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Abstract. Many applications in science require that computational models and data be combined. In a Bayesian framework, this

is usually done by defining likelihoods based on the mismatch of model outputs and data. However, matching model outputs

and data in this way can be unnecessary or impossible. For example, using large amounts of steady state data is unnecessary

because these data are redundant, it is numerically difficult to assimilate data in chaotic systems, and it is often impossible to

assimilate data of a complex system into a low-dimensional model. These issues can be addressed by selecting features of the5

data, and defining likelihoods based on the features, rather than by the usual mismatch of model output and data. Our goal is to

contribute to a fundamental understanding of such a feature-based approach that allows us to assimilate selected aspects of data

into models. Specifically, we explain how the feature-based approach can be interpreted as a method for reducing an effective

dimension, and derive new noise models, based on perturbed observations, that lead to computationally efficient solutions.

Numerical implementations of our ideas are illustrated in four examples.10

1 Introduction

The basic idea of data assimilation is to update a computational model with information from sparse and noisy data so that

the updated model can be used for predictions. Data assimilation is at the core of computational geophysics, e.g., in numerical

weather prediction (Bauer et al., 2015), oceanography (Bocquet et al., 2010), and geomagnetism (Fournier et al., 2010). Data

assimilation is also used in engineering applications, e.g., in robotics (Thrun et al., 2005) and reservoir modeling (Oliver et al.,15

2008). We use the term “data assimilation” broadly, but focus on parameter estimation problems where one attempts to find

model parameters such that the output of the model matches data. This is achieved by defining a posterior distribution that

describes the probabilities of model parameters conditioned on the data.

The posterior distribution is proportional to the product of a prior distribution and a likelihood. The likelihood connects the

model and its parameters to the data, and is often based on the mismatch of model output and data. A typical example is the20

squared two-norm of the difference of model output and data. However, estimating model parameters based on such a direct

mismatch of model outputs and data may not be required or feasible. It is not required, for example, if the data are intrinsically

low-dimensional, or if the data are redundant. Examples of situations where data assimilation is infeasible can be classified into

two groups. First, the model may be lower-dimensional than the data, or vice versa. This situation occurs when selected aspects

of a complex system are represented by a low-dimensional model, see, e.g., Gissinger (2012); Petrelis et al. (2009); Buffett25

et al. (2013); Buffett and Matsui (2015); Koren and Feingold (2011); Feingold and Koren (2013) for specific examples. In this
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case, model outputs cannot directly match data, because a low-dimensional model was never designed to capture all aspects of

a complex system. Second, matching model outputs to data directly becomes numerically impossible if one considers chaotic

models over long time-scales.

These issues can be addressed by borrowing ideas from machine learning. Machine learning algorithms expand the data into

a suitable basis of “feature vectors” (Murphy, 2012; Bishop, 2006; Rasmussen and Williams, 2006). A feature can be thought5

of as a low-dimensional representation of the data, e.g., a principal component analysis (PCA) (Jolliffe, 2002), a Gaussian

process model (Rasmussen and Williams, 2006), or a Gaussian mixture model (McLachlan and Peel, 2000). Features are either

constructed a priori, or learned from data. The same ideas carry over to data assimilation. One can extract low-dimensional

features from the data and then use the features to define a feature-based likelihood, which in turn defines a feature-based

posterior distribution. The feature-based posterior distribution describes the probability of model parameters conditioned on10

the features.

As an example, consider a viscously damped harmonic oscillator, defined by damping and stiffness coefficients (we assume

we know its mass). An experiment may be to pull on the mass and then to release it, and to measure the displacement of

the mass from equilibrium as a function of time. These data can be compressed into features in various ways. For example,

a feature could be the statement that “the system exhibits oscillations”. Based on this feature, one can infer that the damping15

coefficient is less than one. Other features may be the decay rate or observed oscillation frequency. One can compute the

damping and stiffness coefficients using classical formulas, if these quantities were known exactly. The idea of feature-based

data assimilation is to make such inferences in view of uncertainties associated with the features.

Another example is Lagrangian data assimilation for fluid flow, where the data are trajectories of tracers, and where a

natural candidate for a feature is a coherent structure (Maclean et al., 2017). The coherent structure can be used to formulate a20

likelihood, which in turn defines a posterior distribution that describes the probability of model parameters given the observed

coherent structure (but without direct appeal to the tracer trajectories). More generally, consider a chaotic system observed

over long time scales, e.g., several e-folding times of the system. Due to the chaotic behavior, changes in the numerical

differential equation solver may change likelihoods based on model-output/data mismatch, even if the parameters and data

remain unchanged. The feature-based approach can be useful here, as shown by Hakkarainen et al. (2012), who use likelihoods25

based on particle filter runs to average out uncertainties from differential equation solvers. Haario et al. (2015) use correlation

vectors and summary statistics, which are “features” in our terminology, to identify parameters of chaotic systems such as the

Lorenz’63 (Lorenz, 1963) and Lorenz’95 (Lorenz, 1995) equations. Our goal is to contribute to a fundamental understanding

of the feature-based approach to data assimilation, and to extend the numerical framework for solving feature-based data

assimilation problems.30

We discuss the conditions under which the feature-based approach is appropriate. In this context, we distinguish two prob-

lem classes. First, the compression of the data into a feature may lead to no or little loss of information, in which case the

feature-based problem and the “original” problem, as well as their solutions, are similar. Specific examples are intrinsically

low-dimensional data or redundant (steady state) data. Second, the features extracted from the data may indeed contain less

information than the data. This second case is more interesting because we can assimilate selected aspects of data into low-35
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dimensional models for complex systems, and we can formulate feature-based problems that lead to useful parameter estimates

for chaotic systems, for which a direct approach is numerically infeasible. We give interpretations of these ideas in terms of

effective dimensions of data assimilation problems (Chorin and Morzfeld, 2013; Agapiou et al., 2016), and interpret the feature-

based approach as a method for reducing the effective dimension.

We also address the computational issue that the feature-based likelihood is cumbersome to evaluate. The reason is that an5

evaluation of a feature-based likelihood may involve repeated solution of stochastic equations, followed by a compression of

a large amount of data into features, and it is unclear how to assess the error statistics of the features. In fact, the inaccessible

likelihood prevents application of the typical numerical methods for data assimilation, e.g., Monte Carlo sampling or optimiza-

tion. We suggest to overcome this difficulty by adapting ideas from stochastic ensemble Kalman filters (Evensen, 2006), and

to derive noise models directly for the features using “perturbed observations”. Such noise models lead to feature-based likeli-10

hoods which are easy to evaluate, so that Monte Carlo methods can be used for the solution of feature-based data assimilation

problems. Another numerical difficulty is that the feature-based likelihood can be noisy, e.g., if it is based on averages com-

puted by Monte Carlo simulations. In such cases, we suggest to apply numerical optimization to obtain maximum a posteriori

estimates, rather than Monte Carlo methods, because optimization is more robust to noise.

Details of the numerical solution of feature-based data assimilation problems are discussed in the context of four examples,15

two of which involve “real” data. Each example represents its own challenges and we suggest appropriate numerical techniques,

including Markov Chain Monte Carlo (MCMC, (Kalos and Whitlock, 1986)), direct sampling (see, e.g., Chorin and Hald

(2013); Owen (2013)), and global Bayesian optimization (see, e.g., Frazier and Wang (2016)). The variety of applications and

the variety of numerical methods we can use to solve these problems indicate the flexibility and usefulness of the feature-based

approach.20

2 Background

We briefly review the typical data assimilation problem formulation and several methods for its numerical solution. The de-

scriptions of the numerical techniques may not be sufficient to fully comprehend the advantages or disadvantages of each

method, and but these are explained in the references we cite.

