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Abstract. We apply tipping point analysis to a large record of ocean acoustic data to identify the

main components of the acoustic dynamical system and study possible bifurcations and transitions

of the system. The analysis is based on a statistical physics framework with stochastic modelling,

where we represent the observed data as a composition of deterministic and stochastic components

estimated from the data using time series techniques. We analyse long-term and seasonal trends,5

system states and acoustic fluctuations to reconstruct a one-dimensional stochastic equation to ap-

proximate the acoustic dynamical system. We apply potential analysis to acoustic fluctuations and

detect several changes in the system states in the past 14 years. These are most likely caused by cli-

matic phenomena. We analyse trends in sound pressure level within different frequency bands and

hypothesise a possible anthropogenic impact on the acoustic environment. The tipping point analy-10

sis framework provides insight into the structure of the acoustic data and helps identify its dynamic

phenomena, correctly reproducing the probability distribution and scaling properties (power-law

correlations) of the time series.

Keywords. time series analysis — tipping point analysis — stochastic modelling — acoustic data

— El Niño15

1 Introduction

The Preparatory Commission of the Comprehensive Nuclear-Test-Ban Treaty Organization (CTBTO)

has established a global network of underwater hydrophones as a part of its hydroacoustic observa-

tions (others being seismic, infrasound, and radionuclide), with the goal of continuous monitoring

for possible nuclear explosions (CTBTO 2013). The CTBTO database provides several unique and20
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large oceanic acoustic records, covering more than ten years of continuous recording with a high

temporal resolution of 250 Hz. In this article, we study the records of the hydrophone H01W1 at

the Cape Leeuwin station. The hydrophone is located at a depth of about 1 km off the south-west

shore of Australia. We apply tipping point analysis and identify the main components of this acous-

tic dynamical system, which we then model, with reconstruction of the probability distribution and25

scaling properties (power-law correlations) of the observed data. Both the probability distribution

and scaling properties are important for ensuring that the model correctly represents the observed

data, because probability distribution characterises the range and frequency of time series values,

while scaling properties characterise their temporal arrangement (Kantelhardt et al 2002), (Livina

et al 2013).30

Tipping points in climatic subsystems have become a widely publicised topic of high societal

interest related to climate change; see, for example, (Lenton et al 2008). Applications of tipping

point analysis have been found in geophysics (Livina and Lenton 2007), (Lenton et al 2009),

(Livina et al 2010), (Livina et al 2011), (Livina et al 2012), (Lenton et al 2012a), (Lenton et al

2012b), (Livina et al 2013), (Cimatoribus et al 2013), (Livina et al 2013), statistical physics (Vaz35

Martins et al 2010), (Livina et al 2013), ecology (Dakos et al 2012), and structure health monitoring

(Livina et al 2014), (Perry et al 2016).

A stochastic model combining deterministic and stochastic components is a powerful yet simple

tool for modelling time series of real-world dynamical systems. Given a one-dimensional trajectory

of a dynamical system (the recorded time series), the system dynamics can be modelled by the40

stochastic equation with state variable z and time t:

ż=D(z,t)+S(z,t), (1)

where ż is the time derivative of the system variable z(t), andD and S are deterministic and stochas-

tic components, respectively. Component D(z,t) may be stationary or dynamically changing (for

instance, containing long-term and/or periodic trends). Many geophysical variables, which follow45

seasonal variability, can be approximated by a stochastic model

z(t) =T (t)+A(t)cos(2πφ(t))+Φ(t), (2)

where the trend T (t) is a real-valued function, such as a straight-line function of t, the second term

models seasonal variability, and Φ(t) is a stationary random process. As an example, Φ(t) can be

Gaussian white noise or a continuous autoregressive moving average random process of order (p,q).50

Similarly, (De Livera et al 2011) used a trigonometric Box-Cox transform with ARMA errors and

seasonal components.

The probability distribution of the trajectory (time series) of such a system, however complex it

may be, can in the majority of cases be approximated using a so-called system potential in the form

of a polynomial of even order. Tipping points can be identified in terms of the variability of the55

underlying system potential U(z,t), which defines (if it exists) the deterministic term in Equation
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(1): D(z,t) =−U ′(z,t). If the structure of the potential (the number of potential wells) changes, the

tipping point is a bifurcation. If the potential structure remains the same, while the trajectory of the

system samples various states, such a tipping point is transitional (Livina et al 2011). The stochastic

component, in the simplest case, may be Gaussian white or red noise, with possible multifractality60

and other nonlinear properties. The tipping point methodology is currently based on the techniques

of degenerate fingerprinting and potential analysis, which are described below.

