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Response Referee # 1
Yoann Robin1, Pascal Yiou1, and Philippe Naveau1

1LSCE, Gif-sur-Yvette, France

Correspondence to: Y. Robin (yoann.robin@lsce.ipsl.fr)

The authors propose the use of the Wasserstein distance in order to discriminate different dynamical systems from their at-

tractors, notably for the case of climate systems. I found the paper really interesting. Moreover, the adoption of such new

metric is well motivated and seems really promising for future climatic applications. Thus, I recommend the publication of the

manuscript. I have only a general comment and a few specific ones (see below) that could be useful to improve the manuscript.

General comment5

Did the authors studied the robustness of the Wasserstein distance to variations of the size of the boxes Ba? I think this is an

important point, in particular once that their method will be applied to realistic systems. Even though an explicit numerical

study is not requested, a discussion of this aspect would be really appreciated.

Response10

The value of 0.1 gives 40 to 60 bins on each axis, assuming that the attractor lives in a box of [−1;3]× [−3;3]× [−3;3].
This means that the volume is divided into 40× 60× 60 boxes. This number is the same order of magnitude as the number

of gridcells in the NCEP reanalysis around the North Atlantic region, should one be interested in the climate attractor of that

region (e.g. Faranda D. et al. (2017)). We also tried values of 0.05, 0.2 and 1.0 for the size of the boxes (so, a factor 2 for the

two first, and one scale up for the last) for the protocol of Section 3. For all values, the maximal variation of standard deviation15

is 0.01, and the detection is not affected. For a size of 0.05 and 0.2 the maximal variation of the median is 0.03. For the size

1.0, the maximal increases of median of box plot of winter (resp. summer) against itself is 0.22 (resp. 0.18), but the difference

with the median of winter against summer is at least equal to 0.3.

Modification (Page 5, line 5 and page 7, line 15)

We have added the sentence (end of section 3.1): “We chose a bin length of 0.1 for the Lorenz attractor. Therefore 40×60×6020

bins cover the attractor, which remains in a [−1;3]× [−3;3]× [−3;3] box. This number of bins is comparable to the number of

gridcells that cover the North Atlantic region in the NCEP reanalysis (or most CMIP5 model simulations). This example refers

to a few papers dealing with climate attractor properties (e.g. Corti S. et al. (1999); Faranda D. et al. (2017)).
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The sentence “This protocol was also applied for bin sizes of 0.05, 0.2 and 1.0. For 0.05 and 0.2, the maximal variation

of median (resp. standard deviation) of Wasserstein distances is 0.03 (resp. 0.01), so the distributions are indistinguishable in

practice. For a bin size of 1.0, the maximal increase of the median is 0.22, but the difference with the median of winter against

summer is at least equal to 0.3.” has been added at the end of Sec. 3.3.

Specific comments5

1 2 Distance between measures - line 14

It could be not easy for any reader how you go from attractors to mass distributions. It would be great to have a short introduc-

tion to the definition and use of invariant measures in phase space.

Response

We agree with you.10

Modification (Page 3, line 23)

We added the sentence "The measure of a sub region of phase space is the probability of a trajectory of the system to go through

the region. The invariance is characterized by the conservation of the volume by the dynamics of the system (Ruelle, 1989)" in

Sec. 3.1.

2 2 Distance between measures - line 2215

Why the authors did not defined (and discuss the differences respect) the Mahalanobis distance?

Response

The Mahalanobis distance was just given as an example of possible distances used in climate sciences. We removed the

reference to the Mahalanobis distance, since we do not make any comparison with it.

3 2 Distance between measures - line 11 - second paragraph20

It would be interesting to know why the authors choose network simplex algorithms to compute the distance. Could be explained

why they are better than other classical choices like, for instance, simulated annealing algorithms?

Response

The optimal transport literature classically mentions two kinds of methods: Network Simplex and Entropy Regularization.

These two approaches have the advantage to be computationally fast. The Network Simplex is generic but the Entropy Regu-25
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larization needs a control parameter to be adapted for each system. Thus we have decided to use the Network Simplex for this

paper. Annealing algorithms require also to test several control parameters (like acceptance probabilities and temperature) de-

pending on the measures considered. This could be problematic for the computation of thousands of distances between various

objects.

Modification (Appendix A)5

An explanation has been added in Appendix A.

4 Algorithm 2

Maybe the authors could give a name to the variable: “total number of boxes Ba” like, for example, K.

Response

The variable “A” (in Require/ Ensure of Algorithm 2) is the total number of boxes.10

Modification (Algorithm 2)

To clarify, we have replaced A by 40×60×60 (the total number of boxes of size 0.1 in the domain [−1;3]× [−3;3]× [−3;3])
and explained that µa > 0 for a small number boxes.

5 3.2 Protocol line – line 16,17

This sentence is not really clear. It could be expanded a bit.15

Response

We agree with you.

Modification (Page 6, line 5)

"We choose to simulate 50 attractors of winter and 50 attractors of summer. We have 50× 50 = 2500 different pairs between

summer and winter. For the distances between the 50 attractors of the same season (summers or winters), we only consider20

1≤ (k,k′)≤ 50 pairs with k < k′. This means that we have 1225 distances for the winter or the summer. So we have at least

1000 distances per distribution. This is a reasonable sample size for a representative Kolmogorov-Smirnov test."

6 3.3 Estimation – line 1

The first sentence is not really clear.

3



Modification

Normalize Wasserstein distance do not add information in our protocol, so the sentence has been removed.

7 3.3 Estimation – line 11 to 15

This point is interesting and could be linked to my general comment: which is the sensitivity of the method respect to N5

together with the number of boxes Ba? Probably such parameters present an interplay in determining the global robustness of

the measure.

Response

See general comment for the question. The global robustness of the empirical measure could be estimated by varying this

parameter.10

8 3.3 Estimation – line 4 – second paragraph

Could the authors specify how they computed the p-values for the KS test? Did they use tables of critical values or simulated

numerical p-values?

