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Abstract. Many applications in science require that computational models and data be combined. In a Bayesian framework, this

is usually done by defining likelihoods based on the mismatch of model outputs and data. However, matching model outputs and

data in this way can be unnecessary or impossible. For example, using large amounts of steady state data is unnecessary because

these data are redundant. It is numerically difficult to assimilate data in chaotic systems. It is often impossible to assimilate

data of a complex system into a low-dimensional model. As a specific example, consider a low-dimensional stochastic model5

for the dipole of the Earth’s magnetic field, while other field components are ignored in the model. The above issues can be

addressed by selecting features of the data, and defining likelihoods based on the features, rather than by the usual mismatch

of model output and data. Our goal is to contribute to a fundamental understanding of such a feature-based approach that

allows us to assimilate selected aspects of data into models. We also explain how the feature-based approach can be interpreted

as a method for reducing an effective dimension and derive new noise models, based on perturbed observations, that lead to10

computationally efficient solutions. Numerical implementations of our ideas are illustrated in four examples.

1 Introduction

The basic idea of data assimilation is to update a computational model with information from sparse and noisy data so that

the updated model can be used for predictions. Data assimilation is at the core of computational geophysics, e.g., in numerical

weather prediction (Bauer et al., 2015), oceanography (Bocquet et al., 2010) and geomagnetism (Fournier et al., 2010). Data15

assimilation is also used in engineering applications, e.g., in robotics (Thrun et al., 2005) and reservoir modeling (Oliver et al.,

2008). We use the term “data assimilation” broadly, but focus on parameter estimation problems where one attempts to find

model parameters such that the output of the model matches data. This is achieved by defining a posterior distribution that

describes the probabilities of model parameters conditioned on the data.

The posterior distribution is proportional to the product of a prior distribution and a likelihood. The likelihood connects the20

model and its parameters to the data and is often based on the mismatch of model output and data. A typical example is the

squared two-norm of the difference of model output and data. However, estimating model parameters based on such a direct

mismatch of model outputs and data may not be required or feasible. It is not required, for example, if the data are intrinsically

low-dimensional, or if the data are redundant (we discuss a specific example in section 4.1). Examples of situations where

data assimilation is infeasible can be classified into two groups. First, the model may be lower-dimensional than the data. This25

situation occurs when selected aspects of a complex system are represented by a low-dimensional model. Examples include
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low-dimensional modeling of the Earth’s dipole for time-scales of millions of years as discussed, e.g., in Gissinger (2012);

Petrelis et al. (2009); Buffett et al. (2013); Buffett and Matsui (2015). These simplified models cannot represent all aspects

of the Earth’s magnetic field and, hence, using observations of the Earth’s magnetic field for parameter or state estimation

with these models is not possible. We will elaborate on this example in section 4.3. Another example of low-dimensional

models for complex processes are the simplified delay-differential equations used by Koren and Feingold (2011); Feingold and5

Koren (2013); Koren et al. (2017), to model behaviors of cloud systems over warm oceans. In both cases, model outputs cannot

directly match data, because the low-dimensional model was not designed to capture all aspects of a complex system (clouds or

the Earth’s dipole). Second, matching model outputs to data directly becomes numerically impossible if one considers chaotic

models over long time-scales. We will discuss this case in detail in section 4.4.

The above issues can be addressed by adapting ideas from machine learning to data assimilation. Machine learning algo-10

rithms expand the data into a suitable basis of “feature vectors” (Murphy, 2012; Bishop, 2006; Rasmussen and Williams,

2006). A feature can be thought of as a low-dimensional representation of the data, e.g., a principal component analysis (PCA)

(Jolliffe, 2014), a Gaussian process model (Rasmussen and Williams, 2006), or a Gaussian mixture model (McLachlan and

Peel, 2000). Features are either constructed a priori, or learned from data. The same ideas carry over to data assimilation. One

can extract low-dimensional features from the data and use the model to reproduce these features. A feature-based likelihood15

can be constructed to measure the mismatch of the observed features and the features produced by the model. The feature-

based likelihood and a prior distribution define a feature-based posterior distribution, which describes the probability of model

parameters conditioned on the features. We discuss mostly features that are constructed a priori and using physical insight into

the problem. Learning features “automatically” from data is the subject of future work.

As a specific example, consider a viscously damped harmonic oscillator, defined by damping and stiffness coefficients (we20

assume we know its mass). An experiment may be to pull on the mass and then to release it and to measure the displacement

of the mass from equilibrium as a function of time. These data can be compressed into features in various ways. For example,

a feature could be the statement that “the system exhibits oscillations”. Based on this feature, one can infer that the damping

coefficient is less than one. Other features may be the decay rate or observed oscillation frequency. One can compute the

damping and stiffness coefficients using classical formulas, if these quantities were known exactly. The idea of feature-based25

data assimilation is to make such inferences in view of uncertainties associated with the features.

Another example is Lagrangian data assimilation for fluid flow, where the data are trajectories of tracers and where a nat-

ural candidate for a feature is a coherent structure (Maclean et al., 2017). The coherent structure can be used to formulate a

likelihood, which in turn defines a posterior distribution that describes the probability of model parameters given the observed

coherent structure, but without direct appeal to tracer trajectories. More generally, consider a chaotic system observed over long30

time scales, e.g., several e-folding times of the system. Due to the chaotic behavior, changes in the numerical differential equa-

tion solver may change likelihoods based on model-output/data mismatch, even if the parameters and data remain unchanged.

The feature-based approach can be useful here, as shown by Hakkarainen et al. (2012), who use likelihoods based on parti-

cle filter runs to average out uncertainties from differential equation solvers. Haario et al. (2015) use correlation vectors and
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summary statistics, which are “features” in our terminology, to identify parameters of chaotic systems such as the Lorenz’63

(Lorenz, 1963) and Lorenz’95 (Lorenz, 1995) equations.

Our goal is to contribute to a fundamental understanding of the feature-based approach to data assimilation and to extend

the numerical framework for solving feature-based data assimilation problems. We also discuss the conditions under which the

feature-based approach is appropriate. In this context, we distinguish two problem classes. First, the compression of the data5

into a feature may lead to no or little loss of information, in which case the feature-based problem and the “original” problem,

as well as their solutions, are similar. Specific examples are intrinsically low-dimensional data or redundant (steady state) data.

Second, the features extracted from the data may be designed to deliberately neglect information in the data. This second

case is more interesting because we can assimilate selected aspects of data into low-dimensional models for complex systems

and we can formulate feature-based problems that lead to useful parameter estimates for chaotic systems, for which a direct10

approach is computationally expensive or infeasible. We give interpretations of these ideas in terms of effective dimensions of

data assimilation problems (Chorin and Morzfeld, 2013; Agapiou et al., 2016) and interpret the feature-based approach as a

method for reducing the effective dimension. Our discussion and numerical examples suggest that the feature-based approach is

comparable to a direct approach when the data can be compressed without loss of information and that computational efficiency

is gained only when the features truly reduce the dimension of the data, i.e., if some aspects of the data are indeed ignored.15

Nonetheless, the feature-based likelihood can be cumbersome to evaluate. The reason is that an evaluation of a feature-based

likelihood may involve repeated solution of stochastic equations, followed by a compression of a large amount of simulation

data into features and it is unclear how to assess the error statistics of the features. In fact, the inaccessible likelihood prevents

application of the typical numerical methods for data assimilation, e.g., Monte Carlo sampling or optimization. We suggest to

overcome this difficulty by adapting ideas from stochastic ensemble Kalman filters (Evensen, 2006) and to derive noise models20

directly for the features using “perturbed observations”. Such noise models lead to feature-based likelihoods which are easy

to evaluate, so that Monte Carlo methods can be used for the solution of feature-based data assimilation problems. Another

numerical difficulty is that the feature-based likelihood can be noisy, e.g., if it is based on averages computed by Monte Carlo

simulations. In such cases, we suggest to apply numerical optimization to obtain maximum a posteriori estimates, rather than

Monte Carlo methods, because optimization is more robust to noise.25

Details of the numerical solution of feature-based data assimilation problems are discussed in the context of four examples,

two of which involve “real” data. Each example represents its own challenges and we suggest appropriate numerical techniques,

including Markov Chain Monte Carlo (MCMC, (Kalos and Whitlock, 1986)), direct sampling (see, e.g., Chorin and Hald

(2013); Owen (2013)) and global Bayesian optimization (see, e.g., Frazier and Wang (2016)). The variety of applications and

the variety of numerical methods we can use to solve these problems indicate the flexibility and usefulness of the feature-based30

approach.

