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Abstract. The climate system can been described by a dynamical system and its associated attractor. The dynamics of this

attractor depends on the external forcings that influence the climate. Such forcings can affect the mean values or variances, but

regions of the attractor that are seldom visited can also be affected. It is an important challenge to measure how the climate

attractor responds to different forcings. Currently, the Euclidean distance or similar measures like the Mahalanobis distance

have been favoured to measure discrepancies between two climatic situations. Those distances do not have a natural building5

mechanism to take into account the attractor dynamics. In this paper, we argue that a Wasserstein distance, stemming from

optimal transport theory, offers an efficient and practical way to discriminate between dynamical systems. After treating a toy

example, we explore how the Wasserstein distance can be applied and interpreted to detect non-autonomous dynamics from a

Lorenz system driven by seasonal cycles and a warming trend.

1 Introduction10

If the climate system is viewed as a complex dynamical system yielding a strange attractor, i.e. a highly complicated object

around which all trajectories wind up (Lorenz, 1963), then, climate variability is linked to the statistical properties of such an

attractor (Ghil and Childress, 1987). Those statistical properties refer to the probability that trajectories visit each region of

phase space (Mané, 2012; Eckmann and Ruelle, 1985). Mathematical concepts to describe those properties on rather simple

dynamical systems have been investigated by Chekroun et al. (2011).15

In addition to climate internal variability, external forcings (either natural or anthropogenic) perturb the climate system

dynamics by introducing a time dependence of the attractor. This is the cause of non-stationary behaviour of the climate

system. At first order, this can translate into a general shift of the underlying attractor (Corti S. et al., 1999). At second order,

interactions between a seasonal cycle and a slow forcing can even lead to trends in subtle quantities (e.g. Cassou and Cattiaux,

2016; Vrac et al., 2014). A few properties of the climate attractor due to external forcings (anthropogenic or not) have been20

treated by Pierini et al. (2016) and Drótos et al. (2015), who focused on low dimensional strange attractors and investigated

qualitative changes of the attractors, although all those studies are quantitative in many aspects.

Classical distances, like the Euclidean distance or Mahalanobis distance (Mahalanobis, 1936) (the Euclidean distance

weighed by a correlation matrix) are often used to measure attractor differences. The goal of our paper is to present a frame-

work, embedded in optimal transport theory (e.g. Villani, 2003), to measure the distance between strange attractors, and make25
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a statistical inference of this tool on well documented dynamical systems. To do this we exploit the fact that the attractor of

the system defines an invariant measure, which is the multivariate probability distribution of all trajectories of the system.

The distance between attractors is then computed through the cost to transform one invariant measure into another. A similar

idea was already proposed in Ghil (2015) to characterize the climate variability. In particular, we assess that it is possible to

discriminate between attractors, given a relatively low number of sampling points, in order to ensure the applicability of this5

methodology. We test this method on a time-varying dynamical system in order to illustrate how the dynamics of a system can

be affected by a constant forcing interacting with seasonality.

The paper is organised as follows. In Section 2, we recall some basic concepts used in optimal transport theory and recall the

definition of the Wasserstein distance. In Section 3, we investigate the performance of the Wasserstein distance to discriminate

between two "simple" autonomous systems (Winter against Summer of Lorenz (1984) model). Section 4 explores how forcing10

can impact the Wasserstein distance capability at detecting changes in a non stationarity context. Section 5 concludes and

proposes some future research directions.

2 Distance between measures

To characterize changes in the properties of the attractor of a dynamical system, the first step of our methodology is to determine

how two measures (or distributions of mass) differ. The idea is to derive a cost function for transporting one mass distribution15

onto the other. As a simple example, we consider the three mass distributions shown in Figure 1, noted µ, ν and ξ. The

distributions are on a grid of size 10× 10 = 100, with mass positions located on pixels xi, i= 1, . . . ,100. ν is constructed to

be a one pixel left shift of µ. The distribution ξ is a 90◦ rotation and a mirror image of µ, and we move one square to have a

common point with µ. The distribution µ (resp. ν and ξ) can be written as

µ=
100∑

i=1

µiδxi
,20

where δx is the Dirac mass at pixel xi, and µi = 1 on the black boxes in Figure 1 and µi = 0 on the grey boxes. The Euclidean

distance d between µ and ν is defined by

d(µ,ν)2 =
100∑

i=1

|µi− νi|2.