2.1 Data assimilation problem formulation25

Suppose you have a mathematical/computational modelM that maps input parameters θ to outputs y, i.e., y =M(θ) where

θ and y are n- and k-dimensional real vectors. The parameters θ may be initial or boundary conditions of a partial differential

equation, diffusion coefficients in elliptic equations, growth rates in ecological models etc. The outputs y can be compared to

data z, obtained by observing the physical process under study. For example, ifM is an atmospheric model, z may represent

temperature measurements at k different locations. It is common to assume that30

z =M(θ) + ε, (1)
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where ε is a random variable with known probability density function (pdf) pε(·) that describes errors/mismatch between model

and data. The above equation defines a k-dimensional “likelihood”, l(z|θ) = pε(z−M(θ)), that describes the probability of

the data for a given set of parameters.

In addition to equation (1), one may have prior information about the model parameters, e.g., one may know that some

parameters are non-negative. Such prior information is represented by a prior distribution p0(θ). By Bayes’ rule, the prior and5

likelihood define the posterior distribution

p(θ|z)∝ p0(θ) l(z|θ). (2)

The posterior distribution combines information from model and data and defines parameters θ that lead to model outputs that

are “compatible” with the data. Here compatible means that model outputs are likely to be within the assumed errors v.

Data assimilation problems of this kind appear all over science and engineering, e.g., in numerical weather prediction,10

oceanography and geomagnetism (Bocquet et al., 2010; van Leeuwen, 2009; Fournier et al., 2010), as well as in global seismic

inversion (Bui-Thanh et al., 2013), reservoir modeling/subsurface flow (Oliver et al., 2008), target tracking (Doucet et al.,

2001) and robotics (Thrun et al., 2005; Morzfeld, 2015). The term “data assimilation” is common in geophysics, but in various

applications and disciplines, different names are used, including parameter estimation, Bayesian inverse problems, history

matching, and particle filtering.15

2.2 Numerical methods for data assimilation

Computational methods for data assimilation can be divided into three groups. The first group is based on the Kalman filter

(Kalman, 1960; Kalman and Bucy, 1961), and includes e.g., the ensemble Kalman filter (Evensen, 2006). Kalman filters are

particularly useful when data are assimilated sequentially, as is the case, for example, in numerical weather prediction. The

second group consists of optimization algorithms, called “variational methods” in this context (Talagrand and Courtier, 1987).20

The third group are Monte Carlo sampling methods, including particle filters/direct sampling (Owen, 2013; Doucet et al., 2001;

Atkins et al., 2013; Morzfeld et al., 2015) and Markov Chain Monte Carlo (MCMC) (MacKay, 1998; Kalos and Whitlock,

1986). We will use variational methods, MCMC and direct sampling for numerical solution of feature-based data assimilation

problems, and we briefly review these techniques here. We do not use Kalman filter techniques because the problems we

discuss do not have an explicit time-dependence.25

In variational data assimilation one finds the parameter set θ∗ that maximizes the posterior probability, which is also called

the posterior mode. One can find the posterior mode by minimizing the negative logarithm of the posterior distribution

F (θ) =− log(p0(θ) l(z|θ)) . (3)

The optimization is done numerically, and one can use, e.g., Gauss-Newton algorithms. In some of the numerical examples

below, we need to optimize functions F (θ) that are computationally expensive to evaluate and noisy, i.e., F (θ) is a random30

variable with unknown distribution. In this case, one can use a derivative free optimization method such as global Bayesian

optimization (GBO), see, e.g., Frazier and Wang (2016). The basic idea is to model the function F (θ) by a Gaussian process
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(GP) and then update the GP model based on a small number of function evaluations. The points where the function is evaluated

are chosen based on an expected improvement (EI) criterion, which takes into account where the function is unknown or known.

The GP model for the function F (θ) is then updated based on the function evaluations at the points suggested by EI. One can

iterate this procedure, and when the iteration is finished, e.g., because a maximum number of function evaluations is reached,

one can use the optimizer of the mean of the GP model to approximate the optimizer of the (random) function F (θ).5

In Markov Chain Monte Carlo (MCMC), a Markov chain is generated by drawing a new sample θk given a previous sample

θk−1, using a proposal distribution q(θk|θk−1). The new sample θk is accepted or rejected based on the values of the posterior

distribution of the new and previous samples, see, e.g., MacKay (1998); Kalos and Whitlock (1986). Averages over the samples

converge to expected values with respect to the posterior distribution as the number of samples goes to infinity. However,

since θk depends on θk−1, the samples are not independent and one may wonder how many effectively uncorrelated samples10

one has obtained. This number can be estimated by dividing the number of samples by the integrated auto-correlation time

(IACT) (MacKay, 1998; Kalos and Whitlock, 1986). Thus, one wants to pick a proposal distribution that reduces IACT. The

various MCMC algorithms in the literature differ in how the proposal distribution is constructed. In the numerical examples

below, we use the Matlab implementation described in Grinsted of the affine invariant ensemble sampler (Goodman and Weare,

2010), and we use the numerical methods described in Wolff (2004) to compute IACT.15

In direct sampling (sometimes called importance sampling) one generates independent samples using a proposal density q,

and attaches to each sample a weight:

θk ∼ q(θk), wk ∝ p0(θk) l(z|θk)
q(θk)

.

Weighted averages of the samples converge to expectations with respect to the posterior distribution as the number of samples

goes to infinity. While the samples are independent, they are not all equally weighted and one may wonder how many “effec-20

tively unweighted” samples one has. This effective number of samples can be estimated as (Doucet et al., 2001; Arulampalam

et al., 2002)

Neff =Ne/ρ, ρ=
E(w2)
E(w)2

. (4)

For a practical algorithm, one thus wants to chose an importance function q such that ρ is near one. There are several strategies

for constructing such proposal distributions, and in the numerical illustrations below we use “implicit sampling” (Chorin and25

Tu, 2009; Morzfeld et al., 2015; Chorin et al., 2015), and construct the proposal distribution to be a Gaussian whose mean is

the posterior mode θ∗, and whose covariance is the the Hessian of F in (3), evaluated at θ∗ (see also Owen (2013)).

3 Feature-based data assimilation

The basic idea of feature-based data assimilation is to replace the data assimilation problem defined by a prior p0(θ) and the

likelihood in (1) by another problem that uses only selected features of the data z. We suggest to leave the prior as is, and focus30

on constructing new likelihoods. Let F(·) be an m-dimensional vector function that takes a k-dimensional data set into a m
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dimensional feature. One can apply the feature-extraction to equation (1) and obtain

f = F (M(θ) + ε) , (5)

where f = F(z), is the feature extracted from the data z. Equation (5) can be used to define a feature-based likelihood lf (f |θ),

which in turn defines a feature-based posterior distribution, pf (θ)∝ p0(θ) lf (f |θ). The feature-based posterior distribution

describes the probabilities of model parameters conditioned on the feature f , and can be used to make inferences about the5

parameters θ.

3.1 Noise modeling

Evaluating the feature-based posterior distribution is difficult because evaluating the feature-based likelihood is cumbersome.

Even under simplifying assumptions of additive Gaussian noise in equation (1), the likelihood lf (f |θ), defined by equation (5),

is generally not known. The reason is that the feature function F makes the distribution of F (M(θ) + ε) non-Gaussian even10

if ε is Gaussian. An exception are linear functions F , in which case the feature-based likelihood is also Gaussian. Numerical

methods for data assimilation typically require that the posterior distribution be known up to a multiplicative constant. This is

not the case when the feature-based likelihood is used. Thus, variational methods, MCMC or direct sampling are not directly

applicable to solve feature-based data assimilation problems defined by (5). More advanced techniques, such as approximate

Bayesian computation (ABC) (Marin et al., 2012), however can be used because these are designed for problems with unknown15

likelihood (see Maclean et al. (2017)).