2 Methodology

The tipping point analysis consists of the following three stages: 1) anticipating (pre-tipping, or

analysis of early warning signals), 2) detecting (tipping), and 3) forecasting (post-tipping).65

Anticipating tipping points (pre-tipping) is based on the effect of slowing down of the dynamics

of the system prior to critical behaviour. When a system state becomes unstable and starts a transi-

tion to another state, the response to small perturbations becomes slower. This critical slowing down

can be detected as increasing autocorrelations (ACF) in the time series (Held and Kleinen 2004).

Alternatively, the short-range scaling exponent of Detrended Fluctuation Analysis (DFA) (Peng et70

al 1994) may be monitored (up to 100 units, which in the case, for example, of daily data correspond

to 3.5 months, see (Livina and Lenton 2007)). The lag-1 autocorrelation is calculated in sliding

windows of fixed length (conventionally, half of the series length) or variable length (for uncertainty

estimation) along the time series, which produces a curve of an early warning indicator. This indica-

tor describes the structural dynamics of the time series. If the curve of the indicator remains flat and75

stable, the time series does not experience a critical change (whether bifurcational or transitional). If

the indicator rises to a critical value of 1 (the monotonic trend can be estimated, for instance, using

Kendall rank correlation), it provides a warning of critical behaviour.

Lag-1 autocorrelation is estimated by fitting an autoregressive process of order 1 (AR1):

zt+1 = czt+σηt (3)80

where η is a Gaussian white noise process of unit variance, σ is the noise level, and c= e−κ∆t is the

ACF-indicator with κ the decay rate of perturbations. Then, c→ 1 as κ→ 0 when a tipping point is

approached. In addition, the DFA method utilises built-in detrending of a chosen polynomial order,

which allows one to distinguish transitions and bifurcations in the early-warning signals. This can

be done by comparing several early-warning indicators, with and without detrending data in sliding85

windows (Livina et al 2012). The paper (Livina and Lenton 2007) provided the first application of

the DFA-based early warning indicator to the paleotemperature record with detected transition using

both ACF and DFA indicators.

Detecting and forecasting of a tipping point is performed using dynamical potential analysis. The

technique detects a bifurcation in a time series and the time when it happens, which is illustrated in90

a novel plot mapping by colour the potential dynamics of the system (Livina et al 2010), (Livina
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et al 2011). The dynamics of the tipping point is forecast using extrapolation of the dynamically

derived Chebyshev coefficients of the approximation to the probability density function of the system

trajectory (Livina et al 2013).

For the purposes of potential analysis, the dynamics of the system is approximated by a potential95

stochastic model with a polynomial U (which, in general, may depend on both state variable z and

time):

ż=−U ′(z,t)+ση, (4)

where ż is the time derivative of the system variable z(t), η is Gaussian white noise of unit variance

and σ is the noise level. In the case of a double-well potential, U can be described by a polynomial100

of 4th order (assuming its quasi-stationarity, with dependence on the state variable z only):

U(z) = a4z
4 +a3z

3 +a2z
2 +a1z, (5)

The Fokker-Planck equation for the probability density function p(z,t),

δtp(z,t) = δz [U ′(z)p(z,t)]+
1

2
σ2δ2

zp(z,t), (6)

has a stationary solution given by105

p(z,t)∼ exp
[
−2U(z)/σ2

]
. (7)

The potential can be reconstructed from time series data of the system using the following relation

to the probability density function:

U(z) =−σ
2

2
logpd(z), (8)

which means that the empirical probability density pd (kernel distribution) has a number of modes110

corresponding to the number of wells of the potential.

The structural changes of the potential are often not visible in the time series, yet they may lead

to a dramatic evolution of the system. Detecting such changes gives an advantage in understanding

of the dynamical system. The potential coloured map (Livina et al 2010) visualises bifurcations

according to the number of detected system states. It illustrates bifurcations as the change in the115

colour describing the number of states along all time-scales (the y-axis shows the length of the

sliding window of data for which the number of states is assessed). If no such pattern is observed,

there is no bifurcation in the time series.