Response

The KS value is computed with an estimation of the cumulated density function of the two distributions, and the difference. The15

p-value is given by the asymptotic Kolmogorov distribution. Its cumulative distribution function converges to the supremum

of a Brownian bridge B, which can be computed with

P(K ≤ x) = 1− 2

∞∑
k=1

(−1)k−1e−2k
2x2

, K = sup
t∈[0,1]

|B(t)|

This formula can be found in (Marsaglia G. et al., 2003)

Modification (Page 6, line 3)20

Reference and explanation have been added.

9 4.1 Protocol line – line 31

Could the authors show also here the comparison with the Euclidean distance? Why they did not show such calculation?
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Response

We show in Figure 1 below the calculation for Euclidean distance. For N = 50 and 100, the maximal difference of the mean

(resp. standard deviation) between the period before and after the forcing is 0.002 (resp. 0.002). Furthermore, at least 70% of

distances are in the pip of mean± standard deviation. So, we can not detect the forcing. For N = 1000 and 10000 the maximal5

modification of mean is 0.004, but the standard deviation is multiplied by a factor 20 (0.0002 becomes 0.005). Even if the

forcing is detected, the trajectories of distances are not representative of a linear increasing forcing. This calculation was not

added in article because we find the same result of Section 3, and we focus only on the Wasserstein distance.

Modification (Page 10, line 11)

This explanation has been added at the end of Sec. 4.
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Figure 1. Yearly averages Euclidean distance between the reference attractor before forcing, and all other attractors. The x axis is the time,

the y axis the estimated Euclidean distance. The blue (resp. red, green and purple) is the numbers of initial conditions (I.C.) for N = 50

(resp. 100, 1000 and 10.000).
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Response Referee # 2
Yoann Robin1, Pascal Yiou1, and Philippe Naveau1

1LSCE, Gif-sur-Yvette, France

Correspondence to: Y. Robin (yoann.robin@lsce.ipsl.fr)

I have found the paper quite interesting and innovative and I support its publication in NPG once certain issues are analysed

in greater detail. I would like to make some remarks that I hope the authors will take into consideration.

1 Page 1, Line 21

The authors should consider giving a look Lucarini, V. et al. (2017) where an extensive statistical mechanical analysis of

climate response to forcing is given.5

Response

The reference has been added.

2 Page 2, Line 24

"Intuitive" is not really a good world. Our visual impression and the way we interpret it is far from being in any sense objective.

I understand what the authors say, but I kindly ask to re-formulate.10

Response

We agree with you.

Modification (Page 2, line 16)

“Although it is intuitive from Figure 1 that...” has been replaced by “Panels a and b in Figure 1 are visually very similar,

whereas Panel c cannot be deduced from a trivial transformation of the first panels. Therefore, it is expected that µ is "closer"15

to ν than ξ.”.

3 Page 4, line 18

The construction of the pullback attractor requires the integrations started at a t= t0, with t0 going to minus∞. Otherwise

no well-posed definition is possible. This should be clearly explained. Is one year of integration enough, in this case?

1



Response

In Section 3, the integration is performed between 0 and τ . Because the dynamic of Lorenz 84 for winter and summer does

not depend on time, it is equivalent to an integration between −τ and 0. The parameter τ is chosen to be 5 “years”, but we

checked than 1 year is enough. Following Drótos et al. (2015), we keep τ at 5 years. In Section 4, a first integration is performed

between 0 and τ , and then we integrate between 0 and 200×73 from first integration. Due to cyclicity of seasonal forcing, the5

first integration is equivalent to an integration between −τ and 0.

Modification (Page 4, line 16)

The parameter τ has been set at one year (τ = 73), and the first integration is performed during 5τ (i.e. 5 cycles / years). We

have added the sentence “Snapshot attractors are special cases of pullback attractors (Chekroun et al., 2011). The latter class

requires an integration between −∞ and a desired final time. Eq. (2) does not depend of time, so the integration into Sec. 3.110

can be performed on any length intervals”.

4 Page 5, line 11

In this part there is no mention of the way A is chosen. This seems quite important for the rest of the paper.

Response

See Question 6.15

5 Page 4, line 13

The authors might want to note explicitly that each of the realised estimate of the measure supported by the pullback attractor

come from initial conditions at t0 (see point 3) distributed uniformly according to Lebesgue of the union of the little cubes.

Response

We agree with you20

Modification (Page 4, line 11)

We have replaced “we draw N random initial conditions in a cube that includes the attractors, and iterate the dynamics of the

systems for a time τ”, by “we draw N random initial conditions following a uniform distribution. All margins are independent.

This approximates a Lebesgue measure in a cube that includes the attractors. We iterate the dynamics of the systems between

t0 = 0 and a long time multiple of τ .”25
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6 Page 6, Section 3.3

Discussion on the value of A is missing

Response

A was a misleading parameter. It represents only the number of boxes with non zero mass, but it can be different for different

realization of same attractor. The value of 0.1 gives 40 to 60 bins on each axis, assuming that the attractor lives in a box of5

[−1;3]× [−3;3]× [−3;3]. This means that the volume is divided into 40× 60× 60 boxes. This number is the same order of

magnitude as the number of gridcells in the NCEP reanalysis around the North Atlantic region, should one be interested in the

climate attractor of that region (e.g. Faranda D. et al. (2017)). We also tried values of 0.05, 0.2 and 1.0 for the size of the boxes

(so, a factor 2 for the two first, and one scale up for the last) for the protocol of Section 3. For all values, the maximal variation

of standard deviation is 0.01, and the detection is not affected. For a size of 0.05 and 0.2 the maximal variation of median is10

0.03. For the size 1.0, the maximal increases of median of box plot of winter (resp. summer) against itself is 0.22 (resp. 0.18),

but the difference with median of winter against summer is at least equal to 0.3.

Modification (Page 5, line 5 and Page 7, line 15)

We have been added the sentence: “We chose a bin length of 0.1 for the Lorenz attractor, which remains in a [−1;3]× [−3;3]×
[−3;3] box. Therefore 40× 60× 60 bins cover the attractor. This number of bins is comparable to the number of gridcells that15

cover the North Atlantic region in the NCEP reanalysis (or most CMIP5 model simulations). This example refers to a few

papers dealing with climate attractor properties (e.g. Corti S. et al. (1999); Faranda D. et al. (2017)).