Ideas related to ours were recently discussed by Rosenthal et al. (2017) in the context of data assimilation problems in which

certain geometric features need to be preserved. This situation occurs, e.g., when estimating wave characteristics, or tracking

large scale structures such as storm systems. Data assimilation typically does not preserve geometric features but Rosenthal

et al. (2017) use kinematically constrained transformations to preserve geometric features within an ensemble Kalman filtering35
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framework. The techniques discussed by Rosenthal et al. (2017) are related to the feature-based data assimilation we describe

here, but they different at its core and its goals: Rosenthal et al. (2017) are concerned about preserving features during data

assimilation while we wish to estimate model parameters from features. We further emphasize that a feature-based approach

may also be useful when high-fidelity models, such as coupled ocean-hurricane models, are used. In this case, one may need to

reduce the dimension of some of the data and assimilate only some features into the high-dimensional model. This is discussed5

in Falkovich et al. (2005); Yablonsky and Ginis (2008). Here, we focus on problems in which the data are high-dimensional,

but the model is low-dimensional.

2 Background

We briefly review the typical data assimilation problem formulation and several methods for its numerical solution. The de-

scriptions of the numerical techniques may not be sufficient to fully comprehend the advantages or disadvantages of each10

method, but these are explained in the references we cite.

2.1 Data assimilation problem formulation

Suppose you have a mathematical/computational modelM that maps input parameters θ to outputs y, i.e., y =M(θ) where

θ and y are n- and k-dimensional real vectors. The parameters θ may be initial or boundary conditions of a partial differential

equation, diffusion coefficients in elliptic equations, or growth rates in ecological models. The outputs y can be compared to15

data z, obtained by observing the physical process under study. For example, ifM is an atmospheric model, z may represent

temperature measurements at k different locations. It is common to assume that

z =M(θ) + ε, (1)

where ε is a random variable with known probability density function (pdf) pε(·) that describes errors/mismatch between model

and data. The above equation defines a k-dimensional “likelihood”, l(z|θ) = pε(z−M(θ)|θ), that describes the probability of20

the data for a given set of parameters.

In addition to equation (1), one may have prior information about the model parameters, e.g., one may know that some

parameters are non-negative. Such prior information can be represented by a prior distribution p0(θ). By Bayes’ rule, the prior

and likelihood define the posterior distribution

p(θ|z)∝ p0(θ) l(z|θ). (2)25

The posterior distribution combines information from model and data and defines parameters θ that lead to model outputs that

are “compatible” with the data. Here compatible means that model outputs are likely to be within the assumed errors ε.

Data assimilation problems of this kind appear in science and engineering, e.g., in numerical weather prediction, oceanogra-

phy and geomagnetism (Bocquet et al., 2010; van Leeuwen, 2009; Fournier et al., 2010), as well as in global seismic inversion

(Bui-Thanh et al., 2013), reservoir modeling/subsurface flow (Oliver et al., 2008), target tracking (Doucet et al., 2001) and30
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robotics (Thrun et al., 2005; Morzfeld, 2015). The term “data assimilation” is common in geophysics, but in various applica-

tions and disciplines, different names are used, including parameter estimation, Bayesian inverse problems, history matching

and particle filtering.

2.2 Numerical methods for data assimilation

Computational methods for data assimilation can be divided into three groups. The first group is based on the Kalman filter5

(Kalman, 1960; Kalman and Bucy, 1961) and includes the ensemble Kalman filter (Evensen, 2006). Kalman filters are partic-

ularly useful when data are assimilated sequentially, as is the case in numerical weather prediction. The second group consists

of optimization algorithms, called “variational methods” in this context (Talagrand and Courtier, 1987). The third group are

Monte Carlo sampling methods, including particle filters/direct sampling (Owen, 2013; Doucet et al., 2001; Atkins et al., 2013;

Morzfeld et al., 2015) and Markov Chain Monte Carlo (MCMC) (Mackay, 1998; Kalos and Whitlock, 1986). We will use vari-10

ational methods, MCMC and direct sampling for numerical solution of feature-based data assimilation problems and we briefly

review these techniques here.

In variational data assimilation one finds the parameter set θ∗ that maximizes the posterior probability, which is also called

the posterior mode. One can find the posterior mode by minimizing the negative logarithm of the posterior distribution

F (θ) =− log(p0(θ) l(z|θ)) . (3)15

The optimization is done numerically and one can use, e.g., Gauss-Newton algorithms. In some of the numerical examples

below, we need to optimize functions F (θ) that are computationally expensive to evaluate and noisy, i.e., F (θ) is a random

variable with unknown distribution. The source of noise in the function F (θ) is caused by numerically approximating the

feature. Suppose, e.g., that the feature is an expected value and in the numerical implementation this expected value is ap-

proximated by Monte Carlo. The Monte Carlo approximation, however, depends on the number of samples used and if this20

number is small (finite), the approximation is noisy, i.e., the Monte Carlo average for the same set of parameters θ, but with

two different seeds in the random number generator, can lead to two different values for F (θ). In such cases, one can use

a derivative free optimization method such as global Bayesian optimization (GBO), see, e.g., Frazier and Wang (2016). The

basic idea is to model the function F (θ) by a Gaussian process (GP) and then update the GP model based on a small number of

function evaluations. The points where the function is evaluated are chosen based on an expected improvement (EI) criterion,25

which takes into account where the function is unknown or known. The GP model for the function F (θ) is then updated based

on the function evaluations at the points suggested by EI. One can iterate this procedure and when the iteration is finished,

e.g., because a maximum number of function evaluations is reached, one can use the optimizer of the mean of the GP model to

approximate the optimizer of the (random) function F (θ).

In Markov Chain Monte Carlo (MCMC), a Markov chain is generated by drawing a new sample θ′ given a previous sample30

θj−1, using a proposal distribution q(θ′|θj−1). The proposed sample θ′ is accepted as θj or rejected based on the values of

the posterior distribution of the new and previous samples, see, e.g., Mackay (1998); Kalos and Whitlock (1986). Averages

over the samples converge to expected values with respect to the posterior distribution as the number of samples goes to
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infinity. However, since θj depends on θj−1, the samples are not independent and one may wonder how many effectively

uncorrelated samples one has obtained. This number can be estimated by dividing the number of samples by the integrated

auto-correlation time (IACT) (Mackay, 1998; Kalos and Whitlock, 1986). Thus, one wants to pick a proposal distribution

that reduces IACT. The various MCMC algorithms in the literature differ in how the proposal distribution is constructed. In

the numerical examples below, we use the MATLAB implementation of the affine invariant ensemble sampler (Goodman and5

Weare, 2010), as described by Grinsted (2017), and we use the numerical methods described in Wolff (2004) to compute IACT.

In direct sampling (sometimes called importance sampling) one generates independent samples using a proposal density q

and attaches to each sample a weight:

θj ∼ q(θ), wj ∝ p0(θj) l(z|θj)
q(θj)

.

Weighted averages of the samples converge to expectations with respect to the posterior distribution as the number of samples10

goes to infinity. While the samples are independent, they are not all equally weighted and one may wonder how many “effec-

tively unweighted” samples one has. For an ensemble of size Ne, the effective number of samples can be estimated as (Doucet

et al., 2001; Arulampalam et al., 2002)

Neff =Ne/ρ, ρ=
E(w2)

E(w)2
. (4)

For a practical algorithm, we thus chose an proposal distribution q such that ρ is near one. There are several strategies for15

constructing such proposal distributions and in the numerical illustrations below we use “implicit sampling” (Chorin and Tu,

2009; Morzfeld et al., 2015; Chorin et al., 2015) and construct the proposal distribution to be a Gaussian whose mean is the

posterior mode θ∗ and whose covariance is the Hessian of F in (3), evaluated at θ∗ (see also Owen (2013)).

3 Feature-based data assimilation

The basic idea of feature-based data assimilation is to replace the data assimilation problem defined by a prior p0(θ) and the20

likelihood in (1) by another problem that uses only selected features of the data z. We assume that the prior is appropriate and

focus on constructing new likelihoods. Let F(·) be an m-dimensional vector function that takes a k-dimensional data set into

a m-dimensional feature. One can apply the feature-extraction to equation (1) and obtain

f = F (M(θ) + ε) , (5)

where f = F(z), is the feature extracted from the data z. Equation (5) can be used to define a feature-based likelihood lF (f |θ),25

which in turn defines a feature-based posterior distribution, pF (θ|f)∝ p0(θ) lF (f |θ). The feature-based posterior distribution

describes the probabilities of model parameters conditioned on the feature f and can be used to make inferences about the

parameters θ.
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3.1 Noise modeling

Evaluating the feature-based posterior distribution is difficult because evaluating the feature-based likelihood is cumbersome.