This stochastic approximation of the system structural dynamics has remarkable accuracy for

data subsets of length as short as 400 to 500 data points, demonstrating above 90% rate of successful120

detection, as was shown in an experiment with double-well-potential artificial data (Livina et al

2011). For data subsets of length greater than 1000 data points it correctly detects the structure of

the potential with a success rate of over 98%.
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The technique of potential forecasting is based on dynamical propagation of the probability den-

sity function of the time series. We employ the coefficients of the Chebyshev polynomial approxi-125

mation of the empirical probability distribution and extrapolate them in order to forecast the future

probability distribution of the data. After reconstruction of the system kernel distribution, a time

series is generated using rejection sampling technique, and then the obtained dataset is sorted ac-

cording to the initial data in order to reconstruct the temporal correlations in the time series. The

detailed mathematical description of the potential forecasting technique is given in (Livina et al130

2013). The technique has the advantage of reproducing both static properties (probability density)

and dynamic properties (scaling exponent, or power-law correlations) of a time series.

3 Data

We study the large CTBTO record (2003-2016) of the Cape Leeuwin hydrophone, series H01W1,

which is a 250 Hz-sampled time series of ocean sound pressure. The raw data represents 3 Tb of135

binary waveforms, which after extraction constitute 95 billion points in the time series. We analyse

1-minute averages of sound pressure level (SPL) in five frequency bands (broadband, 10-30 Hz, 40-

60 Hz, 56-70 Hz, and 85-105 Hz), of about 7 million points per time series. This data has pronounced

seasonality and some small gaps, and therefore we perform interpolation and deseasonalisation of

all five time series, the result of which can be seen in Figure 1.140

The data samples were scaled using their calibration factors (provided by CTBTO), and an inverse

filter of the recording systems frequency response was applied to eliminate the effect of the acqui-

sition chain on the frequency response of the recordings. The Fast Fourier Transform of the signal

was computed using rectangular windows of 15 thousand samples (i.e. 1-minute-long intervals at

250 Hz sampling rate) and the broadband signal was then filtered in 5 frequency bands (5-115 Hz,145

10-30 Hz, 40-60 Hz, 56-70 Hz, 85-105 Hz) via selection of the corresponding FFT bins within each

frequency band. Then the resulting Sound Pressure Level (SPL) in dB re 1µPa2 for each frequency

band was calculated (Robinson et al 2014), (ISO 18405:2017). Finally, outliers, i.e. levels greater

than 20 dB from the average of the entire time series of SPL values, were removed.

Because of the data gaps, we interpolate the SPL data to achieve equidistant 1-minute temporal150

resolution. We then remove the seasonal periodicity by subtracting the averaged seasonal cycle over

the 14 years of observation to obtain the fluctuations

zi =Si− S̄i, (9)

where Si is the interpolated SPL data, and S̄i is the mean 1-minute interpolated SPL data. The

resulting fluctuations are shown in the right column of Figure 1, for the broadband and four selected155

sub-bands.
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Fig. 1. Initial (left column) and processed (right column) sounds pressure level data in five frequency bands.

Processing included interpolation and deseasonalisation. Note that seasonal variability is less pronounced in

the higher frequencies of the initial data. At the same time, the records of higher frequencies have declining

trend visible by eye.
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4 Results and discussion

We analyse the global trends of these five datasets, assuming the simplest linear model in a least-

square regression. To estimate the uncertainty in the trends, we apply the “jackknife” technique

(see (Efron 1982) and (Wu 1986)). We use the “delete-d” variation of the method, with random160

subsampling and numerical implementation reducing the number of required samples, which allows

to estimate variance of the trend as

v=
r

dm

m∑
t=1

(
Tr,st−

1

m

m∑
k=1

Tr,sk

)2

, (10)

where d is the number of the excluded datapoints in each sample (“delete-d”) of length r=n−d (n

is data length), T are statistics of the trend estimator, see further details in (Shao and Tu 1995).165

The resulting trends show a small annual decline in SPL for all five datasets, as shown in Figure 2.

Fig. 2. Trend estimation in SPL bands (deseasonalised data) using “delete-d” jackknife sampling with 1000

subsets with d=10000 randomly deleted datapoints. Blue dots show the slope with corresponding jackknife

uncertainties of the least-square linear regression, whereas red dots show the trend (the absence of it, with zero

slopes of linear regression) for the shuffled data, i.e. the data with randomly allocated values of the time series.