Although it is intuitive from Figure 1 that µ is "closer" to ν than ξ, the Euclidean distance from µ to ν is 3.74, whereas from µ

to ξ it is 3.46 (the example was constructed to show this). Thus the Euclidean distance does not capture the structural proximity25

between µ and ν. The explanation is the following: among the squares that have no common mass, the Euclidean distance is

independent of the position of squares. This highlights the need of a distance that can take into account how masses should be

moved, say, from the left panel to the middle panel of Figure 1.
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This mathematical problem traces back to Monge (1781) and is the basis of optimal transport theory (see, e.g. Villani, 2003).

To transport the mass distribution µ contained in the boxes at xi to the distribution ν in the boxes at xj , a total cost of the

transport has to be defined. We note γij > 0 the fraction of the mass transported from the boxes xi to xj . The cost of the

transport is defined by γijd(xi,xj)2. Consequently, the total transport cost from µ to ν is

∑

ij

γijd(xi,xj)2,5

where d is the usual Euclidean distance between the location xi and xj . The set of γij coefficients is called the transport

plan. It is a measure on product space of measures admitting µ and ν as margins. The optimal transport cost is obtained by

minimizing this sum over all possible transport plans, i.e. all possible γij > 0. This produces the so-called Wasserstein distance

W(µ,ν) =


inf
γij

∑

ij

γijd(xi,xj)2




1/2

. (1)

Computing the right hand side of Eq. (1) is a problem of minimization under constraints on the γij coefficients, which have10

to be positive, and whose marginal sums equal µi and νj . This distance can be numerically computed by network simplex

algorithms, coming from linear programming theory (see, e.g. Bazaraa et al., 2009). We refer to Appendix A for a general idea

of the algorithm. Eq. (1) is the discrete version of a more general formulation of the Wasserstein distance whose properties are

detailed by Villani (2003).

In our example (Fig. 1), we haveW(µ,ν) = 1� 3.27 =W(µ,ξ). Therefore we can quantify with the Wasserstein distance15

that the cost of transforming µ into ν is lower than transforming µ into ξ. This result is closer to the physical intuition that a

small shift is less costly than a mirror image and a rotation. Our next step is to apply the Wasserstein distance to differentiate

between dynamical systems.

3 Inference on simple dynamical systems

3.1 Attractors and measure of a dynamical system20

A dynamical system can be defined by the action of an ordinary differential equation

dx
dt

= v(x),

on a set of initial conditions (see, e.g. Guckenheimer and Holmes, 1983; Katok and Hasselblatt, 1997). Here x is a multivari-

ate vector in the so-called phase space and v(x) is a vector field that acts on x. The properties of the ensemble of trajectories

from all initial conditions define the dynamics of the system. They are entirely determined by v.25
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For chaotic dynamical systems, trajectories x(t) emerging from almost all initial conditions converge to a unique object

called an attractor, embedded in the phase space. Attractors define an invariant measure in phase space, which quantify the

weight of all trajectories of the dynamical system in subregions of the phase space. The goal of this section is to estimate the

distance between the empirical invariant measure of attractors in particular setup.