Even under simplifying assumptions of additive Gaussian noise in equation (1), the likelihood lF (f |θ), defined by equation (5),

is generally not known. The reason is that the feature function F makes the distribution of F (M(θ) + ε) non-Gaussian even

if ε is Gaussian. Numerical methods for data assimilation typically require that the posterior distribution be known up to a5

multiplicative constant. This is generally not the case when a feature-based likelihood is used (the feature-based likelihood

is Gaussian only if F is linear and if ε is Gaussian). Thus, variational methods, MCMC or direct sampling are not directly

applicable to solve feature-based data assimilation problems defined by (5). More advanced techniques, such as approximate

Bayesian computation (ABC) (Marin et al., 2012), however, can be used because these are designed for problems with unknown

likelihood (see Maclean et al. (2017)).10

Difficulties with evaluating the feature-based likelihood arise because we assume that equation (1) is accurate and we require

that the feature-based likelihood follows directly from it. However, in many situations the assumptions about the noise ε in

equation (1) are “ad hoc”, or for mathematical and computational convenience. There is often no physical reason why the noise

should be additive or Gaussian, yet these assumptions have become standard in many data assimilation applications. This leads

to the question: why not “invent” a suitable and convenient noise model for the feature?15

We explore this idea and consider an additive Gaussian noise model for the feature. This amounts to replacing equation (5)

by

f =MF (θ) + η, (6)

whereMF = F ◦M, is the composition of the modelM and feature extraction F and η is a random variable that represents

uncertainty in the feature and which we need to define (see below). For a given η, the feature-based likelihood defined by (6),20

lF (f |θ) = pη (f −MF (θ)|θ), is now straightforward to evaluate (up to a multiplicative constant) because the distribution of η

is known/chosen. The feature-based likelihood based on (6) results in the feature-based posterior distribution

pF (θ|f)∝ p0(θ) lF (f |θ), (7)

where p0(θ) is the prior distribution, which is not affected by defining or using features. The usual numerical tools, e.g.,

MCMC, direct sampling, or variational methods, are applicable to the feature-based posterior distribution (7).25

Our simplified approach requires that one defines the distribution of the errors η, similar to how one must specify the

distribution of ε in equation (1). We suggest to use a Gaussian distribution with mean zero for η. The covariance that defines

the Gaussian can be obtained by borrowing ideas from the ensemble Kalman filter (EnKF). In a “perturbed observation”

implementation of the EnKF, the analysis ensemble is formed by using artificial perturbations of the data (Evensen, 2006). We

suggest to use a similar approach here. Assuming that ε in equation (1) is Gaussian with mean 0 and covariance matrix R, we30

generate perturbed data by: zj ∼N (z,R), j = 1, . . . ,Nz . Each perturbed data leads to a perturbed feature f j ∼F(zj) and we
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compute the covariance

Rf =
1

Nz − 1

Nz∑
j=1

(f j − f)(f j − f)T .

We then use η ∼N (0,Rf ) as our noise model for the feature-based problem in equation (6).

Note that the rank of the covarianceRf is min{dim(f),Nz−1}. For high-dimensional features, the rank ofRf may therefore

be limited by the number of perturbed observations and features we generate, and this number depends on the computational5

requirements of the feature extraction. We assume thatNz is larger than the dimension of the feature, which is the case if either

the computations to extract the features are straightforward, or if the feature is low-dimensional.

One may also question why η should be Gaussian. In the same vein, one may wonder why ε in equation (1) should be

Gaussian, which is routinely assumed. We do not claim that we have answers to such questions, but we speculate that if the

feature does indeed constrain some parameters, then assuming a unimodal likelihood is appropriate and, in this case, a Gaussian10

assumption is also appropriate.

3.2 Feature selection

Feature-based data assimilation requires that one defines and selects relevant features. In principle, much of the machine

learning technology can be applied to extract generic features from data. For example, one can define F by the PCA, or

singular value decomposition, of the data and then neglect small singular values and associated singular vectors. As a specific15

example, suppose that the data are measurements of a time series ofM data points of an n-dimensional system. In this case, the

functionMF consists of the steps (i) simulate the model; and (ii) compute the SVD of the n×M matrix containing the data.

The feature f in (6) may then be the first d largest singular values and associated right and left singular vectors (see the example

in section 4.2 for more detail). In practice, relevant features may often present themselves. For example, in Lagrangian data

assimilation, coherent structures (and their SVDs) are a natural candidate, as explained by Maclean et al. (2017). In section 420

we present several examples of “intuitive” features, constructed using physical insight, and discuss what numerical methods to

use in the various situations.

The choice of the feature suggests the numerical methods for the solution of the feature-based problem. One issue here is

that, even with our simplifying assumption of additive (Gaussian) noise in the feature, evaluating a feature-based likelihood

can be noisy. This happens in particular when the feature is defined in terms of averages over solutions of stochastic or chaotic25

equations. Due to limited computational budgets, such averages are computed using a small sample size. Thus, sampling error

is large and evaluation of a feature-based likelihood is noisy, i.e., evaluations of the feature-based likelihood, even for the same

set of parameters θ and feature-data f , may lead to different results, depending on the state of the random number generator.

This additional uncertainty makes it difficult to solve some feature-based problems numerically by Monte Carlo. However,

one can construct a numerical framework for computing maximum a posteriori estimates using derivative free optimization30

methods that are robust to noise, e.g., global Bayesian optimization (Frazier and Wang, 2016). We will specify these ideas in

the context of a numerical example with the Kuramoto-Sivashinsky equation in Section 4.4.
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3.3 When is a feature-based approach useful?

A natural question is: under what conditions should I consider a feature-based approach? There are three scenarios which we

discuss separately before we make connections between the three scenarios using the concept of “effective dimension”.

3.3.1 Case (i): data compression without information loss

It may be possible that data can be compressed into features without significant loss of information, for example, if observations5

are collected while a system is in steady state. Steady state data are redundant, make negligible contributions to the likelihood

and posterior distributions and, therefore, can be ignored. This suggests that features can be based on truncated data and that the

resulting parameter estimates and posterior distributions are almost identical to the estimates and posterior distributions based

on all the data. We provide a detailed numerical example to illustrate this case in section 4.1. Similarly, suppose the feature is

based on the PCA of the data, e.g., only the first d singular values and associated singular vectores are used. If the neglected10

singular values are indeed small, then the data assimilation problem defined by the feature, i.e., the truncated PCA, and the

data assimilation problem defined by all of the data, i.e., the full set of singular values and singular vectors, are essentially the

same. We discuss this in more detail and with the help of a numerical example in section 4.2.

3.3.2 Case (ii): data compression with information loss

In some applications a posterior distribution defined by all of the data may not be practical or computable. An example is15

estimation of initial conditions and other parameters based on (noisy) observations of a chaotic system over long time-scales.

In a “direct” approach one tries to estimate initial conditions that lead to trajectories that are near the observations at all times.

Due to the sensitivity to initial conditions a point-wise match of model-output and data is numerically difficult to achieve.

In a feature-based approach one does not insist on a point-by-point match of model-output and data, i.e., the feature-based

approach simplifies the problem by neglecting several important aspects of the data during the feature-extraction (e.g., the20

time-ordering of the data points). As a specific example consider estimation of model parameters that lead to trajectories with

similar characteristics to the observed trajectories. If only some characteristics of the trajectories are of interest, then the initial

conditions need never be estimated. Using features thus avoids the main difficulty of this problem (extreme sensitivity to small

perturbations) provided one can design and extract features that are robust across the attractor. Several examples have already

been reported where this is indeed the case, see Hakkarainen et al. (2012); Haario et al. (2015); Maclean et al. (2017). We will25

provide another example and additional explanations, in particular about feature selection and numerical issues, in section 4.4.

It is important to realize that the solution of the feature-based problem is different from the solution of the (unsolvable) original

problem because several important aspects of the data are ignored. In particular, we emphasize that the solution of the feature-

based problem yields parameters that lead to trajectories with similarities with the data, as defined by the feature. The solution

of the (possibly infeasible) original problem yields model parameters that lead to trajectories that exhibit a good point-by-point30

match with the data.
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3.3.3 Case (iii): models and data at different scales

The feature-based approach is essential for problems for which the numerical model and the data are characterized by different

scales (spatial, temporal or both). Features can be designed to filter out fine scales that may be present in the data, but which

are not represented by the numerical model. This is particularly important when a low-dimensional model is used to represent

certain aspects of a complex system. Specific examples of low-dimensional models for complex processes can be found in the5

modeling of clouds or the geomagnetic dipole (Gissinger, 2012; Petrelis et al., 2009; Buffett et al., 2013; Buffett and Matsui,

2015; Koren and Feingold, 2011; Feingold and Koren, 2013). Methods that evaluate the skill of these models in view of data

are missing and the feature-based approach may be useful in this context. We discuss this case in more detail and with the help

of a numerical example in section 4.3.