The sentence “This protocol was also applied for bin sizes of 0.05, 0.2 and 1.0. For 0.05 and 0.2, the maximal variation

of median (resp. standard deviation) of Wasserstein distances is 0.03 (resp. 0.01), so the distributions are indistinguishable in

practice. For a bin size of 1.0, the maximal increase of the median is 0.22, but the difference with the median of winter against20

summer is at least equal to 0.3.” has been added at the end of Sec. 3.3.

7 Page 7, line 3

I disagree with the use of "visual impression".

Response

We agree with you.25

Modification (page 7, line 11)

“This visual impression is confirmed...” has been replaced by “This discrimination is confirmed...”
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8 Page 8, lines 13-14

The statement is indeed overblown if given in all generality as here.

Response

We agree with you.

Modification (page 8, line 25)5

“We conclude that the Wasserstein distance has a high capacity of discriminating between different dynamical systems” has

been replaced by “We conclude that the Wasserstein distance has a high capacity of discriminating different attractors coming

from this dynamical system”

9 Page 9 - End of Section 4

There is a fundamental misunderstanding here, I believe. It is true that a much lower number of integrations is needed to say10

that two attractors are different. This is a very interesting result. But you are not able to quantify well what is (quantitatively)

the difference between the expectation value of any given (possibly interesting) observable of relevance. So, you are left with

a statement that is in fact qualitative rather than quantitative (the two attractors are different!). How can you relate the

Wasserstein measure to any useful information? This does NOT diminish the relevance of the performed analysis, to be clear.

Response15

It is true we do not use the link between Wasserstein distance and other dynamical information to measure qualitative changes

in attractors (e.g. dimensions). The chapter 9 of Villani (2003) gives some link between the Wasserstein distance and entropy.

Modification (Conclusion)

A caveat of the approach we present here is that we do not give an interpretation of the Wasserstein distance in terms of

qualitative dynamical changes (e.g. changes in local dimensions (Faranda D. et al., 2017)). Villani (2003, Chapter 9) provides20

links between the Wasserstein distance and entropy, but they are hard to interpret and infer for the problem we tried to tackle

(measure a change in a strange attractor).

10 Page 11, line 7

not clear the relationship between ρ and µ.
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Response

ρ is the density of the measure µ.

Modification (page 11, line 25)

We state that: ρ(≥ 0) is the density of the measure µ. Hence, for all Borel set A in phase space, they are related by:

µt(A) =

∫
A

ρt(x).dx.5
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Detecting Changes in Forced Climate Attractors with Wasserstein
Distance
Yoann Robin1, Pascal Yiou1, and Philippe Naveau1

1LSCE, Gif-sur-Yvette, France

Correspondence to: Y. Robin (yoann.robin@lsce.ipsl.fr)

Abstract.

1 Introduction

If the climate system is viewed as a complex dynamical system yielding a strange attractor, i.e. a highly complicated object

around which all trajectories wind up (Lorenz, 1963), then, climate variability is linked to the statistical properties of such an

attractor (Ghil and Childress, 1987). Those statistical properties refer to the probability that trajectories visit each region of5

phase space (Mané, 2012; Eckmann and Ruelle, 1985). Mathematical concepts to describe those properties on rather simple

dynamical systems have been investigated by Chekroun et al. (2011).

In addition to climate internal variability, external forcings (either natural or anthropogenic) perturb the climate system

dynamics by introducing a time dependence of the attractor. This is the cause of non-stationary behavior of the climate system.

At first order, this can translate into a general shift of the underlying attractor (Corti S. et al., 1999). At second order, interactions10

between a seasonal cycle and a slow forcing can even lead to trends in subtle quantities (e.g. Cassou and Cattiaux, 2016; Vrac

et al., 2014). A few properties of the climate attractor due to external forcings (anthropogenic or not) have been treated by

Pierini et al. (2016) and Drótos et al. (2015), who focused on low dimensional strange attractors and investigated qualitative

changes of the attractors, although all those studies are quantitative in many aspects. Lucarini, V. et al. (2017) have recently

used response theory (Ruelle, D., 2009) to quantify the modification of the dynamics submitted to a forcing.15

Classical distances, like the Euclidean distance are often used to measure attractor differences. The goal of our paper is

to present a framework, embedded in optimal transport theory (e.g. Villani, 2003), to measure the distance between strange

attractors, and make a statistical inference of this tool on well documented dynamical systems. To do this we exploit the fact

that the attractor of the system defines an invariant measure, which is the multivariate probability distribution of all trajectories

of the system. The distance between attractors is then computed through the cost to transform one invariant measure into20

another. A similar idea was already proposed in Ghil (2015) to characterize the climate variability. In particular, we assess

that it is possible to discriminate between attractors, given a relatively low number of sampling points, in order to ensure

the applicability of this methodology. We test this method on a time-varying dynamical system in order to illustrate how the

dynamics of a system can be affected by a constant forcing interacting with seasonality.
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The paper is organized as follows. In Section 2, we recall some basic concepts used in optimal transport theory and recall the25

definition of the Wasserstein distance. In Section 3, we investigate the performance of the Wasserstein distance to discriminate

between two "simple" autonomous systems (winter against summer of Lorenz (1984) model). Section 4 explores how forcing

can impact the Wasserstein distance capability at detecting changes in a non stationarity context. Section 5 concludes and

proposes some future research directions.