We now focus on the Lorenz (1984) model, which is an idealized model of the Hadley circulation and its seasonality. The

dynamics of this system is noted v(x), and, for a vector x = (x1,x2,x3) given by5

v(x) =




−x2
2−x2

3− (x1−F )/4

x1x2− 4x1x3−x2 + 1

x1x3 + 4x1x2−x3


 . (2)

We propose to discriminate two attractors based on Eq. (2). A first attractor is generated with F ≡ 11.5 (noted Wi, for

Winter). A second attractor is generated with F ≡ 7.5 (noted Su, for Summer). We choose those values and this terminology

because F is interpreted as a seasonal cycle in Section 4. Both systems have three variables (so the phase space is R3),

are chaotic and yield a strange attractor. They are illustrated by two long trajectories in Figure 2. To quantify the difference10

between the two attractors, it is first necessary to estimate the invariant measure of both attractors. We use the method of

snapshot attractors (e.g. Romeiras et al., 1990; Chekroun et al., 2011) rather than considering one single long trajectory that

could bias the sampling of some regions of the attractors, and requires the system to be ergodic. In the snapshot attractors, we

draw N random initial conditions in a cube that includes the attractors, and iterate the dynamics of the systems for a time τ .

Consistently with Drótos et al. (2015), we take τ = 5×73. Both systems are dissipative outside of the attractors neighborhood,15

therefore all N trajectories collapse to the attractors after time τ and provide an efficient sampling of the invariant measure

(Romeiras et al., 1990). After time τ , the set of N final points emerging of N initial conditions is called a snapshot attractor

(see Algorithm 1).

Algorithm 1 Simulation of a snapshot attractor with N initial conditions from the Lorenz 84 system

Require: τ (= 5× 73) iteration time for convergence towards the attractor,

N (= 50,100,1000) the number of points in the snapshot,

C (= [−1,3]× [−3,3]× [−3,3]) a box that contains the attractor

Ensure: One snapshot with N points denoted {yi} ∈ R3 with i= 1, . . . ,N

1: Draw uniformly N points x1, . . . ,xN in C

2: for i= 1, . . . ,N do

3: Integrate Eq. (2) between 0 and τ starting to xi. The ending point is yi. Integration is performed using the RK4 scheme with a time

step of 0.005.

4: end for
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Then we compute the empirical measures associated with the snapshot attractors by discretizing the phase space into cells,

and by counting the number of points of a snapshot attractor in each cell (see Algorithm 2). The empirical measure of the

Winter attractor (resp. Summer) is noted µWi (resp. µSu). They are sums of Dirac measures at each discrete cell. It is the

equivalent of a multi-dimensional histogram of the attractor.

Algorithm 2 Determining the empirical invariant measure from simulated snapshot attractors

Require: One snapshot attractor, {yi}i=1,...,N , obtained from Algorithm 1,

A, the number of gridded cells to compute the histogram

Ensure: An approximated density measure, i.e. a sum of Dirac masses estimated from the number of points in each cellBa with a= 1, . . . ,A

µ=
1

N

A∑
a=1

µaδBa

where δBa is the Dirac measure around the cell Ba (equal to one if x ∈Ba and zero otherwise) and µa ≥ 0 is the inferred mass.

1: Divide the space into small gridded cell Ba of size 0.1× 0.1× 0.1.

2: for all cells Ba do

3: µa← (number of yi in Ba)/N

4: end for

3.2 Protocol5

The difference between the Summer and Winter attractors is evaluated byW(µWi,µSu) for different sample sample of size N .

The probability distribution of Wasserstein distances is not known a priori for random measures. We first estimate the typical

value of Wasserstein distances between identical attractors in order to build a null hypothesis to be rejected if the distance is

larger to some threshold. Therefore, we construct fifty Winter (resp. Summer) Lorenz 84 snapshot attractors, with empirical

measure µWi
k , k = 1, . . . ,50 (resp. µSu

k ), by drawing fifty sets of N random initial conditions. By construction,W(µWi
k ,µWi

k̃
)10

should tend to 0 when N increase.

We detect a difference between the Winter and Summer of Lorenz 84 systems if

W(µWi
k ,µWi

k̃
)�W(µWi

k ,µSu
k̃

) andW(µSu
k ,µ

Su
k̃

)�W(µWi
k ,µSu

k̃
).