3.3.4 Reduction of effective dimension10

Cases (i) and (ii) can be understood more formally using the concept of an “effective dimension”. The basic idea is that

a high-dimensional data assimilation problem is more difficult than a low-dimensional problem. However, it is not only the

number of parameters that defines dimension in this context, but rather a combination of the number of parameters, the assumed

distributions of errors and prior probability, as well as the number of data points (Chorin and Morzfeld, 2013; Agapiou et al.,

2016). An effective dimension describes this difficulty of a data assimilation problem, taking into account all of the above, and15

is focused on the computational requirements of numerical methods (Monte Carlo) to solve a given problem: a low effective

dimension means the computations required to solve the problem are moderate. Following Agapiou et al. (2016) and assuming

a Gaussian prior distribution, p0(θ) =N (µ,P ), an effective dimension is defined by

efd = Tr
(

(P − P̂ )P−1
)
,

where P̂ is the posterior covariance and where Tr(A) =
∑n
j=1 ajj is the trace of an n×n matrix A with diagonal elements20

ajj , j = 1, . . . ,n. Thus, the effective dimension measures the difficulty of a data assimilation problem by the differences

between prior and posterior covariance. This means that the more information the data contains about the parameters, the

higher is the problem’s effective dimension and, thus, the harder is it to find the solution of the data assimilation problem.

We emphasize that this is a statement about expected computational requirements and that it is counter-intuitive – parameters

that are well-constrained by data should be easier to find than parameters that are mildly constrained by the data. However,25

in terms of computing or sampling posterior distributions, a high impact of data on parameter estimates makes the problem

harder. Consider an extreme case where the data have no influence on parameter estimates. Then the posterior distribution is

equal to the prior distribution and, thus, already known (no computations needed). If the data are very informative, the posterior

distribution will be different from the prior distribution. For example, the prior may be “wide”, i.e., not much is known about

the parameters, while the posterior distribution is “tight”, i.e., uncertainty in the parameters is small after the data are collected.30

Finding and sampling this posterior distribution requires significantly more (computational) effort than sampling the prior

distribution.
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Case (i) above is characterized by features that do not change (significantly) the posterior distribution and, hence, the features

do not alter the effective dimension of the problem. It follows that the computed solutions and the required computational cost

of the feature-based or “direct” approach are comparable. In case (ii), however, using the feature rather than the data themselves

indeed changes the problem and its solution, i.e., the feature-based posterior pF (θ) can be a very different function than the

full posterior p(θ). For example, the dimension of the feature may be lower than the dimension of the full data set because5

several important aspects of the data are ignored by the feature. The low-dimensionality of the feature-based also implies that

the effective dimension of the problem is lower. For chaotic systems, this reduction in effective dimension can be so dramatic

that the original problem is infeasible, while a feature-based approach becomes feasible, see Hakkarainen et al. (2012); Haario

et al. (2015); Maclean et al. (2017) and section 4.4.

4 Numerical illustrations10

We illustrate the above ideas with four numerical examples. In the examples, we also discuss appropriate numerical techniques

for solving feature-based data assimilation problems. The first example illustrates that contributions from redundant data are

negligible. The second example uses “real data” and a predator-prey model to illustrate the use of a PCA feature. Examples 1

and 2 are simple enough to solve by “classical” data assimilation, matching model outputs and data directly and serve as an

illustration of problems of type (i) in section 3.3. Example 3 uses a low-dimensional model for a complex system, namely the15

Earth’s geomagnetic dipole field over the past 150 Myr. Here, a direct approach is infeasible, because the model and data are

describing different time scales and, thus, this example illustrates a problem of type (iii) (see section 3.3). Example 4 involves

a chaotic partial differential equation (PDE) and parameter estimation is difficult using the direct approach because it requires

estimating initial conditions. We design a robust feature that enables estimation of a parameter of the PDE without estimating

initial conditions. The perturbed observation noise models for the features are successful in examples 1-3 and we use Monte20

Carlo for numerical solution of the feature-based problems. The perturbed observation method fails in example 4, which is also

characterized by a noisy feature-based likelihood and we describe a different numerical approach using maximum a posteriori

estimates.

We wish to remind the reader that the choices of prior distributions are critical for the Bayesian approach to parameter

estimation. However, the focus of this paper is on new formulations of the likelihood using features. In the examples below25

we make reasonable choices for the priors, but other choices of priors will lead to different posterior distributions and, hence,

different parameter estimates. In examples 1, 2 and 4, we do not have any information about the values of the parameters and

we chose uniform priors over large intervals. In example 3, we use a sequential data assimilation approach and build priors

informed by previous assimilations, as is typical in sequential data assimilation.
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4.1 Example 1: more data is not always better

We illustrate that a data assimilation problem with fewer data points can be as useful as one with significantly more, but

redundant data points. We consider a mass-spring-damper system

d2x
dt2

+ 2ζω
dx
dt

+ω2x= h(t− 5),

where t≥ 0 is time, ζ > 0 is a viscous damping coefficient, ω > 0 is a natural frequency and h(τ) is the “step-function”, i.e.,5

h(τ) = 0 for τ < 0 and h(τ) = 1 for τ ≥ 0. The initial conditions of the mass-spring-damper system are x(0) = 0,dx/dt(0) =

0. The parameters we want to estimate are the damping coefficient ζ and the natural frequency ω, i.e., θ = (ζ,ω)T . To estimate

these parameters we use a uniform prior distribution over the box [0.5,4]× [0.5,4] and measure the displacement x(t) every

∆t= 0.5 time units (starting with a measurement at t= 0). The duration of a (synthetic) experiment is τ =M∆t and we

consider experiments of durations between τ = 25 to τ = 250 time units, with M = 51 to M = 501 data points. The data of an10

experiment of duration τ =M∆t are thus

zi = x(i∆t) + vi, vi ∼N (0,10−3), i= 0, . . . ,M.

Writing z = {z0, . . . ,zM}, we obtain the likelihood

lτ (z|θ)∝ exp

(
−1

2

M∑
i=0

103 (zi−x(i∆T ))2

)
.

The likelihood and the uniform prior distribution define the posterior distribution15

pτ (θ|z) =

 1
Cτ
lτ (z|θ) if θ ∈ [0.5,4]× [0.5,4] ,

0 otherwise,

where Cτ is a normalization constant. Data of an experiment of duration τ = 40 is shown in figure 1(a). These synthetic data

are generated with “true” parameters ζ = 1.5 and ω = 1. With these parameters the oscillator is “overdamped” and reaches its

steady state (limt→∞x(t) = 1) quickly. We anticipate that data collected after t≈ 25 is redundant in the sense that the same

displacement is measured again and again. This suggests that the posterior distributions of experiments of duration τ = i∆t20

and τ = j∆t are approximately equal to each other, provided that i, j > 50/∆t. In other words, a data assimilation problem

with M = 101 or M = 251 data points may have “roughly the same” posterior distribution and, consequently, lead to similar

estimates.

We investigate this idea by solving data assimilation problems with experiment durations between τ = 25 and τ = 225. We

compare the resulting posterior distributions p25, . . . ,p225 to the posterior distribution p250, corresponding to an experiment of25

duration τ = 250. We use the Kullback Leibler (KL) divergence, DKL(p̂0||p̂1) of two distributions to measure “how far” two

distributions are from one another. For two k-dimensional Gaussians p0 =N (m0,P0) and p1 =N (m1,P1), the KL divergence

is given by

DKL(p0||p1) =
1

2

(
Tr(P−11 P0) + (m1−m0)TP−11 (m1−m0)− k+ log

(
detP1

detP0

)
.

)
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Figure 1. (a) Data zi, i= 0, . . . ,80 (blue dots) of an experiment of duration τ = 40 and 50 trajectories of oscillators with damping coefficient

and natural frequency drawn from the posterior distribution p(θ|z) (turquoise). (b) KL divergence of approximate posterior distributions

DKL(p̂250||p̂τ ), M = 25, . . . ,225, as a function of the duration τ of an experiment. Blue dots – average KL divergence of 1000 experiments.

Red line – exponential fit. Light blue cloud: confidence interval based on standard deviations observed during the 1000 experiments. (c)

Same data as in (a) (blue dots) and 50 trajectories of oscillators with damping coefficient and natural frequency drawn from the feature-

based posterior distribution. (d) Histogram of the marginal p40(ζ|z0, . . . ,z80) of the posterior distribution p40(θ|z0, . . . ,z80) (purple) and

histogram the marginal pF (ξ|f) of the feature-based posterior distribution pF (θ|f) (blue). (e) Two-dimensional histogram of the posterior

distribution p40(θ|z0, . . . ,z80). (f) Two-dimensional histogram of the feature-based posterior distribution pF (θ|f). (g) Histogram of the

marginal p40(ω|z0, . . . ,z80) of the posterior distribution p40(θ|z0, . . . ,z80) (purple) and histogram the marginal pF (ω|f) of the feature-

based posterior distribution pF (θ|f) (blue).