Difficulties with evaluating the feature-based likelihood arise because we assume that equation (1) is accurate, and we require

that the feature-based likelihood follows directly from it. However, in many situations the assumptions about the noise ε in

equation (1) are “ad hoc”, or for mathematical and computational convenience. There is often no physical reason why the noise

should be additive or Gaussian, yet these assumptions have become standard in many data assimilation applications. This leads20

to the question: why not “invent” a suitable and convenient noise model for the feature?

We explore this idea and consider an additive Gaussian noise model for the feature. This amounts to replacing equation (5)

by

f =MF (θ) + η, (6)

whereMF = F ◦M, is the composition of the modelM and feature extraction F , and η is a random variable that represents25

uncertainty in the feature, and which we need to define (see below). For a given η, the feature-based likelihood defined by (6),

lF (f |θ) = pη (f −MF (θ)), is now straightforward to evaluate (up to a multiplicative constant) because the distribution of η

is known/chosen. The feature based likelihood based on (6) results in the feature-based posterior distribution

pF (θ|f)∝ p0(θ) lF (f |θ), (7)

where p0(θ) is the prior distribution, which is not affected by defining or using features. The usual numerical tools, e.g.,30

MCMC, direct sampling, or variational methods, are applicable to the feature-based posterior distribution (7).
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Our simplified approach requires that one defines the distribution of the errors η, similar to how one must specify the

distribution of ε in equation (1). We suggest to use a Gaussian distribution with mean zero for η. The covariance that defines

the Gaussian can be obtained by borrowing ideas from the ensemble Kalman filter (EnKF). In a “perturbed observation”

implementation of EnKF, the analysis ensemble is formed by using artificial perturbations of the data (Evensen, 2006). We

suggest to use a similar approach here. Assuming that ε in equation (1) is Gaussian with mean 0 and covariance matrix R, we5

generate perturbed data by: zj ∼N (z,R), j = 1, . . . ,Nz . Each perturbed data leads to a perturbed feature f j ∼F(zj), and we

compute the sample covariance

Rf =
1

Nz − 1

Nz∑

j=1

(f j − f)(f j − f)T .

We then use η ∼N (0,Rf ) as our noise model for the feature-based problem in equation (6).

3.2 Feature selection10

Feature-based data assimilation requires that one defines and selects relevant features. In principle, much of the machine

learning technology can be applied to extract generic features from data. For example, one can define F by the PCA, or

singular value decomposition, of the data, and then neglect small singular values and associated singular vectors. As a specific

example, suppose that the data are measurements of a time series ofM data points of an n-dimensional system. In this case, the

functionMF consists of the steps (i) simulate the model; and (ii) compute the SVD of the n×M matrix containing the data.15

The feature f in (6) may then be the first k largest singular values and associated right and left singular vectors (see the example

in section 4.2 for more detail). In practice, relevant features may often present themselves. For example, in Lagrangian data

assimilation, coherent structures (and their SVDs) are a natural candidate, as explained by Maclean et al. (2017). In section 4

we present several examples of “intuitive” features and discuss what numerical methods to use in the various situations.

Indeed, the choice of the feature suggests the numerical methods for the solution of the feature-based problem. One issue here20

is that, even with our simplifying assumption of additive (Gaussian) noise in the feature, evaluating a feature-based likelihood

can be noisy. This happens in particular when the feature is defined in terms of averages over solutions of stochastic or chaotic

equations. Due to limited computational budgets, such averages are computed using a small sample size. Thus, sampling error

is large and evaluation of a feature-based likelihoods is noisy, i.e., evaluations of the feature-based likelihood, even for the same

set of parameters θ and feature-data f , may lead to different results, depending on the state of the random number generator.25

This additional uncertainty makes it difficult to solve some feature-based problems numerically by Monte Carlo. However,

one can construct a numerical framework for computing maximum a posteriori estimates using derivative free optimization

methods that are robust to noise, e.g., global Bayesian optimization (Frazier and Wang, 2016). We will specify these ideas in

the context of a numerical example with the Kuramoto-Sivashinsky equation in Section 4.4.

3.3 When is a feature-based approach useful?30

A natural question is: under what conditions should I consider a feature-based approach? There are three scenarios:

7

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-52
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 6 October 2017
c© Author(s) 2017. CC BY 4.0 License.



(i) the data can be compressed into features without significant loss of information;

(ii) when computing the feature, several aspects of the data are neglected;

(iii) model and data describe the same process but at different scales.

Case (i) occurs, for example, when redundant data are collected while a system is in steady state. Such data make negligible

contributions to the likelihood and posterior distributions and can be neglected without making a large error (see section 4.1).5

Features can then be based on the truncated data, and the resulting parameter estimates and posterior distributions are almost

identical to the estimates and posterior distributions based on all the data. Similarly, suppose the feature is based on the PCA of

the data, e.g., only the first k singular values and associated singular values are used. If the neglected singular values are indeed

small, then the data assimilation problem defined by the feature, i.e., the truncated PCA, and the data assimilation problem

defined by all of the data, i.e., the full set of singular values and singular vectors, are essentially the same (see also section 4.2).10

Case (ii) is more interesting because it describes scenarios where the “original” posterior distribution, defined by mismatch

of model and data, may not be practical or computable, but a feature-based approach may be feasible. An example of this

situation is parameter estimation for chaotic systems. Here, a direct match of model-output and data is difficult, but in a

feature-based approach, one does not insist on a point-by-point match of model-output and data. Rather one searches for model

parameters that lead to trajectories that have similar characteristics to the observed ones. Focusing attention on the feature15

avoids the main difficulty, i.e., extreme sensitivity to small perturbations, provided one can design and extract features that are

robust across the attractor. If this is the case, one can expect that feature-based problems for chaotic systems are feasible, and

several examples have already been reported where this is indeed the case see, Hakkarainen et al. (2012); Haario et al. (2015);

Maclean et al. (2017). We will provide another example and additional explanations, in particular about feature selection and

numerical issues, in section 4.4. It is however important to realize that the solution of the feature-based problem is different20

from the solution of the (unsolvable) original problem. The solution of the feature-based problem yields parameters that lead to

trajectories with similarities with the data, as defined by the feature. The solution of the (possibly infeasible) original problem

yields model parameters that lead to trajectories that exhibit a good point-by-point match with the data.

Cases (i) and (ii) can be understood more formally using the concept of an “effective dimension”. The basic idea is that

a high-dimensional data assimilation problem is more difficult than a low-dimensional problem. However, it is not only the25

number of parameters that defines dimension in this context, but rather a combination of the number of parameters, the assumed

distributions of errors and prior probability, as well as the number of data points (Chorin and Morzfeld, 2013; Agapiou et al.,

2016). An effective dimension describes this intrinsic difficulty of a data assimilation problem, taking into account all of the

above. Following Agapiou et al. (2016), and assuming a Gaussian prior distribution, p0(θ) =N (µ,P ), an effective dimension

is defined by30

efd = Tr
(

(P − P̂ )P−1
)
,

where P̂ is the posterior covariance, and where Tr(A) =
∑n
j=1 ajj is the trace of an n×nmatrixAwith diagonal elements ajj ,

j = 1, . . . ,n. Thus, the intrinsic dimension measures the difficulty of a data assimilation problem by the differences between

prior and posterior covariance. Intuitively, the more information the data contains about the parameters, the harder is the

8
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problem. One can also connect the effective dimension to the computational requirements for solving a data assimilation

problem by Monte Carlo methods.