This is quantified by a Kolmogorov-Smirnov test (Durbin, 1973; von Storch and Zwiers, 2001) between the distributions of

W(µWi
k ,µWi

k̃
) (resp. W(µSu

k ,µ
Su
k̃

)) and W(µWi
k ,µSu

k̃
), in order to reject the null hypothesis that the probability distributions15

are equal. We choose to simulate fifty attractors to have at least 1000 distances per distribution. With this choise, the first

distribution is estimated with 1225 distances, and the second 2500.
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The estimation of the Wasserstein distance between attractors obviously depends on the number of available samples N

of the dynamical systems on which the empirical measures are constructed. To explore the variability in the estimation of

Wasserstein distances from finite observational sets, we sample its distances for three different values of N : N = 50, 100 and

1000. We compute also one of each distance for N = 106. This later case represents a quasi-perfect estimation of the distance

and we consider it as our benchmark for comparison.

The complete procedure to obtain an empirical probability distribution of Wasserstein distances, depending on the sample5

size N , is summarized in Algorithm 3.

Algorithm 3 Estimation ofW(µWi
k ,µWi

k̃
),W(µWi

k ,µSu
k̃

) andW(µWi
k ,µSu

k̃
)

Require: N (= 50,100,1000) the number of points in snapshots

Ensure: 1225 independent estimates of the two Wasserstein distances W(µWi,µWi) and W(µSu,µSu) where the first differentiates two

Winter and the second two Summer of Lorenz 84 snapshot attractors.

2500 independent estimates of the Wasserstein distances W(µWi,µSu) which compares Winter and Summer of Lorenz84 snapshot

attractors.

1: Use Algorithm 1 to simulate fifty Winter and fifty Summer Lorenz 84 snapshot attractors, denoted Wik and Suk. Each snapshot attractor

has N points.

2: Use Algorithm 2 to transform each Wik (resp. Suk) into measures, noted µWi
k (resp. µSu

k ).

3: Compute the Wasserstein distances W(µWi
k ,µWi

k̃
) (resp. W(µSu

k ,µSu
k̃

)) for k 6= k̃ (see Appendix A). Thus, 50×(50+1)
2

− 50 = 1225

distances are stored.

4: Compute the Wasserstein distancesW(µWi
k ,µSu

k̃
) for all k, k̃. Thus, 502 = 2500 distances are stored.

3.3 Estimation

The Wasserstein distance representing a kinetic Energy (see Appendix B), the distances are not normalized. The probability

distributions of the Wasserstein distance for W(µWi,µWi) (resp. Su) and W(µWi,µSu) are summarized in Figure 3(a) by

box-and-whisker plots (boxplots: Chambers et al., 1983)10

The distribution of the distances between Winter (resp. Summer) snapshot attractors decreases to 0 (the expected asymptotic

value) when N increases (white and grey boxplots). We explain the relatively high values of the distance when N = 50 by the

fact that few cells of the discrete measure are filled when N is low, so that the transport plan is not zero. By increasing N , all

cells tend to be sampled, so that the transport plans are less affected by sampling issues, and the cost of the transport decreases

on average.15

The distance between Winter and Summer attractors (black boxplots) decrease with N and converge to the "true" value that

is estimated with N = 106. The explanation is similar: if the measures of the snapshot attractors are estimated with low N ,

the "circles" composing the attractors are akin. Increasing the number of initial conditions N essentially allows to differentiate

6
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the dynamics of the two attractors. We note that the distribution of distances for N = 1000 is very close to the one with 106.

This highlights a rather quick convergence of the Wasserstein distanceW . Figure 3(a) shows a good discrimination between

null hypothesis distancesW(µWi,µWi) and the distancesW(µWi,µSu), even for N = 50. This visual impression is confirmed

by Kolmogorov-Smirnov tests reported in Table 1. The null hypothesis of identical attractors is rejected with probability one,

even for N = 50. Finally, the variance of distance decrease with N . Indeed, attractors are independant of the initial condition,5

thus the variability is due to a low N . This propertie is shown by the Wasserstein distance.

