacing between the potential pairs of points is large 183 

enough to represent a distributed sample identically and independently. 184 

The idea of the False Close Neighbors algorithm is that at each point in the time series, 𝑆�̅� and its 185 

neighbor 𝑆�̅�  should be searched in a m-dimensional space. Thus, the distance ∥St − Sj∥ is 186 

calculated iterating both points, given by: 187 

 188 

                                              𝑅𝑖 =  
𝑆𝑖+1− 𝑆𝑗+1

‖𝑆�̅�− 𝑆𝐽̅̅ ̅‖
                                                        (1) 189 

 190 

If Ri is greater than the threshold given by Rt, then SJ has false close neighbors. According to 191 

Kennel et al. (1992), a value of Rt = 10 has proven to be a good choice for most of the data set, but 192 

a formal mathematical proof for this conclusion is not known; therefore, if this value does not give 193 

convincing results, it is advisable to repeat the calculations for several Rt (Perc, 2006). In our case, 194 

this value gave relevant results. It may have some False Close Neighbors even when working with 195 

the correct embedding dimension. The result of this analysis may depend on the time lag (Kantz 196 

and Schreiber, 2004). In the same way as the delay time, the value of the embedment dimension is 197 

crucial not only for the reconstruction of the phase space but also to obtain the Lyapunov 198 

exponent. Choosing a large value of m for chaotic data will add redundancy and will affect the 199 

development of many algorithms such as the Lyapunov exponent (Kantz and Schreiber, 2004). 200 

The Lyapunov () exponents were obtained using the Kantz and Rosenstein methods and took the 201 

time lag, the embedding dimension and the Theiler window as the main values; nevertheless, an 202 

election of the neighborhood radius for the exploration of trajectories was also made, as well as 203 

the points of reference and the neighbors near these points. The modification of these parameters 204 
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is important to corroborate the invariant characteristic of the Lyapunov exponent. The Kantz 205 

(1994) method using a value of m = 4 and  = 9 gave us an exponent of  = 0.483, while for m = 5 206 

and  = 10 the exponent was  = 0.483. Since  is a positive value, it was inferred that our system 207 

is chaotic. In addition, the value of  obtained for both imbibing dimensions was the same, 208 

suggesting that our result is accurate. Using the Rosenstein et al. (1993) method, the value 209 

obtained for m = 4 and  = 9 was  = 0.1056, and for m = 5 and  = 10, the exponent was  = 210 

0.112 (Fig. 5). 211 

There was a difference between placing the attractor in an embedding dimension of m = 4 and one 212 

of m = 5; a better unfolding of the attractor in the embedding dimension was observed in m = 4 213 

and  = 9. This value of  was obtained with the mutual information method, which, according to 214 

Fraser and Swinney (1986) and Krakovská et al. (2015), provides a better criterion for the choice 215 

of delay time than the value obtained by the autocorrelation function. 216 

It was possible to obtain the Correlation Dimension D2 (Fig. 6) and the Correlation Integral (Fig. 217 

6) using the embedding dimension, the delay time and the Theiler window, following the method 218 

of Grassberger and Procaccia (1983a, 1983b). This was done in order to obtain the possible 219 

dimensions of the attractor. It should be noted that there is a whole family of fractal dimensions, 220 

which are usually known as Renyi dimensions, but these are based on the direct application of box 221 

counting methods, which demands significant memory and processing and whose results can be 222 

very sensitive to the length of the data (Bradley and Kantz, 2015). That is why we use the 223 

Dimension and Integral Correlation, since according to Bradley and Kantz (2015) it is a more 224 

efficient and robust estimator. 225 

 226 
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 227 
Figure 3. The left panel shows the mutual information method; the x - axis indicates the time lag 228 

against the mutual information index (AMI) and the arrow indicates the first, most pronounced 229 

minimum with a value of  = 9. The right panel shows the autocorrelation function, the x - axis 230 

indicates the time lag versus the value of the autocorrelation function, and the arrow denotes 231 

where the first zero of the function  = 10 was obtained. 232 

 233 

The right panel on Fig. 7 shows the slope trend of the majority of the slopes of the Correlation 234 

Integral (ε). In the range of 1 < ε < 10, we are required to have straight lines as an indicator of the 235 

self-similar geometry. The value obtained here corresponds to D2 = 2.20 which is the 236 

aforementioned slope value. Another method to see the attractor dimension is the Kaplan-Yorke 237 

Dimension (Dky), which is associated with the spectrum of Lyapunov exponents and is given by: 238 