Case (i) above is characterized by features that do not change (significantly) the posterior distribution and, hence the features

do not alter the effective dimension of the problem. It follows that the computed solutions and the required computational cost

of the feature-based or “direct” approach are comparable. In case (ii) however, the feature changes the posterior distribution5

and, hence, the effective dimension. Since the feature neglects several aspects of the data, assimilating the feature will introduce

a more gradual change from prior to posterior distribution than if all data are used. Thus, the feature-based approach reduces

the effective dimension of the problem. For chaotic systems, this reduction in effective dimension can be so dramatic that the

original problem is infeasible, while a feature-based approach becomes feasible, see Hakkarainen et al. (2012); Haario et al.

(2015); Maclean et al. (2017) and section 4.4.10

Finally, in case (iii), the feature based approach is essential for problems for which the numerical model and the data are

characterized by different scales. The features can be designed to filter out fine scales that may be present in the data, but which

are not represented by the numerical model. This is particularly important when a low-dimensional model is used to represent

certain aspects of a complex system. Specific examples of low-dimensional models for complex processes can be found in the

modeling of clouds or the geomagnetic field, (Gissinger, 2012; Petrelis et al., 2009; Buffett et al., 2013; Buffett and Matsui,15

2015; Koren and Feingold, 2011; Feingold and Koren, 2013). Methods that evaluate the skill of these models in view of data

are missing, and the feature-based approach may be useful in this context, and we give an example of in section 4.3.

4 Numerical illustrations

We illustrate the above ideas with four numerical examples. In the examples, we also explain, in detail, appropriate numerical

techniques for solving feature-based data assimilation problems. The first example illustrates that contributions from redundant20

data are negligible. The second example uses “real data” and a predator-prey model to illustrate the use of a PCA feature.

Examples 1 and 2 are simple enough to solve by “classical” data assimilation, matching model outputs and data directly, and

serve as an illustration of problems of type (i) in section 3.3. Example 3 uses a low-dimensional model for a complex system,

namely Earth’s geomagnetic dipole field over the past 150 Myrs. Here, a direct approach is infeasible, because the model and

data are describing different scales, and, thus, this example illustrates a problem of type (iii) (see section 3.3). Example 425

involves a chaotic partial differential equation (PDE) and parameter estimation is difficult using the direct approach because

it requires estimating initial conditions from data. We design a robust feature that enables estimation of a parameter of the

PDE without estimating initial conditions. The perturbed observation noise models for the features are successful in examples

1-3, and we use Monte Carlo for numerical solution of the feature-based problems. The perturbed observation method fails in

example 4, which is also characterized by a noisy feature-based likelihood, and we describe a different numerical approach30

based on maximum a posteriori estimates.

9
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4.1 Example 1: more data is not always better

We illustrate that a data assimilation problem with fewer data points can be as useful as one with significantly more but

redundant data points. We consider a mass-spring-damper system

d2x

dt2
+ 2ζω

dx
dt

+ω2x= h(t− 5),

where t≥ 0 is time, ζ > 0 is a viscous damping coefficient, ω > 0 is a natural frequency, and h(τ) is the “step-function”, i.e.,5

h(τ) = 0 for τ < 0, and h(τ) = 1 for τ ≥ 0. The parameters we want to estimate are the damping coefficient ζ and the natural

frequency ω, i.e., θ = (ζ,ω)T . To estimate these parameters we use a uniform prior distribution over the box [0.5,4]× [0.5,4]

and measure the displacement x(t) every ∆t= 0.5 time units. The duration of a (synthetic) experiment is τ =M∆t, and we

consider experiments of durations between τ = 25 to τ = 250 time units, with M = 50 to M = 500 data points. The data of an

experiment of duration τ =M∆t are thus10

zi = x(i∆t) + vi, vi ∼N (0,1), i= 1, . . . ,M.

Writing z = {z0, . . . ,zM}, we obtain the likelihood

lM (z|θ)∝ exp

(
−1

2

M∑

i=1

(zi−x(i∆T ))2
)
.

The likelihood and the uniform prior distribution define the posterior distribution

pM (θ|z) =





1
CM

lM (z|θ) if θ ∈ [0.5,4]× [0.5,4] ,

0 otherwise,
15

whereCM is a normalization constant. Data of an experiment of duration τ = 40 is shown in the top left panel of figure 1. These

synthetic data are generated with “true” parameters ζ = 1.5 and ω = 1. With these parameters the oscillator is “overdamped”

and reaches its steady state (limt→∞x(t) = 1) quickly. We anticipate that data collected after t≈ 25 is redundant in the sense

that the same displacement is measured again and again. This suggests that the posterior distributions of experiments of duration

τ = i∆t and τ = j∆t are approximately equal to each other, provided that i, j > 25/∆t. In other words, a data assimilation20

problem with M = 100 or M = 250 data points may have “roughly the same” posterior distribution, and, consequently, lead

to similar estimates.

We investigate this idea by solving data assimilation problems with experiment durations between τ = 25 and τ = 225. We

compare the resulting posterior distributions p50, . . . ,p450 to the posterior distribution p500, corresponding to an experiment of

duration τ = 250. We use the Kullback Leibler (KL) divergence, DKL(p̂0||p̂1) of two distributions to measure “how far” two25

distributions are form one another. For two k-dimensional Gaussians p0 =N (m0,P0) and p1 =N (m1,P1), the KL divergence

is given by

DKL(p0||p1) =
1
2

(
Tr(P−1

1 P0) + (m1−m0)TP−1
1 (m1−m0)− k+ log

(
detP1

detP0

)
.

)

10

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-52
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 6 October 2017
c© Author(s) 2017. CC BY 4.0 License.



Time

Time

ω

ζ ζ

ω

ω

ζ

x(
t)

x(
t)

0 10 20 30 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

0 10 20 30 40
-0.2

0

0.2

0.4

0.6

0.8

1

1.2

Number of data points
0 50 100 150 200 250

KL
 d

iv
er

ge
nc

e

10-2

10-1

100

101

Figure 1. Top left: Data zi, i= 1, . . . ,80 (blue dots) of an experiment of duration τ = 40, and 50 samples of the corresponding posterior

distribution p(θ|z) (turquoise). Top right: KL divergence of approximate posterior distributions DKL(p̂500||p̂M ), M = 50, . . . ,450, as a

function of the duration τ of an experiment. Blue dots – average KL divergence of 1000 experiments. Red line – exponential fit. Bottom

left: the same data as in top left (blue dots) and 50 samples of a feature-based posterior distribution. Bottom right: triangle plots of the

feature-based posterior distribution pF (θ|f) and of the posterior distribution p80(θ|z) (see text for details).

Note that DKL(p0||p1) = 0 if the two distributions are identical, and a large DKL(p0||p1) suggest that p0 and p1 are quite

different. Computing the KL divergence for non-Gaussian distributions is numerically more challenging, and here were are

content to measure the distance of two distributions by the KL divergence of their Gaussian approximations. We thus compute

Gaussian approximations to the posterior distributions posterior distributions p50, . . . ,p450, by computing the posterior mode

θ∗ (by Gauss-Newton optimization) and the Hessian H of the negative logarithm of the posterior distribution at the mode. We5

then define the Gaussian approximation by

pM (θ|zM )≈ p̂M (θ|zM ) =N (θ∗,H−1), (8)

and use DKL(p̂500||p̂M ) to measure the distance of p500 and pM .