For illustration purposes, we compute Euclidean distances between the same snapshot attractors (Figure 3(b)). The distances

are normalized by
√

2, the maximum value being reached for two measures without common points. The distances between

Winter (resp. Summer) snapshot attractors decrease as N increase (white and grey boxplots). The distances between Winter

and Summer snapshot attractors also decrease to the "perfect" estimate with N = 106 (black boxplots), but the convergence10

to the limit is far from being reached with N = 1000. The difference between Winter and Summer cannot be detected for all

N . For N = 50 and 100, the distances between Winter are greater than distances between Winter and Summer. For N = 1000,

the Kolmogorov-Smirnov test (Table 1) shows the impossibility to reject the null hypothesis without ambiguity. Moreover,

the variability is small and constant with N , which is incompatible with the high variability due to a low N . Therefore, the

Euclidean distance might not be very useful to distinguish the dynamics in real world systems with few observations.15

3.4 Inference with reduced information

In this section, we test whether it is possible to differentiate between attractors if only partial information is available. This can

happen if one or more variables of the system are omitted (projection onto the remaining variables) or if variables are censored

(truncation of the values of a variable), or a combination of both. The motivation in atmospheric sciences is that the underlying

dynamical system is defined in three spatial dimensions (on the sphere), and that observables of the attractor of this system are20

generally obtained over a limited area (censoring of the rest of the globe) and a fixed pressure level (projection).

It has been proven that a sequence of observables of a dynamical system convey the same dynamics as the whole system

(Packard et al., 1980; Takens, 1981; Mañé, 1981). Therefore it is meaningful to compare the distances between projected or

truncated attractors.

For the Lorenz 84 attractors, a first reduction of information is performed by projecting the systems onto their (x1,x2) vari-25

ables (design P). We hence compute the distances (Wasserstein and Euclidean) between attractors from the variables (x1,x2)

and discard the information on x3. The second reduction consists in truncating negative values of the variable x1 (design T).

Thus, we only consider the values of (x1,x2,x3) when x1 ≥ 1. The third reduction of information is a combination of pro-

jection onto the (x1,x2) variables and truncating negative values of x1 (design T+P). These transformation are illustrated in

Figure 4(a-c). Those three transformations create observables of the underlying attractors. We shall call them "observed attrac-30

tors", with designs P (projection), T (truncation) and P+T (both). The distribution of the distance between observed attractors

is shown in Figure 4(d-i), for the two distances and each of the information reduction design (P, T and P+T).

The Wasserstein distance distribution (Figure 4(a-c)) shows a clear discrimination between Winter and Summer observed

attractors, for all values of N . This is reflected in the Kolmogorov-Smirnov test: all test values are greater than 0.97, except for

7

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2017-5, 2017
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 20 February 2017
c© Author(s) 2017. CC-BY 3.0 License.



Winter with N = 50, this is 0.84. All p-value are equal to 0. The estimated distances between Winter and Summer observed

attractors is always smaller than the idealized one (obtained on the full attractors) and shows little dependence on the number

of points N . This is explained by the fact that the projection on a subspace of dimension 2 implies a reduction of transportation

cost. Moreover, some points that are very far in the Winter attractor become close to each other in the projection P. Overall, the5

reduction of information decreases the discriminating power of the Wasserstein distance, but the results are still significant for

number of points N as small as 50.

The same experiment is conducted with the Euclidean distance (Figure 4(g-i). Contradicting the intuition, it clearly discrim-

inate between Winter and Summer for all designs P, T and P+T. Comparing the full attractors (Figure 2) and figures 4(a-c), we

see that some points very far, become close in the same boxes of the estimated measure. This is reflected by a gain of variance,10

which decrease with N . Finally, we need N = 1000 to have the distribution between Winters (resp. Summers) lower than the

idealized distance.