The above trend analysis was applied to deseasonalised fluctuations (SPL broadband). It is inter-

esting that the average annual cycle of the initial broadband data, too, has declining trend, which is

illustrated in Figure 3.170

The origin of the seasonality in the acoustic data from a hydrophone installed at depth is a subject

of discussion, because the seasonal ocean temperature fluctuations at the surface would barely influ-

ence the sound propagation towards hydrophones. There are various possible mechanisms through

which seasonal variability may manifest in the hydroacoustic data. For example, seasonal variations

in shipping frequency, recreational vehicle use, iceberg breakup. Seasonally, there may be a slight175

warming/cooling in the top few tens of metres of water surface layer, but at the depth of the SOFAR

(Sound Fixing and Ranging) channel temperature is stable on a seasonal timescale. Some seasonal
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Fig. 3. Average annual cycle of the SPL broadband, its linear regression line (red) and horizontal line (cyan)

for comparison.

effects in the sound record may be originating from iceberg formation as the edges of the Antarc-

tic, as there are slightly faster ice crumbling in the southern-hemisphere summertime. Furthermore,

seasonal variations in whale song are plausible, as well as in fauna migration due to seasonal fluctu-180

ations in food supply.

We next apply the pre-tipping analysis (early warning signals) to analyse lag-1 autocorrelations

and variance of the broadband SPL record, with estimation of uncertainty. We vary the length of the

sliding windows for calculating these indicators between 1/4 and 3/4 of the record length to obtain

the averaged curves and standard uncertainties and display the indicator values at the end of each185

window, as shown in Figure 5.

The noticeable change at the end of these early-warning indicators may be related to the unusually

large El Niño event of 2015-2016. One can see that the variance decline slows down and autocor-

relation sharply rises, which means that the increase in memory is not accompanied by increasing

amplitude of acoustic fluctuations. Such effects may happen when a dynamical system experiences190

critical slowing down prior to a bifurcational tipping. As we hypothesise that the El Niño signature

may be related to changes in both oceanic dynamics and fauna, the increasing memory in the acous-

tic data may reflect, for instance, the observation that during the El Niño the Cape Leeuwin current
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Fig. 4. Early-warning indicators of the broadband SPL dataset: lag-1 autocorrelation (upper panel) and variance

(lower panel), calculated with variable window lengths, from 1/4 to 3/4 of the record length, and correspond-

ing standard uncertainties, displayed at the end of each window. Both indicators demonstrate nonstationary

behaviour (increasing autocorrelation and decreasing variance), which denotes long-term development of a

possible tipping in future.

slows down (Feng et al 2003). The slower ocean current introduces more inertia in the dynamical

system, and therefore higher temporal memory/autocorrelations.195

Similarly to CTBTO data, the effect of increasing autocorrelation and decreasing variance was

earlier observed in bifurcating artificial data changing from white noise to random walk, in (Livina

et al 2012). The acoustics dynamics may be undergoing a similar tipping. Note that this analysis

of early warning signals is performed with large enough windows (starting from length of 3 years

up to 9 years), which identify large-scale variability, with possible dynamics on the scale of decades200

ahead.

Further, we apply potential analysis to identify smaller-scale variability, varying the length of the

sliding window from three days to one year. The resulting potential plot is shown in Figure 5.

El Niño/Southern Oscillation (ENSO) can be monitored using several indices, which are obtained

by averaging climatic variables to make the presence of El Niño more visible in the series. We show205
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Fig. 5. Upper panel: potential analysis plot of the broadband SPL data, with varying window length (y-axis) from one day

to one year. The colours denote the number of detected potential states: green two, cyan three. Specks of magenta denote

very short periods of a higher number of states, which correspond to highly variable (possibly non-potential) subsets of data

of small size. Middle panel: ENSO indices ONI and SOI, known to be anti-correlated, which indicate several ENSO events

(El Niño and La Niña). These can also be seen in the potential analysis plot. ONI positive and negative values (roughly

corresponding to El Niño and La Niña) are shaded by light red and light blue respectively, for better comparison with the

indices in the lower panel. Lower panel: binary indices derived from the ONI index and potential plot (at the level 0.5 year of

y-scale in the top panel) which have values 1 when there is an El Niño (in the case of ONI-based binary index) or anomalous

potential state (in the case of the potential binary index).

in Figure 5 two of them: Southern Oscillation Index (SOI) and Oceanic Niño Index (ONI). SOI is

based on the sea level pressure differences between Tahiti and Darwin, Australia. ONI is based on

the 3-month running mean of sea-surface temperature anomalies ERSST.v4 SST (Huang et al 2014)
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in the Niño 3.4 region (NOAA SOI index). Negative SOI (positive ONI) correspond to El Niño

events, characterised by warm SST in the eastern and central tropical Pacific (Trenberth and Caron210

2000). We calculate, for easier comparison of El Niño indices and potential analysis, two binary

indices derived from the ONI index and from the single level of the potential plot at the scale 0.5 yr.