 239 

𝐷𝐾𝑌 = 𝑘 + ∑
𝜆𝑖

|𝜆𝑘+1|
𝑘
𝑖=1                                                  (2) 240 

 241 

where k is the maximal integer, such that the sum of the k major exponents is not negative. The 242 

fractal dimension with this method yielded a value of Dky = 2.26, which is similar to the one 243 

obtained previously. 244 

Even when all the requirements necessary to apply the nonlinear analysis to our time series are 245 
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present, one final requirement must be fulfilled to know whether we can obtain a dimension and 246 

whether the complete spectrum of Lyapunov exponents (another method to visualize chaos) still 247 

needs to be employed. 248 

 249 

 250 

 251 
Figure 4. False Close Neighbors with a time lag of 10, where the embedding dimension of 5 has a 252 

9.4% and the embedding dimension of 4 has a 16.66% False Close Neighbors (lower line). False 253 

Close Neighbors with a time lag of 9, where the embedding dimension of 5 has a 20.15% and the 254 

embedding dimension of 4 has a 20.12% False Close Neighbors (upper line). The values in each 255 

line indicate the optimal dimension for each lag. 256 

 257 

Eckmann and Ruelle (1992) discuss the size of the dataset required to estimate Lyapunov 258 

dimensions and exponents. When these dimensions and exponents measure the divergence rate 259 

with near-initial conditions, they require a number of neighbors for a given reference point. These 260 

neighbors may be within a sphere of radius r and of a given diameter (d) of the reconstructed 261 

attractor. 262 
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 263 

 264 

Figure 5. Left panel: Lyapunov exponent with m = 4,  = 9 and m = 5,  = 10, with the Kantz 265 

method. Right panel: Lyapunov exponent with the same values with the Rosenstein method. 266 

 267 

In this way we have the requirement for the Eckmann and Ruelle (1992) condition to obtain the 268 

Lyapunov exponents as: 269 

 270 

𝑙𝑜𝑔𝑁 > 𝐷𝑙𝑜𝑔 (
1

𝜌
)                                                     (3) 271 

 272 

where D is the dimension of the attractor, N is the number of data points and 
𝑟

𝑑
=  𝜌. For 𝜌 = 0.1 in 273 

equation (3), N may be chosen such that:  274 

 275 

                                              𝑁 > 10𝐷                                                     (4) 276 

 277 
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Our time series met this requirement; therefore, it supports our previous results. 278 

 279 

 280 
 281 

Figure 6. The correlation dimension D2 corresponding to the occurrence of hurricanes in the years 282 

1749-2012 in the Gulf of Mexico and the Caribbean Sea. Left-panel: curves for different 283 

dimensions of the attractor (y - axis). Right panel: same information for the D2 with a logarithmic 284 

scale on the x - axis. 285 

 286 

The attractor dimension was mainly obtained because this value tells us the number of parameters 287 

or degrees of freedom necessary to control or understand the temporal evolution of our system in 288 

the phase space and helps us to know how chaotic our system is. Using the previous methods, a 289 

final fractal dimension of D2 =2.2 was obtained. Following the embedding laws, it must be that m 290 

> D2 (Sauer and Yorke, 1993; Kantz and Schreiber, 2004; Bradley and Kantz, 2015). The criterion 291 

of Ruelle (1990) was used to corroborate that the obtained dimension of the attractor is reliable, 292 

where it must be that 𝑁 = 10
𝐷2
2 ; once the data fulfill this requirement, we can say that the 293 

dimension of the attractor is reliable. Finally, the results indicated that at least three parameters are 294 

needed to characterize our system, since the 2.2 dimension indicates that the attractor dimension 295 

falls between 2 and 3. 296 

The spectrum of the Lyapunov exponent gives 0.09983, -0.07443, -0.23387 and -0.73958; 297 

therefore, the total sum was λi = −0.9480, and according to the previous theory, it is enough have 298 
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at least one positive exponent in the spectrum of our system in order to have chaotic behavior. 299 

Finally, the total sum of the spectrum of Lyapunov exponents was negative, indicating that there is 300 

a stable attractor, as mentioned previously. However, since the stable attractor was not easily 301 

distinguished, we used a final method in order to confirm if our system presented some chaotic 302 

dynamic behavior. This method comprised the Iterated Functions System test (IFS) (Fig. 7). 303 