We conclude that the Wasserstein distance has a high capacity of distriminating between different dynamical systems, even

with a partial information. It is particularly promising in atmospheric sciences, where analyses are performed on truncated

variables (e.g. a surface field on a limited area: transformation T) and/or on only one atmospheric field (e.g. geopotential15

height, omitting other variables: transformation P).

4 Time-varying dynamical system

We now focus on a time varying dynamical system that mimics variability around a seasonal cycle, and a monotonic forcing

that plays after a triggering time T . Such a system defines a snapshot attractor at all times t. We want to measure how snapshot

attractors evolve after time T , when the forcing increases (we mean the forcing modifies more and more the attractors) . The20

constant F in the System 2 is now a function of time, and include a seasonal cycle and a forcing.

F (t) = 9.5 +2sin
(

2πt
73

)

︸ ︷︷ ︸
seasonality

−2
t−T
T

1{t>T}
︸ ︷︷ ︸
monotonic forcing

, T = 100× 73. (3)

The snapshot attractors of this system were investigated by Drótos et al. (2015), who performed an analysis of the mean and

variance of each coordinate to detect the forcing F after time t > T .

Such a coupled behaviour is present in most regional temperature time series at the decadal or centennial scales. The periodic25

part of the forcing F in Eq. (3) allows one to divide the year into seasons of the system (Lorenz, 1984; Drótos et al., 2015). To

be consistent with Lorenz (1984) and Drótos et al. (2015), we consider that there are 73 time units in one year. We emphasize

that a time unit is not analogous to a “day”, but corresponds to a typical variability time scale in the non forced chaotic system in

Eq. (2). We follow Drótos et al. (2015) and define the Fall equinox at t= 0 year or t mod 73 = 0 year. Then, Winter solstices

correspond to t mod 73 = 0.25 year, Spring equinoxes correspond to t mod 73 = 0.5 year and Summer solstices correspond

to t mod 73 = 0.75 year. This time dependent system produces a different snapshot attractor at each time step. We focus on
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the snapshot attractors that occur at each equinoxe/solstice. These parameters are coherent with Winter and Summer defined in

Section 3.

In this section, we want to quantify the change of the whole dynamics of the ensemble of snapshot attractors with the5

Wasserstein distance, and assess the detectability of changes from small numbers of observations.

4.1 Protocol

We compute snapshot attractors for each time step, for t between 0 to 200 years. To have the convergence of trajectories on

attractor, we draw N initial conditions in a cube (see Algorithm 1) and perform a first integration during τ = 5× 73 time

unit (i.e. 5 years). The attractor obtained is considered at t= 0. As previous Section, N = 50, 100, 1000. We generate also a10

sequence withN = 10000 as benchmark. TheN trajectories of the system in Eq. (2) are computed with a Runge-Kutta scheme

of order 4 (RK4).

The empirical measure of the snapshot attractors is estimated at each time step t with the algorithm 2. We then compute the

Wasserstein distance between those time varying snapshot attractors, and four reference seasonal snapshot attractors obtained

for t= 0, 18.25, 36.5 and 54.75, during the first year. The four reference seasonal snapshot attractors are shown in Figure15

5(a-d), withN = 10000 points. For illustration purposes, the snapshot attractors corresponding to the same seasons, but at year

180, after the monotonous forcing is triggered. It is obvious from Figure 5(e-f) that the forcing affects each of the seasonal

attractors.

The yearly averages of the distances to the four reference attractors are shown in Figure 6. We detect the change point, with

a trend, after t= 100 years. Therefore, the detection of the forcing effect on the dynamics of the Lorenz84 system is rather20

immediate, with a lag < 10 years.