2 Distance between measures5

To characterize changes in the properties of the attractor of a dynamical system, the first step of our methodology is to determine

how two measures (or distributions of mass) differ. The idea is to derive a cost function for transporting one mass distribution

onto the other. As a simple example, we consider the three mass distributions shown in Figure 1, noted µ, ν and ξ. The

distributions are on a grid of size 10× 10 = 100, with mass positions located on pixels xi, i= 1, . . . ,100. ν is constructed to

be a one pixel left shift of µ. The distribution ξ is a 90◦ rotation and a mirror image of µ, and we move one square to have a10

common point with µ. The distribution µ (resp. ν and ξ) can be written as

µ=

100∑
i=1

µiδxi
,

where δx is the Dirac mass at pixel xi, and µi = 1 on the black boxes in Figure 1 and µi = 0 on the grey boxes. The Euclidean

distance d between µ and ν is defined by

d(µ,ν)2 =

100∑
i=1

|µi− νi|2.15

Panels a and b in Figure 1 are visually very similar, whereas Panel c cannot be deduced from a trivial transformation of the

first panels. Therefore, it is expected that µ is "closer" to ν than ξ. We find that the Euclidean distance from µ to ν is 3.74, and

the distance from µ to ξ is 3.46 (the example was constructed to show this). Thus the Euclidean distance does not capture the

structural proximity between µ and ν. The explanation is the following: among the squares that have no common mass, the

value of the Euclidean distance is independent of the position of squares. This highlights the need of a distance that can take20

into account how masses should be moved, say, from the left panel to the middle panel of Figure 1.

This mathematical problem traces back to Monge (1781) and is the basis of optimal transport theory (see, e.g. Villani, 2003).

To transport the mass distribution µ contained in the boxes at xi to the distribution ν in the boxes at xj , a total cost of the

transport has to be defined. We note γij > 0 the fraction of the mass transported from the boxes xi to xj . The cost of the

transport is defined by γijd(xi,xj)2. Consequently, the total transport cost from µ to ν is

∑
ij

γijd(xi,xj)
2,

2



where d is the usual Euclidean distance between the location xi and xj . The set of γij coefficients is called the transport

plan. It is a measure on product space of measures admitting µ and ν as margins. The optimal transport cost is obtained by

minimizing this sum over all possible transport plans, i.e. all possible γij > 0. This produces the so-called Wasserstein distance5

W(µ,ν) =

inf
γij

∑
ij

γijd(xi,xj)
2

1/2

. (1)

Computing the right hand side of Eq. (1) is a problem of minimization under constraints on the γij coefficients, which have

to be positive, and whose marginal sums equal µi and νj . This distance can be numerically computed by network simplex

algorithms, coming from linear programming theory (see, e.g. Bazaraa et al., 2009). We refer to Appendix A for a general idea

of the algorithm. Eq. (1) is the discrete version of a more general formulation of the Wasserstein distance whose properties are10

detailed by Villani (2003).

In our example (Fig. 1), we haveW(µ,ν) = 1� 3.27 =W(µ,ξ). Therefore we can quantify with the Wasserstein distance

that the cost of transforming µ into ν is lower than transforming µ into ξ. This result is closer to the physical intuition that a

small shift is less costly than a mirror image and a rotation. Our next step is to apply the Wasserstein distance to differentiate

between dynamical systems.15

3 Inference on simple dynamical systems

3.1 Attractors and measure of a dynamical system

A dynamical system can be defined by the action of an ordinary differential equation

dx

dt
= v(x),

on a set of initial conditions (see, e.g. Guckenheimer and Holmes, 1983; Katok and Hasselblatt, 1997). Here x is a multivari-20

ate vector in the so-called phase space and v(x) is a vector field that acts on x. The properties of the ensemble of trajectories

from all initial conditions define the dynamics of the system. They are entirely determined by v.

For chaotic dynamical systems, trajectories x(t) emerging from almost all initial conditions converge to a unique object

called an attractor, embedded in the phase space. Attractors define an invariant measure in phase space, which quantify the

weight of all trajectories of the dynamical system in subregions of the phase space. The measure of a sub region of phase space25

is the probability of a trajectory of the system to go through the region. The invariance is characterized by the conservation

of the volume by the dynamics of the system (Ruelle, 1989). The goal of this section is to estimate the distance between the

empirical invariant measure of attractors in particular setup.
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We now focus on the Lorenz (1984) model, which is an idealized model of the Hadley circulation and its seasonality. The

dynamics of this system is noted v(x), and, for a vector x= (x1,x2,x3) given by5

v(x) =


−x22−x23− (x1−F )/4
x1x2− 4x1x3−x2 +1

x1x3 +4x1x2−x3

 . (2)

We propose to discriminate two attractors based on Eq. (2). A first attractor is generated with F ≡ 11.5 (noted Wi, for

winter). A second attractor is generated with F ≡ 7.5 (noted Su, for summer). We choose those values and this terminology

because F is interpreted as a seasonal cycle in Section 4, of length τ = 73 units. Both systems have three variables (so the

phase space is R3), are chaotic and yield a strange attractor. They are illustrated by two long trajectories in Figure 2. To10

quantify the difference between the two attractors, it is first necessary to estimate the invariant measure of both attractors. We

use the method of snapshot attractors (e.g. Romeiras et al., 1990; Chekroun et al., 2011) rather than considering one single

long trajectory that could bias the sampling of some regions of the attractors, and requires the system to be ergodic. In the

snapshot attractors, we draw N random initial conditions following a uniform distribution. All margins are independent. This

approximates a Lebesgue measure in a cube that includes the attractors. We iterate the dynamics of the systems between t0 = 015

and a long time multiple of τ . Consistently with Drótos et al. (2015), we take 5τ = 5× 73 (i.e. 5 cycles, but we have checked

than τ is enough). Both systems are dissipative outside of the attractors neighborhood, therefore all N trajectories collapse to

the attractors after time 5τ and provide an efficient sampling of the invariant measure (Romeiras et al., 1990). After time 5τ ,

the set of N final points emerging of N initial conditions is called a snapshot attractor (see Algorithm 1). Snapshot attractors

are special cases of pullback attractors (Chekroun et al., 2011). The latter class requires an integration between −∞ and a

desired final time. Eq. (2) does not depend of time, so the integration into Sec. 3.1 can be performed on any length intervals.