The bars in the bottom panel of Fig. 5 show the occurence of El Niño events in the ONI index (which

is less noisy than SOI), and at the same time we plot a binary index showing periods when the system

potential does not follow its “regular” three-well-potential pattern; these two indices have agreement215

in several periods corresponding to the known El Niño events (2003, 2004, 2006, 2009, 2015-2016),

which illustrates our hypothesis of the El Niño signature in the acoustic data.

The vertical span of the features of the potential plot (the specks of different colours) correspond

to the time scale of the change, i.e. the size of the time window, within which the change has been

detected. As El Niño is a seasonal phenomenon (except the unusually long event of 2015-2016),220

most of such specks are located within the window of size one year. The large event of 2015-2016,

indeed, extends higher than that. To address this time scale, we derived the binary potential index

using the detection data at fixed time scale of 0.5 year, at which most El Niño events should be

present in the detection statistics.

We do not claim that the potential colour plot could be used for early warning signals (such as225

prognosis of El Niño), in this system or in others. Moreover, there may be other factors causing

structural changes in the acoustic data, rather than El Niño or La Niña. On the other hand, detection

of such changes, indeed, can be useful for other studies that could investigate attribution of structural

variability, and here the technique of potential analysis might be very useful.

230

To understand better what dynamical changes occur in the acoustic fluctuations, it is useful to plot

the histograms of the corresponding subsets of data. Figure 6 demonstrates the difference between

the 2-well-potential (first part of the year 2016) and the 3-well-potential (second part of the year

2016) subsets, which correspond to green and cyan areas in the top panel of Figure 5.

The variability of the potential can be understood as appearance and disappearance of the SPL235

fluctuations, which are present in the 3-well-potential subsets and disappear in sub-periods of 2-

well-potential dynamics. These periods of change seem to coincide with some of the recent El Niño

events, in particular the strong oscillation in 2015-2016. Since in these short periods data become

two-well-potential during El Niño, one can hypothesise that the El Niño event reduces acoustic

fluctuations events in the tails of the probability distribution (higher and lower values) and intensifies240

the events in the middle range of values.

It is known (Feng et al 2003) that the Leeuwin Current is influenced by El Niño, which causes

lower temperature and slower current. This causes a number of climatic and environmental changes

(including the impact of El Niño on sea level, current transport, and migration of marine animals),

and this may affect the acoustic signal. In particular, the local sea bottom slopes near Cape Leeuwin245
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Fig. 6. The difference between 2-well-potential (first half of the year 2016, black curve) and 3-well-potential

(second half of 2016, red curve) subsets of the broadband SPL record in the two upper panels. In the lower

panel, the build-up of the new potential well can be seen in the red histogram, where the main mode becomes

broader and starts building two new modes around SPL values -3 and 0 dB re 1 Pa2 (deseasonalised SPL data).

are very steep, with large underwater peaks (see Figure 4 in (Feng et al 2003)), which may be

inducing reflection and scattering of the acoustic signal at greater depths, where the hydrophone is

located.

Because the considered data is obtained from a hydrophone oriented in the west direction (towards

the Indian ocean), one would expect very little influence on distant deep sources in predominantly250

west or south-westerly direction as their ray paths sample mostly the non-shallow ocean far removed

from the coast and only passing through the Leeuwin Current at the last stage. But for surface-

originating sounds from other directions there may well be an impact: where the sea bottom slopes

through the SOFAR channel, particularly if it does so steeply, surface sounds and seismic waves

can be reflected or refracted into the SOFAR channel. Note that on account of the lower speed of255

sound in water compared to rock, refraction is towards the normal for seismic waves coupling into

water so such coupling is not efficient for a mostly horizontal sea bottom: the hydrophone array

will predominantly see seismic waves that impinge close-to-vertically from below (have a small

slowness, high apparent velocity across the array) which are subsequently scattered by the wavy sea
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surface instead of propagating coherently onwards. Hence steep slopes couple better.260

The detailed analysis of directional acoustic propagation is out of scope of the current paper and

may be analysed later elsewhere.