Note that DKL(p0||p1) = 0 if the two distributions are identical and a large DKL(p0||p1) suggest that p0 and p1 are quite

different. Computing the KL divergence for non-Gaussian distributions is numerically more challenging and here were are

content to measure the distance of two distributions by the KL divergence of their Gaussian approximations. We thus compute

Gaussian approximations to the posterior distributions p25, . . . ,p250, by computing the posterior mode θ∗ (by Gauss-Newton

optimization) and the HessianH of the negative logarithm of the posterior distribution at the mode. We then define the Gaussian5
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approximation by

pτ (θ|zM )≈ p̂τ (θ|zM ) =N (θ∗,H−1), (8)

and use DKL(p̂250||p̂τ ) to measure the distance of p250 and pτ .

Each experiment is in itself a random event because the measurement noise is random. The KL divergence between the

various posterior distributions is, thus, also random and we address this issue by performing 1000 independent experiments5

and then average the KL divergences. Our results are shown in figure 1(b). We plot the average KL divergence, as well as

“error bars” based on the standard deviation, as a function of the experiment duration and note an exponential decrease of

KL divergence with experiment duration or, equivalently, number of data points used for parameter estimation. Thus, as we

increase the number of data points, the posterior distributions get closer, as measured by this KL divergence, to the posterior

distribution withM = 501 data points. In other words, we obtain very similar posterior distributions withM = 101 orM = 50110

data points. This indicates that the steady state data can be ignored because there is little additional information in these data.

These results suggest that the data can be compressed without significant loss of information about the parameters. One could,

for example, define a feature by simply neglecting data collected after t > 30. This feature would lead to almost identical

parameter estimates as using the full data set.

We now consider a feature that compresses the data into two numbers. The first component of our feature is the average15

of the last 50 data points. This average is directly related to the natural frequency since limt→∞x(t) = 1/ω2. The second

component of the features is the slope of a linear fit to the seven data points collected after t= 5, i.e., after the step is applied.

The covariance matrix R of the assumed Gaussian noise η (see equation 6), using the perturbed observation approach as

described in section 3.1. We generate 103 perturbed data sets to compute R and find that the off-diagonal elements are small

compared to the diagonal elements. We thus neglect the correlation between the two components of the feature, but this is not20

essential. Altogether the feature-based likelihood is given by

lF (f |θ)∝ exp

(
−1

2
(f −FM(θ))

T
R−1 (f −FM(θ))

)
,

where FM represents the computations (i) simulate the oscillator with parameters θ for τ time units; and (ii) compute the

feature, i.e., the average steady state value and slope, as described above. Together with the uniform prior distribution, we

obtain the feature-based posterior distribution25

pF (θ|f) =

 1
CF
lF (f |θ) if θ ∈ [0.5,4]× [0.5,4] ,

0 otherwise,

where CF is a normalization constant.

We solve this feature-based problem for an experiment of duration τ = 40 by implicit sampling (see section 2.2) usingNe =

103 samples. From these samples we compute ρ≈ 1.07, i.e., almost all samples are effective samples. Results are illustrated

in figure 1(c), where we plot trajectories corresponding to 50 samples of θ = (ζ,ω) of the feature-based posterior distribution.30

We note that the trajectories are all “near” the data points. For comparison, we also solve the data assimilation problem without
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using features and compute p40 (see equation (8)), also by implicit sampling with Ne = 103 samples. We find that ρ≈ 1.38

in this case. We note that the feature-based posterior distribution is different from the “classical” one. This can be seen by

comparing the clouds of trajectories in figures 1(a) and 1(c). The wider cloud of trajectories indicates that the feature does

not constrain the parameters as much as the full data set. The relaxation induced by the feature-based approach however also

results in the feature-based approach being slightly more effective in terms of the number of effective samples.5

Finally, we show triangle-plots of the posterior distribution p40 and the feature-based posterior distribution in figures 1(d)-(g).

A triangle plot of the feature-based posterior distribution pF consists of histograms of the marginals pF (ζ|f) and pF (ω|f),

plotted in blue in figures 1(d) and 1(e), and a histogram of pF (θ|f) in figure 1(f). A triangle plot of the posterior distribu-

tion p40(θ|z0, . . . ,z80) is shown in figures 1(d), (e) and (f). Specifically, we plot histograms of the marginals p40(ζ|z0, . . . ,z80)

and p40(ω|z0, . . . ,z80) in purple in figures 1(d) and 1(g) and we plot a histogram of the posterior distribution p40(θ|z0, . . . ,z80)10

in figure 1(e). We find that the marginals pF (ω|f) and p40(ω|z0, . . . ,z80) are nearly identical, which indicates that the feature

constrains the frequency ω nearly as well as the full data set. The damping coefficient ζ is less tightly constrained by our fea-

ture, which results in a wider posterior distribution pF (ζ|f) than p40(ζ|z0, . . . ,z80). A more sophisticated feature that describes

the transient behavior in more detail would lead to different results, but our main point is to show that even our simple feature,

which neglects most of the data, leads to useful parameter estimates.15

4.2 Example 2: predator-prey dynamics of lynx and hares

We consider the Lotka-Volterra (LV) equations (Lotka, 1926; Volterra, 1926)

dx
dt

= αx−βxy, dy
dt

=−γy+ δxy,

where t is time, α,β,γ,δ > 0 are parameters and x and y describe “prey” and “predator” populations. Our goal is to estimate

the four parameters in the above equations as well as the initial conditions x0 = x(0), y0 = y(0), i.e., the parameter vector we20

consider is θ = (α,β,γ,δ,x0,y0)T . Since we do not have prior information about the parameters, we chose a uniform prior

distribution over the six-dimensional cube [0,10]6.

We use the lynx and hare data of the Hudson’s Bay Company (Gilpin, 1973; Leigh, 1968) to define a likelihood. The data set

covers a period from 1897 to 1935, with one data point per year. Each data point is a number of lynx furs and hare furs, with the

understanding that the number of collected furs is an indicator for the overall lynx or hare population. We use data from 191725

to 1927, because the solution of the LV equations is restricted to cycles of fixed amplitude and the data during this time period

roughly has that quality. We scale the data to units of “104 hare furs” and “103 lynx furs” (so that all numbers are order one).

We use this classical data set here, but predator-prey models have recently also been used in low-dimensional cloud models

that can represent certain aspects of large eddy simulations (Koren and Feingold, 2011; Feingold and Koren, 2013; Koren et al.,

2017). However, the sole purpose of this example is to demonstrate that the feature-based approach is robust enough for use30

with “real” data (rather than the synthetic data used in example 1).

We define a feature f by the first (largest) singular value and the first left and right singular vectors of the data. The feature

vector f thus has dimension 14 (we have 2×11 raw data points). We compute the noise η for the feature-based likelihood using

15



the “perturbed observation” method as above. We generate 10,000 perturbed data sets by adding realizations of a Gaussian

random variable with mean of zero and unit covariance to the data. The resulting sample covariance matrix serves as the matrix

Rf in the feature-based likelihood. Note that our choice of noise on the “raw” data is somewhat arbitrary. However, as stated

above, the main purpose of this example is to demonstrate our ideas, not to research interactions of lynx and hare populations.

We use the MATLAB implementation of the affine invariant ensemble sampler to solve the feature-based data assimilation5

problem, see Grinsted (2017); Goodman and Weare (2010). We use an ensemble size Ne = 12 and each ensemble member

produces a chain of length ns = 8334. We thus have N = 100,008 samples. Each chain is initialized as follows: we first find

the posterior mode using Gauss-Newton optimization. To do so, we perform an optimization with different starting points

and then chose the optimization result that leads to the largest feature-based posterior probability. The initial values for our

ensemble of walkers are twelve draws from a Gaussian distribution whose mean is the posterior mode and whose covariance is10

a diagonal matrix with elements (0.02,0.02,0.02,0.02,0.2,0.2). We disregard the first 2,500 steps of each chain as “burn-in”

and compute an average IACT of 735, using the methods described in Wolff (2004). We have also performed experiments

with larger ensembles (Ne = 12 is the minimum ensemble size for this method), and with different initializations of the chains

and obtained similar results. We have also experimented with the overall number of samples (we used up to 106 samples) and

obtained similar results.15

We show a triangle-plot of the feature-based posterior distribution, consisting of histograms of all one- and two-dimensional

marginals, in figure 2. We observe that there is strong correlation between the parameters α,β,γ,δ, but less so between these

parameters and the initial conditions. A reason for the strong correlations between the parameters is that only combinations

of the parameters define the solution of the differential equation (after non-dimensionalization). Perhaps most importantly, we

find that the feature-based posterior distribution constraints the parameters well, especially compared to the prior distribution20

which is a hyper-cube with sides of length ten.