Algorithm 1 Simulation of a snapshot attractor with N initial conditions from the Lorenz 84 system

Require: 5τ (= 5× 73) iteration time for convergence towards the attractor,

N (= 50,100,1000) the number of points in the snapshot,

C (= [−1,3]× [−3,3]× [−3,3]) a box that contains the attractor

Ensure: One snapshot with N points denoted {yi} ∈ R3 with i= 1, . . . ,N

1: Draw uniformly N points x1, . . . ,xN in C

2: for i= 1, . . . ,N do

3: Integrate Eq. (2) between 0 and 5τ starting to xi. The ending point is yi. Integration is performed using the RK4 scheme with a time

step of 0.005.

4: end for
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Then we compute the empirical measures associated with the snapshot attractors by discretizing the phase space (approxi-

mated by the box [−1,3]× [−3,3]× [−3,3]) into cells of size 0.1×0.1×0.1 (so 40×60×60 =A cells), and by counting the5

number of points of a snapshot attractor in each cell (see Algorithm 2). The empirical measure of the winter attractor (resp. sum-

mer) is noted µWi (resp. µSu). They are sums of Dirac measures at each discrete cell. It is the equivalent of a multi-dimensional

histogram of the attractor. We chose a bin length of 0.1 for the Lorenz attractor, which remains in a [−1;3]× [−3;3]× [−3;3]
box. Therefore 40× 60× 60 bins cover the attractor. This number of bins is comparable to the number of gridcells that cover

the North Atlantic region in the NCEP reanalysis (or most CMIP5 model simulations). This example refers to a few papers10

dealing with climate attractor properties (e.g. Corti S. et al. (1999); Faranda D. et al. (2017)).

Algorithm 2 Determining the empirical invariant measure from simulated snapshot attractors

Require: One snapshot attractor, {yi}i=1,...,N , obtained from Algorithm 1,

[−1,3]× [−3,3]× [−3,3], a large box containing the attractor,

0.1, the length of the edge of each cells to compute the histogram (so 40× 60× 60 =A cells)

Ensure: An approximated density measure, i.e. a sum of Dirac masses estimated from the number of points in each cellBa with a= 1, . . . ,A

µ=
1

N

A∑
a=1

µaδBa

where δBa is the Dirac measure around the cell Ba (equal to one if x ∈Ba and zero otherwise) and µa ≥ 0 is the inferred mass. µa is

not equal to 0 for a small numbers of boxes.

1: Divide the space into small gridded cell Ba of size 0.1× 0.1× 0.1.

2: for all cells Ba do

3: µa← (number of yi in Ba)/N

4: end for

3.2 Protocol

The difference between the summer and winter attractors is evaluated byWµWi,µSu) for different sample sample of size N .

The probability distribution of Wasserstein distances is not known a priori for random measures. We first estimate the typical

value of Wasserstein distances between identical attractors in order to build a null hypothesis to be rejected if the distance is15

larger to some threshold. Therefore, we construct fifty winter (resp. summer) Lorenz 84 snapshot attractors, with empirical

measure µWi
k , k = 1, . . . ,50 (resp. µSu

k ), by drawing fifty sets of N random initial conditions, and applying Algorithms 1 and 2

between 0 and 5τ . By construction,W(µWi
k ,µWi

k̃
) should tend to 0 when N increase.

We detect a difference between the winter and summer of Lorenz 84 systems if

W(µWi
k ,µWi

k̃
)�W(µWi

k ,µSu
k̃
) andW(µSu

k ,µ
Su
k̃
)�W(µWi

k ,µSu
k̃
).
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This is quantified by a Kolmogorov-Smirnov (K.S.) test (Durbin, 1973; von Storch and Zwiers, 2001) between the dis-

tributions of W(µWi
k ,µWi

k̃
) (resp. W(µSu

k ,µ
Su
k̃
)) and W(µWi

k ,µSu
k̃
), in order to reject the null hypothesis that the probability5

distributions are equal. The K.S. test gives two values, the maximal difference between the cumulative distribution function of

measures, and the "p value", which quantifies the probability to accept the null hypothesis. It is estimated by the Kolmogorov

distribution (see (Marsaglia G. et al., 2003)). We choose to simulate 50 attractors of winter and 50 attractors of summer. We

have 50×50 = 2500 different pairs between summer and winter. For the distances between the 50 attractors of the same season

(summers or winters), we only consider 1≤ (k,k′)≤ 50 pairs with k < k′. This means that we have 1225 distances for the10

winter or the summer. So we have at least 1000 distances per distribution. This is a reasonable sample size for a representative

Kolmogorov-Smirnov test.

The estimation of the Wasserstein distance between attractors obviously depends on the number of available samples N

of the dynamical systems on which the empirical measures are constructed. To explore the variability in the estimation of

Wasserstein distances from finite observational sets, we sample its distances for three different values of N : N = 50, 100 and15

1000. We compute also one of each distance for N = 106. This later case represents a quasi-perfect estimation of the distance

and we consider it as our benchmark for comparison.

The complete procedure to obtain an empirical probability distribution of Wasserstein distances, depending on the sample

size N , is summarized in Algorithm 3.

Algorithm 3 Estimation ofW(µWi
k ,µWi

k̃
),W(µWi

k ,µSu
k̃
) andW(µWi

k ,µSu
k̃
)

Require: N (= 50,100,1000) the number of points in snapshots

Ensure: 1225 independent estimates of the two Wasserstein distances W(µWi,µWi) and W(µSu,µSu) where the first differentiates two

winter and the second two summer of Lorenz 84 snapshot attractors.

2500 independent estimates of the Wasserstein distances W(µWi,µSu) which compares winter and summer of Lorenz84 snapshot

attractors.

1: Use Algorithm 1 to simulate fifty winter and fifty summer Lorenz 84 snapshot attractors, denoted Wik and Suk. Each snapshot attractor

has N points.

2: Use Algorithm 2 to transform each Wik (resp. Suk) into measures, noted µWi
k (resp. µSu

k ).

3: Compute the Wasserstein distances W(µWi
k ,µWi

k̃
) (resp. W(µSu

k ,µSu
k̃
)) for k 6= k̃ (see Appendix A). Thus, 50×(50+1)

2
− 50 = 1225

distances are stored.

4: Compute the Wasserstein distancesW(µWi
k ,µSu

k̃
) for all k, k̃. Thus, 502 = 2500 distances are stored.