Using Fig. 7, it can be observed that the points representing our system occupy the entire space; 304 

according to the IFS test, there are two possible explanations: 1) The distribution belongs to a 305 

white noise signal and in systems without experimental noise, the point distribution gives a single 306 

curve (Jensen et al., 1985). However, the previous Hurst exponent obtained was not equal to zero; 307 

thus, the white noise was also discarded with the autocorrelation function. 2) The system is chaotic 308 

of high dimensionality. So far, our results have converged on the occurrence of hurricanes in the 309 

Gulf of Mexico and the Caribbean Sea being a chaotic system, so it is feasible to adopt the second 310 

explanation. On the other hand, our Lyapunov exponent figure was not flat and it did not seem to 311 

flatten as the dimension of embedding increased, which, according to Rosenstein et al. (1993), 312 

would mean that our system is not chaotic. Similarly, the Lyapunov exponent increased with the 313 

decrease in the embedment dimension, which is, again, a characteristic of chaotic systems. It was 314 

then also possible to obtain a dimension of the attractor and a positive Lyapunov exponent. 315 

Our results were not easy to interpret because the series presented certain periodic characteristics 316 

in an oscillatory fashion and chaotic behavior at the same time. According to Rojo-Garibaldi et al. 317 

(2016), the series of hurricanes with the spectral analyzes carried out presented strong periodicities 318 

that correspond to sunspots, which gives the system the periodic behavior mentioned above. 319 

According to Zeng et al. (1990), the spectral power analysis is often used to distinguish a chaotic 320 

or quasi-periodic behavior of periodic structures and to identify different periods embedded in a 321 

chaotic signal. Although, as Schuster (1988) and Tsonis (1992) mention, the power spectrum is 322 

not only characteristic of a process of deterministic chaos but also of a linear stochastic process. In 323 

our case, this behavior was not observed in the spectra obtained, which allowed us to detect 324 

periodic signals. The spectra give our system two types of behavior. First, there are periodic 325 

behaviors associated with external forcing, such as the sunspot cycle, giving the system sufficient 326 

order to develop; on the other hand, external forcing presents a chaotic behavior, which gives the 327 

system a certain disorder to be able to adapt to new changes and evolve. The IFS test showed that 328 
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the occurrence of hurricanes in the Gulf of Mexico and the Caribbean Sea is chaotic with high 329 

dimensionality. Fraedrich and Leslie (1989) analyzed the trajectories of hurricanes in the region of 330 

Australia and calculated the dimensionality of this process, obtaining a result of between 6 and 8, 331 

i.e., a chaotic process of high dimensionality, which is similar to what we find with the IFS 332 

method. On the other hand, Halsey and Jensen (2004) postulate that hurricanes contain a large 333 

number of dimensions in phase space. 334 

One possible explanation is localized within a boundary where chaos and order are separated; this 335 

boundary is commonly known as the “edge of chaos” (Langton, 1990; Miramontes et al., 2001). 336 

Miramontes et al. (2001) found this type of behavior in ants of the genus Leptothorax, when 337 

studying them individually and in groups. In the former case, the behavior was periodic, while in 338 

the latter, the behavior was chaotic. In our case, we believe that the chaotic behavior is due to the 339 

individual behavior or the hurricane category, since the high dimensionality suggested by the IFS 340 

test agrees with the high dimensionality reported by Fraedrich and Leslie (1989) obtained by 341 

studying the trajectories of hurricanes, that is, by studying them individually, while the periodic 342 

response is due to the behavior of hurricanes as a whole. 343 

 344 
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  345 
Figure 7. The Iterated Functions System (IFS) test applied to the time series of the number of 346 

hurricanes that occurred in the Gulf of Mexico and the Caribbean Sea between the years 1749 and 347 

2012. 348 

 349 

4 Conclusions 350 

The results obtained with the nonlinear analysis suggested a chaotic behavior in our system, 351 

mainly based on the Lyapunov exponents and correlation dimension, among others. However, the 352 

Hurst exponent indicated that our system did not follow a chaotic behavior, and in order to be able 353 

to corroborate our results, we employed the IFS method, which led us to think that the hurricane 354 

time series in the Gulf of Mexico and the Caribbean Sea from 1749 to 2012 had a chaotic edge. It 355 

is important to emphasize that this study was prepared as an attempt to understand the behavior of 356 

the occurrence of hurricanes from a historical perspective, since this type of phenomenon is part of 357 

an ocean-atmosphere interaction that has been changing over time, hence the value of our 358 
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contribution. However, we are aware that from the time the study was conducted to the present 359 

date there are new records, which will make it possible to carry out new studies applying new 360 

methods. 361 
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