We find that the variability of the distance variations decrease with the numberN of points to estimate the snapshot attractors,

although it does not seem to affect the detection of the change point. Relatively low values of N show a bias of the distance,

which is even higher for lower values of N . The mean values of the attractor distance distributions is quite similar if N ≥ 100.

This sets a lower bound for the number of points to estimate the measure of snapshot attractors.25

In this example, the distances of the snapshot attractors to Winter and Spring reference attractors increase with time after

t= 100 years. Conversely, the distance to Fall and Summer reference attractors decrease with time. We interpret this as a shift

of all snapshot attractors toward “hot” conditions.

Those results are consistent with those of Drótos et al. (2015). The main practical value of our approach is that the number

of points that is needed to sample snapshot attractors can be as low as N = 100, rather than N = 106, which is generally not30

available.

5 Conclusions

The Wasserstein distance appears to be efficient to measure changes in the dynamics in time evolving systems even with a

relatively low number of points (e.g. N = 100). This discrimination is still powerful when only partial information on the

9
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attractor is available (truncation and/or projection). We made the assumption that the system we investigate yields an attractor,

and the Wasserstein distance determines changes in the invariant measure of the attractors. This builds an interesting bridge

between dynamical systems and optimal transport. A theoretical justification for this bridge is recalled in Appendix B.

The main caveat of this approach is its computational cost. The minimization of the cost function, constraint by the estimated5

measures, has to be implemented by network simplex algorithms (Bazaraa et al., 2009; Boyd and Vandenberghe, 2004; Dantzig

et al., 1955; Gottschlich and Dominic, 2014). Those algorithms are computationally expensive, but applicable, as shown with

the Lorenz 84 model (200,000 distances computed in sixty hour on 12 cores).

A research challenge would be to adapt this method on climate model simulations from CMIP5 (Taylor et al., 2012). The

Wasserstein distance could be computed to discriminate between control, natural and historical runs.10

Appendix A: Computation of the Wasserstein distance

We just give here the general idea to compute Wasserstein distance with the network simplex algorithm. We want to transport

the measure µ to ν, can be written

µ=
n∑

i=1

µiδxi , ν =
p∑

j=1

νjδyj .

The Wasserstein distance is given by minimizing over γij (the mass transported from xi to yj) the cost function15

∑

ij

γijd(xi,yj)2.

Consequently, we have the following linear constraints:

µi =
p∑

j=1

γij , νj =
n∑

i=1

γij , γij ≥ 0

These constraints define a polyhedral convex set in the space of γij . The solutions of all constraints are the extremal point

of the polyhedra, and theW distance is one of its minima. The network simplex algorithm runs in two part:20

1. Finding a first extremal point.

2. Iterate over the face of polyhedra (the simplex) until the minimal solution is reached.

Because the number of extremal point increases exponentially with the size of data, this algorithm has an exponential

complexity. But, in practice the iteration over simplex are made in the direction of an optimal solution. Thus, it has been found

that the complexity of the algorithm is polynomial in practice. Currently, we use a C++ implementation of the R-package25

transport (Baehre et al., 2016), using the methodology described in Gottschlich and Dominic (2014).
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Appendix B: Theoretical justification

Besides the simulations studied in the previous sections, it is possible to theoretically justify the use of the Wasserstein

distance for nonautonomous dynamical systems. Any dynamical system defined from an ordinary differential equation, say
dx
dt = v(x, t), is formally equivalent (e.g., see Villani, 2003; Evans, 2010) to the partial differential equation of a transport of

the density of trajectories of the associated dynamical system, say ∂ρt

∂t + 〈∇,ρtv〉= 0. In other words, the variations between5

t0 and t1 of the time-varying attractor in dx
dt = v(x, t) can be determined by the transport of the measure of the attractors by

the dynamics v. If µt denotes the density distribution of ρt (i.e. its integral), then the Wasserstein distance between µt0 and µt1
for attractors in dimension d is given by the so-called Benamou-Brenier theorem (Benamou and Brenier, 1998)

W(µt0 ,µt1)
2 =

1
t1− t0

inf
(ρ̃t,ṽ)

∫

Rd

t1∫

t0

ρ̃t(x)|ṽ(x, t)|2 dtdx.