3.3 Estimation

The probability distributions of the Wasserstein distance for W(µWi,µWi) (resp. Su) and W(µWi,µSu) are summarized in

Figure 3(a) by box-and-whisker plots (boxplots: Chambers et al., 1983)
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The distribution of the distances between winter (resp. summer) snapshot attractors decreases to 0 (the expected asymptotic5

value) when N increases (white and grey boxplots). We explain the relatively high values of the distance when N = 50 by the

fact that few cells of the discrete measure are filled when N is low, so that the transport plan is not zero. By increasing N , all

cells tend to be sampled, so that the transport plans are less affected by sampling issues, and the cost of the transport decreases

on average.

The distance between winter and summer attractors (black boxplots) decrease with N and converge to the "true" value that10

is estimated with N = 106. The explanation is similar: if the measures of the snapshot attractors are estimated with low N ,

the "circles" composing the attractors are akin. Increasing the number of initial conditions N essentially allows to differentiate

the dynamics of the two attractors. We note that the distribution of distances for N = 1000 is very close to the one with 106.

This highlights a rather quick convergence of the Wasserstein distanceW . Figure 3(a) shows a good discrimination between

null hypothesis distancesW(µWi,µWi) and the distancesW(µWi,µSu), even for N = 50. This discrimination is confirmed by15

Kolmogorov-Smirnov tests reported in Table 1. The null hypothesis of identical attractors is rejected with probability one, even

for N = 50. Finally, the variance of distance decrease with N . Indeed, attractors are independant of the initial condition, thus

the variability is due to a low N . This propertie is shown by the Wasserstein distance.

This protocol was also applied for bin sizes of 0.05, 0.2 and 1.0. For 0.05 and 0.2, the maximal variation of median (resp.

standard deviation) of Wasserstein distances is 0.03 (resp. 0.01), so we have the distributions are indistinguishable in practice.20

For a bin size of 1.0, the maximal increase of the median is 0.22, but the difference with the median of winter against summer

is at least equal to 0.3.

For illustration purposes, we compute Euclidean distances between the same snapshot attractors (Figure 3(b)). The distances

are normalized by
√
2, the maximum value being reached for two measures without common points. The distances between

winter (resp. summer) snapshot attractors decrease as N increase (white and grey boxplots). The distances between winter25

and summer snapshot attractors also decrease to the "perfect" estimate with N = 106 (black boxplots), but the convergence

to the limit is far from being reached with N = 1000. The difference between winter and summer cannot be detected for all

N . For N = 50 and 100, the distances between winter are greater than distances between winter and summer. For N = 1000,

the Kolmogorov-Smirnov test (Table 1) shows the impossibility to reject the null hypothesis without ambiguity. Moreover,

the variability is small and constant with N , which is incompatible with the high variability due to a low N . Therefore, the30

Euclidean distance might not be very useful to distinguish the dynamics in real world systems with few observations.

3.4 Inference with reduced information

In this section, we test whether it is possible to differentiate between attractors if only partial information is available. This can

happen if one or more variables of the system are omitted (projection onto the remaining variables) or if variables are censored

(truncation of the values of a variable), or a combination of both. The motivation in atmospheric sciences is that the underlying

dynamical system is defined in three spatial dimensions (on the sphere), and that observables of the attractor of this system are

generally obtained over a limited area (censoring of the rest of the globe) and a fixed pressure level (projection).
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It has been proven that a sequence of observables of a dynamical system convey the same dynamics as the whole system5

(Packard et al., 1980; Takens, 1981; Mañé, 1981). Therefore it is meaningful to compare the distances between projected or

truncated attractors.

For the Lorenz 84 attractors, a first reduction of information is performed by projecting the systems onto their (x1,x2) vari-

ables (design P). We hence compute the distances (Wasserstein and Euclidean) between attractors from the variables (x1,x2)

and discard the information on x3. The second reduction consists in truncating negative values of the variable x1 (design T).10

Thus, we only consider the values of (x1,x2,x3) when x1 ≥ 1. The third reduction of information is a combination of pro-

jection onto the (x1,x2) variables and truncating negative values of x1 (design T+P). These transformation are illustrated in

Figure 4(a-c). Those three transformations create observables of the underlying attractors. We shall call them "observed attrac-

tors", with designs P (projection), T (truncation) and P+T (both). The distribution of the distance between observed attractors

is shown in Figure 4(d-i), for the two distances and each of the information reduction design (P, T and P+T).15

The Wasserstein distance distribution (Figure 4(a-c)) shows a clear discrimination between winter and summer observed

attractors, for all values of N . This is reflected in the Kolmogorov-Smirnov test: all test values are greater than 0.97, except

for winter with N = 50, this is 0.84. All p-value are equal to 0. The estimated distances between winter and summer observed

attractors is always smaller than the idealized one (obtained on the full attractors) and shows little dependence on the number

of points N . This is explained by the fact that the projection on a subspace of dimension 2 implies a reduction of transportation20

cost. Moreover, some points that are very far in the winter attractor become close to each other in the projection P. Overall, the

reduction of information decreases the discriminating power of the Wasserstein distance, but the results are still significant for

number of points N as small as 50.

The same experiment is conducted with the Euclidean distance (Figure 4(g-i). Contradicting the intuition, it clearly discrim-

inate between winter and summer for all designs P, T and P+T. Comparing the full attractors (Figure 2) and figures 4(a-c), we25

see that some points very far, become close in the same boxes of the estimated measure. This is reflected by a gain of variance,

which decrease with N . Finally, we need N = 1000 to have the distribution between winters (resp. summers) lower than the

idealized distance.

We conclude that the Wasserstein distance has a high capacity of discriminating different attractors coming from this dynam-

ical system, even with a partial information. It is particularly promising in atmospheric sciences, where analyses are performed30

on truncated variables (e.g. a surface field on a limited area: transformation T) and/or on only one atmospheric field (e.g.

geopotential height, omitting other variables: transformation P).