Each experiment is in itself a random event, and we perform 100 independent experiments and then average the KL diver-

gences. Our results are shown in the upper right panel of figure 1. We plot the average KL divergence as a function of the10

11
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experiment duration and note an exponential decrease. Thus, as we increase the number of data points, the posterior distribu-

tions get closer, as measured by this KL divergence, to the posterior distribution with M = 500 data points. In other words, we

obtain very similar posterior distributions with M = 100 or M = 500 data points. This indicates that the steady state data can

be neglected because there is little additional information in these data. These results suggest that the data can be compressed

without significant loss of information about the parameters. One could, for example, define a feature by simply neglecting5

data collected after t > 30. This feature would lead to almost identical parameter estimates as using the full data set.

We now consider a feature that compresses the data into two numbers. The first component of our feature is the average

of the last 50 data points. This average is directly related to the natural frequency since limt→∞x(t) = 1/ω2. The second

component of the features is the slope of a linear fit to the seven data points collected after t= 5, i.e., after the step is applied.

The covariance matrix R of the assumed Gaussian noise η (see equation 6), using the perturbed observation approach as10

described in section 3.1. We generate 103 perturbed data sets to compute R and find that the off-diagonal elements are small

compared to the diagonal elements. We thus neglect the correlation between the two components of the feature, but this is not

essential. Altogether the feature-based likelihood is given by

lF (f |θ)∝ exp
(
−1

2
(f −FM(θ))T R−1 (f −FM(θ))

)
,

where FM represents the computations (i) simulate the oscillator with parameters θ for τ time units; and (ii) compute the15

feature, i.e., the average steady state value and slope, as described above. Together with the uniform prior distribution, we

obtain the feature-based posterior distribution

pF (θ|f) =





1
Cf
lF (f |θ) if θ ∈ [0.5,4]× [0.5,4] ,

0 otherwise,

where Cf is a normalization constant.

We solve this feature-based problem for an experiment of duration τ = 40 by implicit sampling (see section 2.2) usingNe =20

103 samples. From these samples we compute ρ≈ 1.07, i.e., almost all samples are effective samples. Results are illustrated

in the lower left panel of figure 1, where we plot trajectories corresponding to 50 samples of the feature-based posterior

distribution. We note that the trajectories are all “near” the data points. For comparison, we also solve the data assimilation

problem without any use of features, and compute p80 (see equation (8)), also by implicit sampling with Ne = 103 samples.

We find that ρ≈ 1.38 in this case. We note that the feature-based posterior distribution is different from the “classical” one.25

This can be seen by comparing the cloud of trajectories in the top left panel of figure 1, which correspond to 50 samples of the

posterior distribution p80(θ|z), with the cloud of trajectories in the bottom left panel of the same figure, which corresponds to

50 samples of the feature based posterior distribution pf (θ|f). The wider cloud of trajectories indicates that the feature does

not constrain the parameters as much as the full data set. The relaxation induced by the feature-based approach however also

results in the feature based approach being slightly more effective in terms of the number of effective samples.30

Finally, we show a triangle-plot of the feature-based posterior distribution in the bottom right panel of figure 1. A triangle plot

consists of histograms of the marginals pF (ζ|f) and pF (ω|f) in blue on the diagonal, and a histogram of the joint, feature-

based posterior distribution pF (θ|f) in the lower right corner. The same panel also shows a triangle plot of the posterior

12
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distribution p80(θ|z). Specifically, we plot histograms of the marginals p80(ζ|z) and p80(ω|z) in purple on the diagonal, and

plot a histogram of the joint posterior distribution p80(θ|z) in the upper left corner. We find that the marginals pf (ω|f) and

p80(ω|z) are nearly identical, which indicates that the feature constrains the frequency ω nearly as well as the full data set.

The damping coefficient ζ is less tightly constrained by our feature, which results in a wider posterior distribution pF (ζ|f)

than p80(ζ|z). A more sophisticated feature that describes the transient behavior in more detail would lead to different results,5

but our main point is to show that even our simple feature, which neglects most of the data, leads to useful parameter estimates.

4.2 Example 2: predator-prey dynamics of lynx and hares

We consider the Lotka-Volterra (LV) equations (Lotka, 1926; Volterra, 1926)

dx
dt

= αx−βxy, dy
dt

=−γy+ δxy,

where t is time, α,β,γ,δ > 0 are parameters, and x and y describe “prey” and “predator” populations. Our goal is to estimate10

the four parameters in the above equations as well as the initial conditions x0 = x(0), y0 = y(0), i.e., the parameter vector we

consider is θ = (α,β,γ,δ,x0,y0)T . The prior distribution is a uniform distribution over the six-dimensional cube [0,10]6.

We use the lynx and hare data of the Hudson’s Bay Company (Gilpin, 1973; Leigh, 1968) to define a likelihood. The original

data set covers a period from 1897 to 1935, with one data point per year. Each data point is a number of lynx furs and hare furs,

with the understanding that the number of collected furs is an indicator for the overall lynx or hare population. We use data15

from 1917 to 1927, because the solution of the LV equations is restricted to cycles of fixed amplitude, and the data during this

time period roughly has that quality. We scale the data to units of “104 hare furs” and “103 lynx furs” (so that all numbers are

order one). We use this classical data set here, but predator-prey models have recently also been used in low-dimensional cloud

models that can represent certain aspects of large eddy simulations (Koren and Feingold, 2011; Feingold and Koren, 2013).

We define a feature f by the first (largest) singular value and the first left and right singular vectors of the data. The feature20

vector f thus has dimension 14 (we have 2×11 raw data points). We compute the noise η for the feature-based likelihood using

the “perturbed observation” method as above. We generate 10,000 perturbed data sets by adding Gaussians with mean zero and

unit covariance to the data. The resulting sample covariance matrix serves as the matrix Rf in the feature-based likelihood.

We use the Matlab implementation of the affine invariant ensemble sampler to solve the feature based data assimilation

problem, see Grinsted; Goodman and Weare (2010). We use an ensemble size Ne = 12, and each ensemble member produces25

a chain of length ns = 8334. We thus haveN = 100,008 samples. Each chain is initialized as follows. We first find the posterior

mode using Gauss-Newton optimization. To do so, we perform an optimization with different starting points, and then chose the

optimization result that leads to the largest feature-based posterior probability. The initial values for our ensemble of walkers

are twelve draws from a Gaussian distribution whose mean is the posterior mode and whose covariance is a diagonal matrix

with elements (0.02,0.02,0.02,0.02,0.2,0.2). We disregard the first 2,500 steps of each chain as “burn-in”, and compute an30

average IACT of 735, using the methods described in Wolff (2004).

We show a triangle-plot of the feature-based posterior distribution, consisting of histograms of all one- and two-dimensional

marginals, in figure 2. We observe that there is strong correlation between the parameters α,β,γ,δ, but less so between these

13
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Figure 2. Triangle plot of histograms of all one and two-dimensional marginals of the feature-based posterior distribution.

parameters and the initial conditions. Perhaps most importantly, we find that the feature-based posterior distribution constraints

the parameters well, especially compared to the prior distribution which is a hyper-cube with sides of length ten.