We plot the trajectories of the LV equations corresponding to 100 samples of the feature-based posterior distribution in

figure 3. We note that the trajectories pass near the 22 original data points (shown as orange dots in figure 3). The fit of the

lynx population is particularly good, but the trajectories of the hare populations do not fit the data well. For example, all

model trajectories bend downwards towards the end of the cycle, but the data seem to exhibit an upward tendency. However,25

this inconsistency is not due to the feature-based approach. In fact, we obtain similar solutions with a “classical” problem

formulation. The inconsistency is due to the limitations of the LV model, which is limited to cycles, whereas the data are not

cyclic. Nonetheless, our main point here is that the feature-based approach is sufficiently robust that it can handle “real” data

and “simple” models. We also emphasize that this data assimilation problem is not difficult to do by the “classical” approach,

i.e., without using features. This suggests that this problem is of category (i) in section 3.3.30

4.3 Example 3: variations in the Earth’s dipole’s reversal rates

We consider the Earth’s magnetic dipole field over time-scales of tens of millions of years. On such time-scales, the geomag-

netic dipole exhibits reversals, i.e., the north pole becomes the south pole and vice versa. The occurrence of dipole reversals is

well documented over the past 150 Myr by the “geomagnetic polarity time scale” (Cande and Kent, 1995; Lowrie and Kent,
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Figure 2. Triangle plot of histograms of all one and two-dimensional marginals of the feature-based posterior distribution.

2004) and the dipole intensity over the past 2 Myr is documented by the Sint-2000 and PADM2M data sets (Valet et al., 2005;

Ziegler et al., 2005). Several low-dimensional models for the dipole dynamics over the past 2 Myr have been created see, e.g.,

Hoyng et al. (2005); Brendel et al. (2007); Kuipers et al. (2009); Buffett et al. (2014); Buffett and Matsui (2015). We consider

two of these models and call the model of Petrelis et al. (2009) the P09 model and the one of Buffett et al. (2013) the B13

model. The B13 model is the stochastic differential equation (SDE)5

dx= f(x)dt+ g(x)dW, (9)

where t is time in Myr, x describes the dipole intensity and where W is Brownian motion (see Buffett et al. (2013) for

details). The functions f and g are called the drift- and diffusion coefficients and in Buffett et al. (2013), f is a spline and g a

polynomial whose coefficients are computed using PADM2M. We use the same functions f and g as described in Buffett et al.

(2013). The P09 model consists of an SDE of the form (9) for a “phase”, x, with f(x) = α0 +α1 sin(2x), g(x) = 0.2
√
|α1|,10

α1 =−185Myr−1, α0/α1 =−0.9. The dipole is computed from the phase x as D =Rcos(x+x0), where x0 = 0.3 and

R= 1.3 defines the amplitude of the dipole.
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Figure 3. Raw data (orange dots), trajectories corresponding to the feature-based posterior mode (red) and 100 trajectories of Hares

(turquoise) in (a) and Lynx (blue) in (b), corresponding to 100 samples of the feature-based posterior distribution.

In both models, the drift, f , represents known, or “resolved” dynamics and the diffusion coefficient g, along with Brownian

motion W , represents the effects of turbulent fluid motion of the Earth’s liquid core. The sign of the dipole variable defines the

dipole polarity. We take the negative sign to mean “current configuration” and a positive sign means “reversed configuration”.

A period during which the dipole polarity is constant is called a “chron”. The P09 and B13 models exhibit chrons of varying

lengths, however the mean chron duration (MCD) is fixed. With the parameters cited above the models yield an MCD on the5

same order of magnitude as the one observed over the past 30 Myr. Simulations of the B13 and P09 model are illustrated in

figure 4, where we also show the last 100 Myr of the geomagnetic polarity time scale.

The geomagnetic polarity time scale shows that the Earth’s MCD varies over the past 150 Myr. For example, there were

125 reversals between today and 30.9 Myr ago (MCD≈ 0.25 Myr) , 57 reversals between 30.9 Myr ago and 73.6 Myr ago

(MCD≈ 0.75 Myr), and 89 between 120.6 Myr ago and 157.5 Myr (MCD≈ 0.41 Myr) (Lowrie and Kent, 2004). The B1310

and P09 models exhibit a constant MCD and, therefore, are valid over periods during which the Earth’s MCD is also constant,

i.e., a few million years. We modify the B13 and P09 models so that their MCD can vary over time, which makes the models

valid for periods of more than 100 Myr. The modification is a time-varying, piecewise constant parameter θ(t) that multiplies

the diffusion coefficients of the models. The modified B13 and P09 models are thus SDEs of the form

dx= f(x)dt+ θ(t)g(x)dW. (10)15

We use feature-based data assimilation to estimate the value of θ(t) such that the modified B13 and P09 models exhibit similar

MCDs as observed in the geomagnetic polarity time-scale over the past 150 Myr. Note that straightforward application of data

assimilation is not successful in this problem. We tried several particle filters to assimilate the geomagnetic polarity time scale
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Figure 4. (a) the Earth’s dipole polarity over the past 100 Myr (part of the geomagnetic polarity time scale). (b) A 100 Myr simulation with

B13 and the associated sign function. (c) A100 Myr simulation with P09 and the associated sign function.

more directly into the modified B13 and P09 models. However, we had no success with this approach because the data contain

only information about the sign of the solution of the SDE.

The feature we extract from the geomagnetic polarity time scale is the MCD, which we compute by using a sliding window

average over 10 Myr. We compute the MCD every 1 Myr, so that the “feature data”, f1, . . . ,f149, are 149 values of MCD. We

obtain these 149 values by using the geomagnetic polarity time scale (starting at 157.53 Myr ago) and a 10 Myr averaging5

window. For the first data point, f1, we use slightly less than 10 Myr of data (from 157.53 Myr ago to 148 Myr ago). The aver-

aging window is always “left to right”, i.e., we average from the past to the present. For the last few data points (f144 . . .f149),

the averaging is not centered and uses 10 Myr of data “to the left”.

The geomagnetic polarity time scale and the MCD feature are shown in figure 5. We note that the averaging window of

10 Myr is too short during long chrons, especially during the “cretaceous superchron” that lasted almost 40 Myr (from about10

120 to 80 Myr ago). We set the MCD to be 250 Myr whenever no reversal occurs within our 10 Myr window. This means that

the MCD feature has no accuracy during this time period, but indicates that the chrons are long.

To sequentially assimilate the feature data, we assume that the parameter θ(t) is piecewise constant over 1 Myr intervals and

estimate its value θk = θ(k · 1Myr), k =−147, . . . ,0 based on the feature fk and our estimate of θk−1. The feature fk and the

modified B13 and P09 models are connected by the equation15

fk =MF (θk) + ηk, (11)

which defines the feature-based likelihood and whereMF are the computations required to compute the MCD for a given θk.

These computations work with a discretization of the modified P09 and B13 SDEs using a 4th-order Runge-Kutta scheme for
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Figure 5. (a) Geomagnetic polarity time scale. (b) MCD, averaged over a 10 Myr window, every 1 Myr.

the deterministic part (f(x)dt), and an Euler-Maruyama scheme of the stochastic part (θ(t)g(x)dW ). The time step is 1 kyr.

For a given θk, we perform a simulation for a specified number of years and compute MCD based on this run. All simulations

are initialized with zero initial conditions (but the precise value of the initial conditions is not essential because it is averaged

out over the relatively long simulations) and are performed with a fixed value for θk. The value of θk determines the duration

of a simulation, since small values of θk require longer simulations because the chrons tend to become longer. Specifically,5

we perform a simulation of 300 Myr if θk < 0.7, of 100 Myr if 0.7≤ θk < 1, of 50 Myr if 1≤ θk < 1.6 and of 20 Myr if

θk ≥ 1.6. Note that computation of MCD, in theory, requires an infinite simulation time. We chose the above simulation times

to balance a computational budget, while at the same time our estimates of MCD are reliable enough to avoid large noise during

feature-based likelihood evaluations.

For the modified B13 model we add one more step. The numerical solutions of this model tend to exhibit short chrons (a few10

thousand years) during a “proper reversal,” i.e., when the state transitions from one polarity (+1) to the other (-1), it crosses

zero several times. On the time scales we consider, such reversals are not meaningful and we filter them out by smoothing the

numerical solutions of the modified B13 model by a moving average over 25 kyrs. In this way, the chrons we consider and

average over have a duration of at least tens of thousands of years.