4 Time-varying dynamical system

We now focus on a time varying dynamical system that mimics variability around a seasonal cycle, and a monotonic forcing

that plays after a triggering time T . Such a system defines a snapshot attractor at all times t. We want to measure how snapshot5
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attractors evolve after time T , when the forcing increases (we mean the forcing modifies more and more the attractors). The

constant F in the System 2 is now a function of time, and include a seasonal cycle and a forcing.

F (t) = 9.5+2sin

(
2πt

73

)
︸ ︷︷ ︸

seasonality

−2
t−T
T

1{t>T}︸ ︷︷ ︸
monotonic forcing

, T = 100× 73. (3)

The snapshot attractors of this system were investigated by Drótos et al. (2015), who performed an analysis of the mean and

variance of each coordinate to detect the forcing F after time t > T .10

Such a coupled behaviour is present in most regional temperature time series at the decadal or centennial scales. The periodic

part of the forcing F in Eq. (3) allows one to divide the year into seasons of the system (Lorenz, 1984; Drótos et al., 2015). To be

consistent with Lorenz (1984) and Drótos et al. (2015), we consider that there are 73 = τ time units in one year. We emphasize

that a time unit is not analogous to a "day", but corresponds to a typical variability time scale in the non forced chaotic system

in Eq. (2). We follow Drótos et al. (2015) and define the Fall equinox at t= 0 year or t mod 73 = 0 year. Then, winter solstices15

correspond to t mod 73 = 0.25 year, Spring equinoxes correspond to t mod 73 = 0.5 year and summer solstices correspond

to t mod 73 = 0.75 year. This time dependent system produces a different snapshot attractor at each time step. We focus on

the snapshot attractors that occur at each equinoxe/solstice. These parameters are coherent with winter and summer defined in

Section 3.

In this section, we want to quantify the change of the whole dynamics of the ensemble of snapshot attractors with the20

Wasserstein distance, and assess the detectability of changes from small numbers of observations.

4.1 Protocol

We compute snapshot attractors for each time step, for t between 0 to 200 years. To have the convergence of trajectories on

attractor, we draw N initial conditions in a cube (see Algorithm 1) and perform a first integration during 5τ = 5× 73 time

unit (i.e. 5 years). The attractor obtained is considered at t= 0. As previous Section, N = 50, 100, 1000. We generate also a25

sequence withN = 10000 as benchmark. TheN trajectories of the system in Eq. (2) are computed with a Runge-Kutta scheme

of order 4 (RK4).

The empirical measure of the snapshot attractors is estimated at each time step t with the algorithm 2. We then compute the

Wasserstein distance between those time varying snapshot attractors, and four reference seasonal snapshot attractors obtained

for t= 0, 18.25, 36.5 and 54.75, during the first year. The four reference seasonal snapshot attractors are shown in Figure30

5(a-d), withN = 10000 points. For illustration purposes, the snapshot attractors corresponding to the same seasons, but at year

180, after the monotonous forcing is triggered. It is obvious from Figure 5(e-f) that the forcing affects each of the seasonal

attractors.

The yearly averages of the distances to the four reference attractors are shown in Figure 6. We detect the change point, with

a trend, after t= 100 years. Therefore, the detection of the forcing effect on the dynamics of the Lorenz84 system is rather5

immediate, with a lag < 10 years.
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We find that the variability of the distance variations decrease with the numberN of points to estimate the snapshot attractors,

although it does not seem to affect the detection of the change point. Relatively low values of N show a bias of the distance,

which is even higher for lower values of N . The mean values of the attractor distance distributions is quite similar if N ≥ 100.

This sets a lower bound for the number of points to estimate the measure of snapshot attractors.10

In this example, the distances of the snapshot attractors to winter and Spring reference attractors increase with time after

t= 100 years. Conversely, the distance to Fall and summer reference attractors decrease with time. We interpret this as a shift

of all snapshot attractors toward “hot” conditions.

Those results are consistent with those of Drótos et al. (2015). The main practical value of our approach is that the number

of points that is needed to sample snapshot attractors can be as low as N = 100, rather than N = 106, which is generally not15

available.

The same experiment is conducted with the Euclidean distance. For N = 50 and 100, the maximal difference of the mean

(resp. standard deviation) between the period before and after the forcing is 0.002 (resp. 0.002), whereas the mean is 0.2

(resp. 0.002) . Furthermore, at least 70% of distances are in the pip of mean plus or minus standard deviation. So, we can

not detect the forcing. For N = 1000 and 10000 the mean is 0.08, and its the maximal modification is 0.004. The standard20

deviation is multiplied by a factor 20 (0.0002 becomes 0.005). Even if the forcing is detected, the trajectories of distances are

not representative of a linear increasing forcing.

5 Conclusions

The Wasserstein distance appears to be efficient to measure changes in the dynamics in time evolving systems even with a

relatively low number of points (e.g. N = 100). This discrimination is still powerful when only partial information on the25

attractor is available (truncation and/or projection). We made the assumption that the system we investigate yields an attractor,

and the Wasserstein distance determines changes in the invariant measure of the attractors. This builds an interesting bridge

between dynamical systems and optimal transport. A theoretical justification for this bridge is recalled in Appendix B. A caveat

of the approach we present here is that we do not give an interpretation of the Wasserstein distance in terms of qualitative

dynamical changes (e.g. changes in local dimensions (Faranda D. et al., 2017)). Villani (2003, Chapter 9) provides links

between the Wasserstein distance and entropy, but they are hard to interpret and infer for the problem we tried to tackle

(measure a change in a strange attractor).

The main caveat of this approach is its computational cost. The minimization of the cost function, constraint by the estimated

measures, has to be implemented by network simplex algorithms (Bazaraa et al., 2009; Boyd and Vandenberghe, 2004; Dantzig5

et al., 1955; Gottschlich and Dominic, 2014). Those algorithms are computationally expensive, but applicable, as shown with

the Lorenz 84 model (200,000 distances computed in sixty hour on 12 cores).

A research challenge would be to adapt this method on climate model simulations from CMIP5 (Taylor et al., 2012). The

Wasserstein distance could be computed to discriminate between control, natural and historical runs.