We plot the trajectories of the LV equations corresponding to 100 samples of the feature-based posterior distribution in

figure 3. We note that the trajectories pass near the 22 original data points (shown as orange dots in figure 3). The fit of the

lynx population is particularly good, but the trajectories of the hare populations do not fit the data well. For example, all5

model trajectories bend downwards towards the end of the cycle, but the data seem to exhibit an upward tendency. However,

this inconsistency is not due to the feature-based approach. In fact, we obtain similar solutions with a “classical” problem

formulation, i.e., this problem is also of category (i) in section 3.3. The inconsistency is due to the limitations of the LV model,

which is limited to cycles, whereas the data are not cyclic. Nonetheless, our main point here is that the feature-based approach

is sufficiently robust that it can handle “real” data and “simple” models.10

4.3 Example 3: variations in Earth’s dipole’s reversal rates

We consider Earth’s magnetic dipole field over time-scales of tens of millions of years. On such time-scales, the geomagnetic

dipole exhibits reversals, i.e., the north pole becomes the south pole and vice versa. The occurrence of dipole reversals is well

14
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Figure 3. Raw data (orange dots), trajectories corresponding to the feature-based posterior mode (red) and 100 trajectories of Hares (top,

turquoise) and Lynx (bottom, blue), corresponding to 100 samples of the feature-based posterior distribution.

documented over the past 150 Myrs by the “geomagnetic polarity time scale” (Cande and Kent, 1995; Lowrie and Kent, 2004),

and the dipole intensity over the past 2 Myrs is documented by the Sint-2000 and PADM2M data sets (Valet et al., 2005;

Ziegler et al., 2005). Several low-dimensional models for the dipole dynamics over the past 2 Myr have been created see, e.g.,

Hoyng et al. (2005); Brendel et al. (2007); Kuipers et al. (2009); Buffett et al. (2014); Buffett and Matsui (2015). We consider

two of these models and call the model of Petrelis et al. (2009) the P09 model, and the one of Buffett et al. (2013) the B135

model. The B13 model is the stochastic differential equation (SDE)

dx= f(x)dt+ g(x)dW, (9)

where t is time in Myrs, x describes the dipole intensity and where W is Brownian motion (see Buffett et al. (2013) for

details). The functions f and g are called the drift- and diffusion coefficients, and in Buffett et al. (2013), f is a spline and g a

polynomial whose coefficients are computed using PADM2M. We use the same functions f and g as described in Buffett et al.10

(2013). The P09 model consists of an SDE of the form (9) for a “phase”, x, with f(x) = α0 +α1 sin(2x), g(x) = 0.2
√
|α1|,

α1 =−185Myr−1, α0/α1 =−0.9, and θ(t) = 1. The dipole is computed from the phase x as D =Rcos(x+x0), where

x0 = 0.3 and R= 1.3.

In both models, the drift, f , represents known, or “resolved” dynamics, and the diffusion coefficient g, along with Brownian

motion W , represents the effects of turbulent fluid motion of Earth’s liquid core. The sign of the dipole variable defines the15

dipole polarity. We take the negative sign to mean “current configuration” and a positive sign means “reversed configuration”.

A period during which the dipole polarity is constant is called a “chron”. The P09 and B13 models exhibit chrons of varying

lengths, however the mean chron duration (MCD) is fixed. With the parameters cited above the models yield an MCD compa-

15
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Figure 4. Top: Earth’s dipole polarity over the past 100 Myr (part of the geomagnetic polarity time scale). Center: a 100 Myr simulation with

B13 and the associated sign function. Bottom: a 100 Myr simulation with P09 and the associated sign function.

rable to the one observed over the past 30 Myrs. Simulations of the B13 and P09 model are illustrated in figure 4, where we

also show the last 100 Myr of the geomagnetic polarity time scale.

The geomagnetic polarity time scale shows that Earth’s MCD varies over the past 150 Myr. For example, there were 125

reversals between today and 30.9 Myrs ago (MCD≈ 0.25 Myr) , 57 reversals between 30.9 Myr ago and 73.6 Myrs ago

(MCD≈ 0.75 Myr), and 89 between 120.6 Myrs ago and 157.5 Myrs (MCD≈ 0.41 Myr) (Lowrie and Kent, 2004). The B135

and P09 models exhibit a constant MCD and, therefore, are valid over periods during which Earth’s MCD is also constant, i.e.,

a few million years. We modify the B13 and P09 models so that their MCD can vary over time, which makes the models valid

for periods of more than 100 Myrs. The modification is a time-varying, piecewise constant parameter θ(t) that multiplies the

diffusion coefficients of the models. The modified B13 and P09 models are thus SDEs of the form

dx= f(x)dt+ θ(t)g(x)dW. (10)10

We use feature-based data assimilation to estimate the value of θ(t) such that the modified B13 and P09 models exhibit similar

MCDs as observed in the geomagnetic polarity time-scale over the past 150 Myrs. Note that straightforward application of data

assimilation is not successful in this problem. We tried several particle filters to assimilate the geomagnetic polarity time scale

more directly into the modified B13 and P09 models. However, we had no success with this approach because the data contain

only information about the sign of the solution of the SDE.15

The feature we extract from the geomagnetic polarity time scale is the MCD, which we compute by using a sliding window

average over 10 Myr. We compute the MCD every 1 Myr, so that the “feature data”, f1, . . . ,f150, are 150 values of MCD. The

complete geomagnetic polarity time scale and the MCD feature are shown in figure 5. We note that the averaging window of
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Figure 5. Left: Geomagnetic polarity time scale. Right: MCD every 1 Myr.

10 Myrs is too short during long chrons, especially during the “cretaceous superchron” that lasted almost 40 Myrs (from about

120 to 80 Myrs ago). We set the MCD to be 250 Myrs whenever no reversal occurs within our 10 Myr window. This means

that the MCD feature has no accuracy during this time period, but indicates that the chrons are long.

To sequentially assimilate the feature data, we assume that the parameter θ(t) is piecewise constant over 1 Myr intervals,

and estimate its value θk = θ(k ·1Myr) based on the feature fk, and our estimate of θk−1. The feature fk and the modified B135

and P09 models are connected by the equation

fk =MF (θk) + ηk, (11)

which defines the feature-based likelihood, and where MF are the computations required to compute the MCD for a given

θk. These computations work with a discretization of the modified P09 and B13 SDEs using a 4th-order Runge-Kutta scheme

for the deterministic part (fdt), and an Euler-Maruyama scheme of the stochastic part (θkg(x)dW ). The time step is 1 kyr.10

We then perform a simulation for a specified number of years and compute MCD based on this run, and in the same way

we computed the feature from the geomagnetic polarity time scale (see above). The value of θk determines the duration of

a simulation, since small values of θk require longer simulations because the chrons tend to become longer. Specifically, we

perform a simulation of 300 Myr if θk < 0.7, of 100 Myr if 0.7≤ θk < 1, of 50 Myr if 1≤ θk < 1.6, and of 20 Myr if θk ≥ 1.6.

Note that computation of MCD, in theory, requires an infinite simulation time. We chose the above simulation times to balance15

a computational budget, while at the same time our estimates of MCD are reliable enough to avoid large noise during feature-

based likelihood evaluations.

For the modified B13 model we add one more step. The numerical solutions of this model tend to exhibit short chrons (a few

thousand years) during a “proper reversal”, i.e., when the state transitions from one polarity (+1) to the other (-1), it crosses

zero several times. On the time scales we consider, such reversals are not meaningful, and we filter them out by smoothing the20
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Figure 6. MCD as a function of θ for the B13 model (turquoise) and the P09 model (orange). Shown are the average MCD (solid lines) and

two-standard-deviation error bards computed from 100 simulations. This graph is used to define the standard deviation of the feature-noise

ηk as well as the mean of the proposal distribution qk.

numerical solutions of the modified B13 model by a moving average over 25 kyrs. In this way, the chrons we consider and

average over have a duration of at least tens of thousands of years.

To investigate how to chose the random variable η in (11), which represents the noise in the feature, we perform 100

simulations over a grid of θ values between 0.3 and 2.5. For a small θ, reversal are rare, even during our 300 Myr simulations.