We investigate how to chose the random variable η in (11), which represents the noise in the feature, by performing extensive15

computations. For each model (B13 and P09), we chose a grid of θ values that lead to MCD that we observe in the geomagnetic

polarity time scale. The θ-grid is different for the B13 and P09 model because the dependency of MCD on θ is different for

both models and because computations with P09 are slightly faster. For both models, a small θ leads to reversal being rare, even

during 300 Myr simulations. We chose to not consider θ smaller than 0.3, again for computational reasons and, as explained

above, our simulations and computations lose accuracy during very long chrons such as the cretaceous superchron. Thus, the20

“actual” θ during a period with large MCD may be smaller then the lower bound we compute, however we cannot extract

20



3
0.5 1 1.5 2

M
C

D
 (M

yr
)

10-1

100

101

102

B13

P09

fk

µk

4σk

Figure 6. MCD as a function of θ for the B13 model (turquoise) and the P09 model (orange). Shown are the average MCD (solid lines) and

two-standard-deviation error bards computed from 100 simulations. This graph is used to define the standard deviation of the feature-noise

ηk as well as the mean of the proposal distribution qk. For the P09 model, we plot the standard deviations only for every other θ value for

readability.

that information from the feature data and the computational framework we construct. This means that if the upper or lower

bounds of θ are achieved, all we can conclude is that θ is small (large), perhaps smaller (larger) than our assumed lower (upper)

bound, which leads to MCDs that are longer (shorter) than what we can actually compute with our model and bounded model

parameters.

For each value of θ on our grid, we perform 100 simulations and for each run compute average MCD. The mean and standard5

deviation of average MCD, computed from these simulations, are shown in figure 6. We occasionally observe large standard

deviations for small θk because only a few reversals may occur during these runs, which makes estimates of the standard

deviations unreliable (see above). In this case, we assign a maximum standard deviation of 2.5 Myr. We base our feature-error

model ηk on this graph and pick ηk to be a zero mean Gaussian with a standard deviation σk that we read from the graph as

illustrated by figure 6, i.e., for a given fk, we use the standard deviation we computed for the nearest point on our MCD-θ-grid.10

A feature fk defines ηk and then equation (11) defines a feature-based likelihood. We define a prior distribution by the

Gaussian p0,k(θk) =N (θ̄k−1,σ
2
0), where σ0 = 0.1 and where θ̄k−1 is the mean value we computed at the previous time, k−1

(we describe what we did for the first time step k = 1 below). This results in the feature-based posterior

pk(θk|fk)∝ exp

(
− 1

2σ2
k

(fk −MF (θk))
2− 1

2σ2
0

(
θ̄k−1− θk

)2)
.

We draw 100 samples from this posterior distribution by direct sampling with a proposal distribution qk(θk) =N (µk,σq),15

where σq = 0.05 and where µk is based on the MCD-θ graph shown in figure 6, i.e., we chose µk to be the θ-value correspond-

ing to the MCD value fk we observe. We have experimented with other values of σq = 0.05 and found that how σq is chosen
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Figure 7. (a) θk as a function of time for modified B13; 100 samples of feature-based posterior distributions pk(θk|fk) (light turquoise) and

their mean (blue). (b) θk as a function of time for modified P09; 100 samples of feature-based posterior distributions pk(θk|fk) (light orange)

and their mean (red). (c) features fk computed by drawing 100 samples (light turquoise) from the feature-based posterior distribution of the

modified B13 model and their mean (blue). (d) features fk computed by drawing 100 samples (light orange) from the feature-based posterior

distribution of the modified P09 model and their mean (red). The MCD feature extracted from the geomagnetic polarity time scale is shown

in black.

is not critical for obtaining the results we present. We repeat this process for all but the very first of the features fk. For the first

step, k = 1, we set the prior distribution equal to the proposal distribution.

Our results are illustrated in figure 7. Figures 7(a) and 7(b) show 100 samples of the posterior distributions pk(θk|fk) as

a function of time, as well as their mean. The panel on the right shows results for the modified B13 model, the panel on the

left shows results for the modified P09 model. We note that, for both models, θk varies significantly over time. The effect that5

a time-varying θ has on the MCD of the modified B13 and P09 models is illustrated in figures 7(c) and 7(d), where we plot

100 features generated by the modified P09 and B13 models using the 100 posterior values of θk shown in the top row. We
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Figure 8. (a) Geomagnetic polarity time scale. (b) Modified B13 model output with θk drawn from the feature-based posterior distributions.

(c) Modified P09 model output with θk drawn from the feature-based posterior distributions.

note a good agreement with the recorded feature (shown in black). This is perhaps not surprising, since we use the feature

data to estimate parameters, which in turn reproduce the feature data. However, this is a basic check that our data assimilation

framework produces meaningful results.

We further illustrate the results of the feature-based data assimilation in figure 8, where we plot the geomagnetic polarity

time scale as well as the dipole of the modified B13 and P09 models, generated by using a sequence θk, drawn from the5

feature-based posterior distributions. We note that the modified models exhibit a time-varying MCD and that superchrons

(chrons longer than 10 Myr) appear in both models at (roughly) the same time as on the Earth.

The advantage of the feature-based approach in this problem is that it allows us to calibrate the modified B13 and P09 models

to yield a time-varying MCD in good agreement with the data (geomagnetic polarity time-scale), where “good agreement” is to

be interpreted in the feature-based sense. Our approach may be particularly useful for studying how flow structure at the core10

affects the occurrence of superchrons. A thorough investigation of what our results imply about the physics of geomagnetic

dipole reversals will be the subject of future work. In particular, we note that other choices for the standard deviation σ0, that

defines expected errors in the feature, are possible and that other choices will lead to different results. If one wishes to use the

feature-based approach presented here to study the Earth’s deep interior, one must carefully chose σ0. Here we are content with

showing how to use feature-based data assimilation in the context of geomagnetic dipole modeling.15
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Figure 9. (a)-(d) Four snapshots of the solution of the KS equation with θ = 1.55. (e)-(g) Four snapshots of the solution of the KS equation

with θ = 3.07.

4.4 Example 4: parameter estimation for a Kuramoto-Sivashinsky equation

We consider the Kuramoto-Sivashinksy (KS) equation

∂φ

∂t
=−θ∇2φ−∇4φ+ |∇φ|2,

where t ∈ [0,T ], the spatial domain is a two-dimensional square [x,y] ∈ [0,10π]× [0,10π] and the boundary conditions are

periodic. Here ∇= (∂/∂x,∂/∂y) and θ is the parameter we want to estimate. We use a uniform prior distribution over [0,5].5

As in earlier examples, our focus is on formulating likelihoods and our choice of prior is not critical to the points we wish to

make when illustrating the feature-based techniques. The initial condition of the KS equation is a Gaussian random variable,

which we chose as follows. We simulate the KS equation for T “time” units starting from uniformly distributed Fourier

coefficients within the unit-hypercube (see a few sentences below for how these simulations are done). We pick T large enough

so that φ(x,y,T ) varies smoothly in space. We repeat this process 100 times to obtain 100 samples of solutions of the KS10

equation. The resulting sample mean and sample covariance matrix of the solution at time T define the mean and covariance

of the Gaussian which we use as a random initial condition below.

For computations we discretize the KS equation by the spectral method and exponential time differencing with δt= 0.005/θ.

For a given θ, we then compute φ in physical space by Fourier transform and interpolation onto a 256×256 grid. The solution

of the KS equation depends on the parameter θ in a way that a typical spatial scale of the solution, i.e., the scale of the “valleys15

and hills” we observe, increases as θ decreases, as illustrated by figure 9, where we show snapshots of the solution of the KS

equation after 2500 time steps for two different choices of the parameter θ.

The data are 100 snapshots of the solution of the KS equation obtained as follows. For a given θ, we draw an initial condition

from the Gaussian distribution (see above) and simulate for 2500 time steps. We save the solution on the 256× 256 grid every
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50 time steps. We repeat this process, with another random initial condition drawn from the same Gaussian distribution, to

obtain another 50 snapshots of the solution. The 100 snapshots constitute a data set with a total number of more than 6 million

points.

The feature we extract from the data is as follows. We interpolate the snapshots onto a coarser 64× 64 grid and use the

coarsened snapshots to compute a covariance matrix. Then we compute the largest eigenvalues of the covariance matrix and5

compute a linear approximation to the logarithm of the eigenvalues (using least squares). The slope and intercept of this line

constitutes the feature. An example is shown in figure 10. We chose this feature because the parameter θ defines the spatial

scale of the solution (see above) and this scale is connected to the length-scale of a covariance function of a Gaussian process

approximation of the solution. The length scale of the Gaussian process in turn defines the exponential decay of the eigenvalues

of its associated covariance matrix and this decay is what we capture by our feature. In simple terms, the larger the length-scale,10

the faster is the decay of the eigenvalues.