The minimization is done over all vector fields ṽ and all sequences of density ρ̃t following ṽ such that ρ̃t0 = ρt0 and10

ρ̃t1 = ρt1 . This theorem connects the dynamical systems theory with the optimal transport theory. Therefore, the Wasserstein

distance between two snapshot attractors of a time varying dynamical system is linked to the energy (v is homogeneous to

a velocity) of the system that transforms one attractor into the other. If the dynamics v is unknown and only simulations are

available, this theorem allows (in theory) to infer v from the simulations because the optimum path going from the snapshot

attractor at t0 to t1 is achieved by the actual dynamics v.
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Table 1. Kolmogorov-Smirnov test applied between distributionW(µWi,µWi) (resp.W(µSu,µSu)) andW(µWi,µSu) in left (resp. right)

box on snapshots of size N .

N 50 100 1000

Wasserstein distance KS-test 0.98 0.99 1 1 1 1

p-value 0 0 0 0 0 0

Euclidean distance KS-test 0.71 0.97 0.77 1 0.47 1

p-value 0 0 0 0 0 0
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(a) µ (b) ν (c) ξ

Figure 1. µ, ν and ξ are three examples of density of attractors. The black boxes have a measure of 1 and the grey a measure of 0. ν is a

shift of µ, but ξ is very different of µ and ν. Finally, ν (resp. ξ) have no common (resp. one common) point with µ. The Euclidean distance

between µ and ν (resp. ξ) is equal at 3.74 (resp. 3.46), whereas the Wasserstein distance is equal to 1 between µ and ν, and 3.27 between µ

and ξ.
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Figure 2. (a) Winter snapshot attractor of the Lorenz84 model. (b) Summer snapshot attractor of the Lorenz 84 model. Each of 10,000 points

is the solution at time τ = 100× 73 of the Lorenz 84 equation (see Eq. (2)), and constructed with a time step of integration of 0.005 using

RK4 scheme.
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Figure 3. Boxplots of distances computed using the Wassertein distance (left panel) and the Euclidean one (right panel). White boxplots dif-

ferentiate between two Winter snapshots. Grey boxplots differentiates two Summer snapshots. Black boxplots compare Winter and Summer

snapshots. Dotted lines represent the distance between Winter and Summer attractors with N = 106 points.
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Figure 4. (a) Projection on axes (x,y) of the Winter snapshot (red) and Summer snapshot (blue). (b) Truncature at x1 ≥ 1 of the Winter and

Summer. (c) Combination of (a) and (b) (see designs (T), (P) and (T+P) in Section 3.4). (d-f) Boxplots of distances between design T, P and

T+P computed with the Wassertein distance. (g-i) Boxplots of distances between design T, P and T+P computed with the Euclidean dis-

tance. (d-i) White boxplots differentiate between two Winter snapshots. Grey boxplots differentiates two Summer snapshots. Black boxplots

compare Winter and Summer snapshots. Dotted lines represent the distance between Winter and Summer attractors (without designs) with

N = 106 points. 17
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Figure 5. Snapshots of 10.000 points from the Lorenz 84 defined by Eq. (2). (a-d) The four seasons at time t= 0 year, t= 0.25y., t= 0.5y.

and t= 0.75y. (e-h) The same seasons, but after the triggering of the linear forcing, during year 180.
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Figure 6. Yearly averages Wasserstein distance between the reference attractor before forcing, and all other attractors. The x axis is the time,

the y axis the estimated Wasserstein distance. The blue (resp. red, green and purple) is the numbers of initial conditions (I.C.) for N = 50

(resp. 100, 1000 and 10.000). The vertical black line represents the instant when the linear trend is triggered in the forcing F (t).
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