We chose to not consider θ smaller than 0.3, again for computational reasons, and because, as explained above, our simulations5

and computations lose accuracy during very long chrons such as the cretaceous superchron. An “actual” θ during that time

may be smaller then the lower bound we define, however we cannot extract that information from the feature data and the

computational framework we construct. This means that if the upper or lower bounds of θ are achieved, all we can conclude

is that θ is small (large), perhaps smaller (larger) than our assumed lower (upper) bound, which leads to MCDs that are longer

(smaller) than what we can actually compute with our model and bounded model parameters.10

Each simulation yields a MCD, and we compute average MCDs and their standard deviations based on these 100 runs. We

occasionally observe large standard deviations for small θk, because only a few reversals may occur during these runs, which

makes estimates of the standard deviations unreliable (see above). In this case, we assign a maximum standard deviation of 2.5

Myrs. This results in the MCD-θ graph shown in figure 6. We base our feature-error model ηk on this graph and pick ηk to be

a zero mean Gaussian with a standard deviation σk that we read from the graph as illustrated by figure 6, i.e., for a given fk,15

we use the standard deviation we computed for the nearest point on our MCD-θ-grid.

A feature fk defines ηk, and then equation (11) defines a feature-based likelihood. We define a prior distribution by the

Gaussian p0,k(θk) =N (θ̄k−1,σ
2
0), where σ0 = 0.1 and where θ̄k−1 is the mean value we computed at the previous time, k−1
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(we describe what we did for the first time step k = 1 below). This results in the feature-based posterior

pk(θk|fk)∝ exp
(
− 1

2σ2
k

(fk −MF (θk))2− 1
2σ2

0

(
θ̄k−1− θk

)2
)
.

We draw 100 samples from this posterior distribution by direct sampling with a proposal distribution qk(θk) =N (µk,σq),

where σq = 0.05 and where µk is based on the MCD-θ graph shown in figure 6, i.e., we chose µk to be the θ-value correspond-

ing to the MCD value fk we observe. We repeat this process for all but the very first of the features fk. For the first step, k = 1,5

we set the prior distribution equal to the proposal distribution.

Our results are illustrated in figure 7. The panels in the top row show 100 samples of the posterior distributions pk(θk|fk)

as a function of time, as well as their mean. The panel on the right shows results for the modified B13 model, the panel on the

left shows results for the modified P09 model. We note that, for both models, θk varies significantly over time. The effect that a

time-varying θ has on the MCD of the modified B13 and P09 models is illustrated by the panels in the bottom row of figure 7,10

where we plot 100 features generated by the modified P09 and B13 models using the 100 posterior values of θk shown in the

top row. We note a good agreement with the recorded feature (shown in black). This is perhaps not surprising, since we use

the feature data to estimate parameters, which in turn reproduce the feature data. However, this is a basic check that our data

assimilation framework produces meaningful results.

We further illustrate the results of the feature-based data assimilation in figure 8, where we plot the geomagnetic polarity15

time scale as well as the dipole of the modified B13 and P09 models, generated by using a sequence θk, drawn from the

feature-based posterior distributions. We note that the modified models exhibit a varying MCD and that superchrons (chrons

longer than 10 Myr) appear in both models at (roughly) the same time as on Earth.

The advantage of the feature-based approach in this problem is that it allows us to calibrate the modified B13 and P09 models

to yield a time-varying MCD in good agreement with the data (geomagnetic polarity time-scale), where “good agreement” is to20

be interpreted in the feature-based sense. Our approach may be particularly useful for studying how flow structure at the core

affects the occurrence of superchrons. A thorough investigation of what our results imply about the physics of geomagnetic

dipole reversals will be the subject of future work. Here we are content with showing how to use feature-based data assimilation

in this context.

4.4 Example 4: parameter estimation for a Kuramoto-Sivashinsky equation25

We consider the Kuramoto-Sivashinksy (KS) equation

∂φ

∂t
=−θ∇2φ−∇4φ+ |∇φ|2,

where t ∈ [0,T ], the spatial domain is a two-dimensional square [x,y] ∈ [0,10π]× [0,10π], and the boundary conditions are

periodic. Here ∇= (∂/∂x,∂/∂y), and θ is the parameter we want to estimate. We use a uniform prior distribution over [0,5].

For computations we discretize the KS equation by the spectral method and exponential time differencing with δt= 0.005/θ.30

We then compute φ in physical space by Fourier transform and interpolation onto a 256× 256 grid. The solution of the KS

equation depends on the parameter θ in a way that a typical spatial scale of the solution, i.e., the scale of the “valleys and hills”
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Figure 7. Top row, left: θk as a function of time for modified B13; 100 samples of feature-based posterior distributions pk(θk|fk) (light

turquoise) and their mean (blue). Top row, right: θk as a function of time for modified P09; 100 samples of feature-based posterior distri-

butions pk(θk|fk) (light orange) and their mean (red). Bottom row, left: features fk computed by drawing 100 samples (light turquoise)

from the feature-based posterior distribution of the modified B13 model and their mean (blue). Bottom row, right: features fk computed by

drawing 100 samples (light orange) from the feature-based posterior distribution of the modified P09 model and their mean (red). The MCD

feature extracted from the geomagnetic polarity time scale is shown in black.

we observe, increases as θ decreases, as illustrated by figure 9, where we show snapshots of the solution of the KS equation

for different two different choices of the parameter θ.

The initial condition of the KS equation is a Gaussian random variable, which we chose as follows. We simulate the KS

equation for T “time” units starting from uniformly distributed Fourier coefficients. We pick T large enough so that φ(x,y,T )

varies smoothly in space. We repeat this process 100 times to obtain 100 samples of solutions of the KS equation. The resulting5

sample mean and sample covariance matrix of the solution at time T define the mean and covariance of the Gaussian which

we use as a random initial condition below.
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Figure 9. Four snapshots of the solution of the KS equation with θ = 1.55 (left) and θ = 3.07 (right).

The data are 100 snapshots of the solution of the KS equation obtained as follows. We draw an initial condition from the

Gaussian distribution (see above) and simulate for 2500 time steps. We save the solution on the 256× 256 grid every 50 time

steps. We repeat this process, with another random initial condition drawn from the same Gaussian distribution, to obtain

another 50 snapshots of the solution. The 100 snapshots constitute a data set with a total number of more than 6 million points.

The feature we extract from the data is as follows. We interpolate the snapshots onto a coarser 64× 64 grid and use the5

coarsened snapshots to compute a covariance matrix. Then we compute the largest eigenvalues of the covariance matrix and
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Figure 10. Illustration of the computed feature. Eigenvalues of covariance matrices of snapshots (dots) and log-linear fit (solid lines). Blue

dots and red line correspond to a run with θ = 1.55, turquoise dots and orange line correspond to a run with θ = 3.07.

compute a linear approximation to the logarithm of the eigenvalues (using least squares). The slope and intercept of this line

constitutes the feature. An example is shown in figure 10. We chose this features because the parameter θ defines the spatial

scale of the solution (see above), and this scale is connected to the length-scale of a covariance function of a Gaussian process

approximation of the solution. The length scale of the Gaussian process in turn defines the exponential decay of the eigenvalues

of its associated covariance matrix, and this decay is what we capture by our feature. In simple terms: the larger the length-scale,5

the faster is the decay of the eigenvalues.

It is important to note that the feature we construct does not depend on the initial conditions. This is the main advantage

of the feature-based approach. Using the feature, rather than the trajectories, enables estimation of the parameter θ without

estimation of initial conditions. With a likelihood based on the mismatch of model and data, one has to estimate the parameter

θ and the initial conditions, which makes the effective dimension of the problem large, so that the required computations are10

substantial. Most importantly, estimating the initial condition based on a mismatch of model output and data is difficult because

the KS equation is chaotic. For these reasons, the feature-based approach makes estimation of the parameter θ feasible.