It is important to note that the feature we construct does not depend on the initial conditions. This is the main advantage

of the feature-based approach. Using the feature, rather than the trajectories, enables estimation of the parameter θ without

estimation of initial conditions. With a likelihood based on the mismatch of model and data, one has to estimate the parameter

θ and the initial conditions, which makes the effective dimension of the problem large, so that the required computations are15

substantial. Most importantly, estimating the initial condition based on a mismatch of model output and data is difficult because

the KS equation is chaotic. For these reasons, the feature-based approach makes estimation of the parameter θ feasible. Note

that the feature has also reduced the effective dimension of the problem (see section 3.3.4) because the number of parameters
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to be estimated has been reduced from the number of modes (2562) to one. The price to be paid for this reduction in (effective)

dimension is that the feature-based approach does not allow us to compute trajectories that match the data point-wise.

The feature-based likelihood is defined by the equation

f =MF (θ) + η, η ∼N (0,R), (12)

where f = F(z) is the feature computed from the data, R is a 2×2 covariance matrix (see below) and whereMF is shorthand5

for the following computational steps for a given parameter θ:

(i) draw random initial conditions and obtain 100 snapshots of the solution of the KS equation with parameter θ;

(ii) interpolate snapshots onto 64× 64 grid and compute sample covariance matrix;

(iii) compute largest eigenvalues of the sample covariance matrix and compute a log-linear fit.

The featureMF (θ) consists of the slope and offset of the log-linear fit.10

Finally, we need to chose a covariance matrix R. The perturbed observation approach (see section 3.1) is not useful here. If

we assume that we collect data with measurement errors that are uncorrelated in space and time (adding an isotropic Gaussian

to each snapshot), then this noise has no effect on the overall spatial scale of the solution and, thus, will not correctly reflect the

uncertainty of the feature. The largest source of uncertainty in the feature is sampling error due the small number of snapshots

we use for computing the GP approximation. We can decrease the effects of this noise by using more snapshots, however this15

increases the computational cost. In addition, this uncertainty due to sampling error makes feature-based likelihood evaluations

noisy, i.e., for a fixed θ and feature f , different runs of our simulations may lead to different likelihoods. This rules out Monte

Carlo sampling for numerical solution of the data assimilation problem.

We address these issues by using a variational approach and compute an a posteriori estimate of θ, i.e., we estimate θ by

maximizing the function20

g(θ) =

 exp
(
− 1

2 (f −MF (θ))′R−1(f −MF (θ))
)

if θ ∈ [0,5] ,

0 otherwise,

which is proportional to the feature-based posterior distribution. This will lead to a point-estimate for θ that leads to solutions

that are compatible with the data. For point estimates, the covariance R is not so essential. We set this covariance R to be a

diagonal matrix with diagonal entries R11 = 2.25, R22 = 0.0625. These values are chosen to reflect a relatively large amount

of uncertainty in the feature and to balance the different scales of the two components of the feature. However it is important25

to note that our approach does not allow us to draw conclusions about the uncertainty of our parameter estimate, for which

we would require approximations of the posterior distribution. This may not be ideal, however in view of the computational

difficulties, a point estimate is the best we can provide.

We need to decide on a numerical method for solving the optimization problem. Since the function g is noisy and computa-

tionally expensive, we cannot compute its derivatives. Global Bayesian optimization (GBO, see, e.g., Frazier and Wang (2016))30

is a derivative free method for optimization in exactly that setting, i.e., when the function to be optimized is computationally
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expensive to evaluate and noisy. The basic idea of GBO is to model the function g(θ) by a Gaussian process (GP) and then to

carefully chose additional points for evaluation of the function to improve the GP model. The maximizer of the mean of the

GP model is then used to approximate the maximizer of the (random) function g(θ). We first explain how to build an initial GP

model for the function g(θ) and then describe how to improve on the model given function evaluations. For more details about

GBO, see Frazier and Wang (2016) or references therein.5

A GP model for g(θ) consists of the mean and covariance functions

µ(θ) = µ (constant mean function),

C(θ,θ′) = σ2 exp
(
(θ− θ′)2/L2

)
,

where µ,σ,L > 0 are “hyperparameters” which we must define. To acknowledge the fact that g(θ) is noisy, we add another

hyperparameter, s > 0, such that the covariance at the “observed points” θobs is given by C(θobs,θ
′
obs) + s (see section 3.3.5 of10

(Frazier and Wang, 2016)). We define the hyperparameters based on a small number of model function evaluations. Specifically,

we evaluate g at three points within [0,5] generated by a Sobol sequence, which is a space filling sequence of quasi-random

points. This procedure suggests to evaluate the function at the boundaries and “in the middle” (see figure 11(a)). Given these

three points (θi,g(θi)), i= 1,2,3, we maximize the “log marginal likelihood”, which describes the probability of the three

function evaluations (θi,g(θi)) (see section 3.3.6 of Frazier and Wang (2016)). This optimization is computationally inex-15

pensive because it does not involve evaluating g or solving the KS equation. We use an interior-point method (MATLAB’s

“fmincon”) to carry out the optimization and enforce the bounds 0≤ L≤ 1, 0.3≤ σ2 ≤ 1, 0≤ s≤ 0.1, 0≤ µ≤ 2. This results

in a crude approximation of g. We update this initial GP by the three function evaluations we already have, i.e., we recompute

the mean µ and the covariance C, given these three function evaluations. The result is the GP illustrated in figure 11(a), where

we show the mean (blue) and 200 samples (turquoise) of the updated GP, along with the three sample points (purple dots).20

Note that the GP model does not reflect the fact that g(θ) is non-negative. However, GBO is not easily modified to optimize

non-negative functions.

To improve our GP model of g(θ) we wish to evaluate the function at additional points and we use the “expected improve-

ment” criterion to determine these points. Expected improvement suggests points for additional evaluations of g(θ) using a

trade-off between where the function is already known to be large and where the function is unknown (see section 3.4.1 of Fra-25

zier and Wang (2016)). This led to good results for our problem, however more advanced methods, e.g., knowledge gradient,

may improve overall performance of the algorithm. We stopped the optimization when the integrated expected improvement is

below a threshold (10−4 in our case). With this set-up, we evaluated g(θ) five more times and computed the maximizer of g(θ)

to be θ∗ = 3.29, which is near the parameter value we used to generate the feature data (θtrue = 3.38).

The updated GP model is illustrated in the right panel of figure 11, where we show the mean (blue), the initial and additional30

points where g(θ) is evaluated (purple and red dots respectively) and 100 realizations of the updated GP model (turquoise).

We also show 100 realizations of g(θ), obtained by evaluating g(θ) repeatedly over a grid of 100 equally spaced points. We

note that the GP accurately describes the function and our confidence in the function for θ > 2.5, where most of the function

evaluations took place. The uncertainty is large for θ < 2.5, which could be reduced by additional function evaluations. In
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Figure 11. GP model of the function g(θ). (a) Initial GP model based on three function evaluations. Blue – mean function. Turquoise – 100

realizations of the GP. Purple dots – function evaluations. (b) Updated GP after GBO and 5 additional function evaluations. Blue – mean

function. Turquoise – 100 realizations of the GP. Purple dots – initial function evaluations. Red dots – additional function evaluations based

on expected improvement criterion. Orange – 100 samples of the random function g(θ).

summary, the feature-based approach, combined with an appropriate numerical technique for optimizing noisy functions, is

successful in estimating a parameter of a chaotic partial differential equation.

5 Conclusions

We have discussed a feature-based approach to data assimilation. The basic idea is to compress the data into features and to

compute parameter estimates on posterior distributions defined in terms of the features, rather than the raw data. The feature-5

based approach has the advantage that one can calibrate numerical models to selected aspects of the data which can help to

bridge gaps between low-dimensional models for complex processes. The feature-based approach can alos breake computa-

tional barriers in data assimilation with chaotic systems. Our main conclusions are as follows.

(i) Constructing noise models directly for the features leads to straightforward numerical implementation of the feature-

based approach and enables the use of numerical methods familiar from data assimilation.10

(ii) The feature-based approach can reduce computational requirements by reducing an effective dimension. This reduction

in complexity comes at the expense of a relaxation of how much that data constrain the parameters.

While the simplified noise models in (i) may lead to good results (in the sense that parameter estimates are useful) more work

is needed to fully understand how to construct such noise models without excessive computations. Some of our numerical

examples indicate the limitations of the perturbed observations approach we propose for the construction of such noise models.15
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Our second conclusion (ii) suggests that one should use the feature-based approach only if the direct approach is infeasible.

When the data can be compressed without loss of information, the feature-based approach is just as good or bad as the direct

approach. The feature-based approach reduces computational requirements only if we truly reduce the dimension of the data

by focussing only on some of the features of the data. In this case, one can formulate feature-based problems whose solution is

straightforward, while a direct approach is hopeless.5
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