10



Appendix A: Computation of the Wasserstein distance10

We just give here the general idea to compute Wasserstein distance with the network simplex algorithm. We want to transport

the measure µ to ν, can be written

µ=

n∑
i=1

µiδxi
, ν =

p∑
j=1

νjδyj
.

The Wasserstein distance is given by minimizing over γij (the mass transported from xi to yj) the cost function∑
ij

γijd(xi,yj)
2.15

Consequently, we have the following linear constraints:

µi =

p∑
j=1

γij , νj =

n∑
i=1

γij , γij ≥ 0

These constraints define a polyhedral convex set in the space of γij . The solutions of all constraints are the extremal point

of the polyhedra, and theW distance is one of its minima. The network simplex algorithm runs in two part:

1. Finding a first extremal point.20

2. Iterate over the face of polyhedra (the simplex) until the minimal solution is reached.

Because the number of extremal point increases exponentially with the size of data, this algorithm has an exponential

complexity. But, in practice the iteration over simplex are made in the direction of an optimal solution. Thus, it has been found

that the complexity of the algorithm is polynomial in practice. Currently, we use a C++ implementation of the R-package

transport (Baehre et al., 2016), using the methodology described in Gottschlich and Dominic (2014). We have also tested25

entropy regularization (Cuturi, M., 2013). This algorithm cross the polyhedra until the optimal solution, but it requires a

parameter changing for each distance. We preferred to use the network simplex method, which work all time.

Appendix B: Theoretical justification

Besides the simulations studied in the previous sections, it is possible to theoretically justify the use of the Wasserstein

distance for nonautonomous dynamical systems. Any dynamical system defined from an ordinary differential equation, say
dx
dt = v(x, t), is formally equivalent (e.g., see Villani, 2003; Evans, 2010) to the partial differential equation of a transport of5

the density of trajectories of the associated dynamical system, say ∂ρt
∂t + 〈∇,ρtv〉= 0. In other words, the variations between

t0 and t1 of the time-varying attractor in dx
dt = v(x, t) can be determined by the transport of the measure of the attractors by

the dynamics v. If µt denotes the density distribution of ρt (i.e. µt(A) =
∫
A
ρt(x).dx), then the Wasserstein distance between

µt0 and µt1 for attractors in dimension d is given by the so-called Benamou-Brenier theorem (Benamou and Brenier, 1998)
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W(µt0 ,µt1)
2 =

1

t1− t0
inf

(ρ̃t,ṽ)

∫
Rd

t1∫
t0

ρ̃t(x)|ṽ(x, t)|2dtdx.10

The minimization is done over all vector fields ṽ and all sequences of density ρ̃t following ṽ such that ρ̃t0 = ρt0 and

ρ̃t1 = ρt1 . This theorem connects the dynamical systems theory with the optimal transport theory. Therefore, the Wasserstein

distance between two snapshot attractors of a time varying dynamical system is linked to the energy (v is homogeneous to

a velocity) of the system that transforms one attractor into the other. If the dynamics v is unknown and only simulations are

available, this theorem allows (in principle) to infer v from the simulations because the optimum path going from the snapshot

attractor at t0 to t1 is achieved by the actual dynamics v.
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Table 1. Kolmogorov-Smirnov test applied between distributionW(µWi,µWi) (resp.W(µSu,µSu)) andW(µWi,µSu) in left (resp. right)

box on snapshots of size N .

N 50 100 1000

Wasserstein distance KS-test 0.98 0.99 1 1 1 1

p-value 0 0 0 0 0 0

Euclidean distance KS-test 0.71 0.97 0.77 1 0.47 1

p-value 0 0 0 0 0 0
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(a) µ (b) ν (c) ξ

Figure 1. µ, ν and ξ are three examples of density of attractors. The black boxes have a measure of 1 and the grey a measure of 0. ν is a

shift of µ, but ξ is very different of µ and ν. Finally, ν (resp. ξ) have no common (resp. one common) point with µ. The Euclidean distance

between µ and ν (resp. ξ) is equal at 3.74 (resp. 3.46), whereas the Wasserstein distance is equal to 1 between µ and ν, and 3.27 between µ

and ξ.
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Figure 2. (a) winter snapshot attractor of the Lorenz84 model. (b) summer snapshot attractor of the Lorenz 84 model. Each of 10,000 points

is the solution at time 5τ = 5× 73 of the Lorenz 84 equation (see Eq. (2)), and constructed with a time step of integration of 0.005 using

RK4 scheme.
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Figure 3. Boxplots of distances computed using the Wassertein distance (left panel) and the Euclidean one (right panel). White boxplots

differentiate between two winter snapshots. Grey boxplots differentiates two summer snapshots. Black boxplots compare winter and summer

snapshots. Dotted lines represent the distance between winter and summer attractors with N = 106 points.
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Figure 4. (a) Projection on axes (x,y) of the winter snapshot (red) and summer snapshot (blue). (b) Truncature at x1 ≥ 1 of the winter and

summer. (c) Combination of (a) and (b) (see designs (T), (P) and (T+P) in Section 3.4). (d-f) Boxplots of distances between design T, P and

T+P computed with the Wassertein distance. (g-i) Boxplots of distances between design T, P and T+P computed with the Euclidean distance.

(d-i) White boxplots differentiate between two winter snapshots. Grey boxplots differentiates two summer snapshots. Black boxplots compare

winter and summer snapshots. Dotted lines represent the distance between winter and summer attractors (without designs) with N = 106

points. 18
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Figure 5. Snapshots of 10.000 points from the Lorenz 84 defined by Eq. (2). (a-d) The four seasons at time t= 0 year, t= 0.25y., t= 0.5y.

and t= 0.75y. (e-h) The same seasons, but after the triggering of the linear forcing, during year 180.
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Figure 6. Yearly averages Wasserstein distance between the reference attractor before forcing, and all other attractors. The x axis is the time,

the y axis the estimated Wasserstein distance. The blue (resp. red, green and purple) is the numbers of initial conditions (I.C.) for N = 50

(resp. 100, 1000 and 10.000). The vertical black line represents the instant when the linear trend is triggered in the forcing F (t).
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