The feature based likelihood is defined by the equation

f =MF (θ) + η, η ∼N (0,R), (12)

where f = F(z) is the feature computed from the data, R is a 2×2 covariance matrix (see below) and whereMF is shorthand15

for the following computational steps for a given parameter θ:

(i) draw random initial conditions and obtain 100 snapshots of the solution of the KS equation with parameter θ;

(ii) interpolate snapshots onto 64× 64 grid and compute sample covariance matrix;
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(iii) compute largest eigenvalues of the sample covariance matrix and compute a log-linear fit.

The featureMF (θ) consists of the slope and offset of the log-linear fit.

Finally, we need to chose a covariance matrix R. The perturbed observation approach (see section 3.1) is not useful here. If

we assume that we collect data with measurement errors that are uncorrelated in space and time (adding an isotropic Gaussian

to each snapshot), then this noise has no effect on the overall spatial scale of the solution and, thus, will not correctly reflect the5

uncertainty of the feature. The largest source of uncertainty in the feature is sampling error due the small number of snapshots

we use for computing the GP approximation We can decrease the effects of this noise by using more snapshots, however this

increases the computational cost. In addition, this uncertainty due to sampling error makes feature-based likelihood evaluations

noisy, i.e., for a fixed θ and feature f , different runs of our simulations may lead to different likelihoods. This rules out Monte

Carlo sampling for numerical solution of the data assimilation problem.10

We address these issue by using a variational approach, and compute an a posteriori estimate of θ, i.e., we estimate θ by

maximizing the function

g(θ) =





exp
(
− 1

2 (f −MF (θ))′R−1(f −MF (θ))
)

if θ ∈ [0,5] ,

0 otherwise,

which is proportional to the feature-based posterior distribution. This will lead to a point-estimate for θ that leads to solutions

that are compatible with the data. For point estimates, the covariance R becomes merely a scaling factor and is not so essential.15

We set this covariance R to be a diagonal matrix whose diagonal entries are the square of 50% of the observed feature.

However it is important to note that our approach does not allow us to draw conclusions about the uncertainty of our parameter

estimate, for which we would require approximations of the posterior distribution. This may not be ideal, however in view of

the computational difficulties, a point estimate is the best we can provide.

We need to decide on a numerical method for solving the optimization problem. Since the function g is noisy and computa-20

tionally expensive, we cannot compute its derivatives. Global Bayesian optimization (GBO, see, e.g., Frazier and Wang (2016))

is a derivative free method for optimization in exactly that setting, i.e., when the function to be optimized is computationally

expensive to evaluate and noisy. The basic idea of GBO is to model the function g(θ) by a Gaussian process (GP) and then to

carefully chose additional points for evaluation of the function to improve the GP model. The maximizer of the mean of the

GP model is then used to approximate the maximizer of the (random) function g(θ).25

The initial GP model for g(θ) is constructed by the mean and covariance functions

µ(θ) = µ (constant mean function),

C(θ,θ′) = σ2 exp
(
(θ− θ′)2/L2

)
,

where µ,σ,L > 0 are the hyperparameters. To acknowledge the fact that g(θ) is noisy, we add another hyperparameter, s > 0,

such that the covariance at the “observed points” θobs is given by C(θobs,θ
′
obs) + s (see chapter 3.5 of (Frazier and Wang,30

2016)). We find the hyperparameters based on three evaluations of g. These points are three points within [0,5] generated by

a Sobol sequence, which is a space filling sequence of quasi-random points. Given these three points (θi,g(θi)), i= 1,2,3,
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Figure 11. GP model of the function g(θ). Left: initial GP based on three function evaluations. Blue – mean function. Turquoise – 100

realizations of the GP. Purple dots – function evaluations. Right: updated GP after GBO and 5 additional function evaluations. Blue – mean

function. Turquoise – 100 realizations of the GP. Purple dots – initial function evaluations. Red dots – additional function evaluations based

on expected improvement criterion. Orange – 100 samples of the random function g(θ).

we maximize the “log marginal likelihood”, which describes the probability of the three function evaluations (θi,g(θi)). This

optimization is computationally inexpensive because it does not involve evaluating g or solving the KS equation. We use an

interior-point method (Matlab’s “fmincon”) to carry out the optimization and enforce the bounds 0≤ L≤ 1, 0.3≤ σ2 ≤ 1,

0≤ s≤ 0.1, 0≤ µ≤ 2. This results in a crude approximation of g. We update this initial GP by the three function evaluations

we already have, i.e., we recompute the mean µ and the covariance C, given these three function evaluations. The result is the5

GP illustrated in the left panel of figure 11, where we show the mean (blue) and 200 samples (turquoise) of the updated GP,

along with the three sample points (purple dots). Note that the GP model does not reflect the fact that g(θ) is non-negative.

However, GBO is not easily modified to optimize non-negative functions.

To improve our GP model of g(θ) we wish to evaluate the function at additional points, and we use the “expected improve-

ment” criterion to determine these points. Expected improvement suggests points for additional evaluations of g(θ) using a10

trade-off between where the function is already known to be large, and where the function is unknown (Frazier and Wang,

2016). This lead to good results for our problem, however more advanced methods, e.g., knowledge gradient, may improve

overall performance of the algorithm. We stopped the optimization when the integrated expected improvement is below a

threshold (10−4 in our case). With this set-up, we evaluated g(θ) five more times, and computed the maximizer of g(θ) to be

θ∗ = 3.29, which is near the parameter value we used to generated the feature data (θtrue = 3.38).15

The updated GP model is illustrated in the right panel of figure 11, where we show the mean (blue), the initial and additional

points where g(θ) is evaluated (purple and red dots respectively), and 100 realizations of the updated GP model (turquoise).
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We also show 100 realizations of g(θ), obtained by evaluating g(θ) repeatedly over a grid of 100 equally spaced points. We

note that the GP accurately describes the function and our confidence in the function for θ > 2.5, where most of the function

evaluations took place. The uncertainty is large for θ < 2.5, which could be reduced by additional function evaluations. In

summary, the feature-based approach, combined with an appropriate numerical technique for optimizing noisy functions, is

successful in estimating a parameter of a chaotic partial differential equation.5

5 Conclusions

We have discussed a feature-based approach to data assimilation. The basic idea is to compress the data into features, and to

base parameter estimates on posterior distributions defined in terms of the features, rather than the raw data. The feature-based

approach has the advantage that one can calibrate numerical models to selected aspects of the data, which can help bridge gaps

between low-dimensional models for complex processes, and which can also help with breaking computational barriers in data10

assimilation with chaotic systems. Our main conclusions are as follows.

(i) Constructing noise models directly for the features leads to straightforward numerical implementation of the feature-

based approach, and enables the use of numerical methods familiar from data assimilation.

(ii) The feature-based approach can reduce computational requirements by reducing an effective dimension. This reduction

in complexity comes at the expense of a relaxation of how much that data constrain the parameters.15

While the simplified noise models in (i) may lead to good results (in the sense that parameter estimates are useful) more work

is needed to fully understand how to construct such noise models without excessive computations. Some of our numerical

examples indicate the limitations of the perturbed observations approach we propose for the construction of such noise models.

Our second conclusion (ii) suggests that one should use the feature-based approach only if the direct approach is infeasible.

When the data can be compressed without loss of information, the feature-based approach is just as good or bad as the direct20

approach. The feature-based approach reduces computational requirements only if we truly reduce the dimension of the data

by focussing only on some of the features of the data. In this case, one can formulate feature-based problems whose solution is

straightforward, while a direct approach is hopeless.
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