Finally, we analyse the scaling properties of the deseasonalised fluctuations of the broadband

SPL to identify the type of noise present in this dynamical system. When the noise is white, the

Detrended Fluctuation Analysis (DFA) scaling exponent has value 0.5, whereas red noise has values265

of the exponent higher than 0.5 (Peng et al 1994), with nonstationary red noise having exponent

higher than 1 (random walk has exponent 1.5). The scaling exponent is estimating by fitting the

fluctuation curve F (s)∼ sα in a log-log plot, as shown in Figure 7. The variable ’s’ is the scale size

of the DFA, which is the size of the varying window where the fluctuations are estimated. For more

details on the DFA method, we refer the reader to (Kantelhardt et al 2002).270

When we apply the scaling analysis to the deseasonalised broadband SPL, in both short and long

temporal range it has a high exponent (about 0.9), which means that the acoustic fluctuations are

stationary red noise, and this is how they should be modelled to represent accurately the stochastic

term in Eq. (1).

It is important to model the climatic variables with colour noise rather than with basic white noise,275

especially when a system like this exhibits highly correlated long-term persistence (as estimated by

DFA in Fig.7 with α= 0.96). The pattern of such fluctuations differs significantly from the pattern of

the white noise: the persistent data (’with memory’) is likely to have positive fluctuations tomorrow

if today the fluctuations are positive. The scaling methods, such as DFA, allow one to quantify this

effect, and detect the changes in the data that are not visible in time series by a naked eye, as it is280

illustrated in Fig. 4. If one uses white noise for modelling such complex data, the ability to analyse

such data and forecast the system dynamics would be much reduced, with poor skill.

5 Model

Acoustic noise at the depth of one kilometre can be influenced by multiple factors of natural and

anthropogenic origin, and we investigate some of the possible components that could represent the285

dynamics of the acoustic system. While there may be various equivalent models reproducing the

observed time series, we choose the simple stochastic dynamic system which generates simulated

time series with very close statistical properties.

Based on the above analysis, we can formulate a stochastic model for the acoustic oceanic noise.

We adopt an additive model with the following terms:290

ż=−U ′(z,t)+T (t)+P (t)+Φ, (11)

where U(t) is the system potential, T (t) is a long-term linear trend, P (t) is a seasonal trend, and

Φ are red-noise fluctuations. In Equation 11, we use time as the main variable of the time series,

assuming that only the shape of the potential U is defined by the state variable z as described above.
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Fig. 7. Detrended Fluctuation Analysis scaling curve of the broadband SPL, with estimated scaling exponent

values. The values are higher than 0.5, hence the noise is not white but red (with presence of correlations); the

exponent is slightly smaller than 1, which means that the fluctuations are stationary (unlike a non-stationary

random walk).

The parameters of the model (the global trend slope, the amplitude of the seasonality, the coefficients295

of the potential, the scaling exponent of the fluctuations and the dynamics of its autocorrelation and

variance) can be derived from the data and used for simulating artificial data for comparison. Such

stochastically-modelled artificial data can be used for a long-term forecast of acoustic data and for

testing various hypotheses of the hydroacoustic dynamical system. For simplicity, we illustrate this

with a triple-well potential term U(t), and further parameters derived from the broadband SPL. We300

show five subsamples of the SPL broadband data in Figure 8, where observed and modelled time

series are compared (left column), as well as their fluctuation curves (right column).

The model (11) is a version of the nonautonomous Langevin equation, which was previously used

in analysis of paleodata, see for example (Ditlevsen et al 2005), although paleodata has different

temporal resolution and patterns. This illustrates the flexibility of the stochastic modelling approach305

and its general applicability.
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Fig. 8. Five samples of SPL data (real – black, modelled – red). Left column: samples of data; right column –

DFA scaling curves. The thin line in the panels of the right column denotes the slope with scaling exponent 1,

to which the curves are very close. The modelled data has the same probability density and scaling properties

as the real data.

Conclusion

We have applied tipping point analysis and identified deterministic and stochastic components of the

ocean acoustic data. We have discovered a possible signature of El Niño in the deep-ocean acoustic

data, which is an interesting observation confirmed by both potential analysis and direct estimation310

of the probability density function of the broadband SPL. Given that the hydrophones are located

at depth, and the number of factors influencing the hydroacoustic system in conjunction with the

global climate system is large, the investigation of the transitional mechanisms between the surface

multiannual phenomena and deep-water acoustic processes may be a subject of a separate paper. The

current dynamics of the acoustic fluctuations, which demonstrate slow but steady changes in early315

warning indicators, gives indication of an upcoming tipping point in this hydroacoustic system, with

possible appearance/disappearance of system states, which in this context denote higher/lower SPL

fluctuations. Because Cape Leeuwin is a busy shipping junction in world trade, and as trading

processes intensify (at the same time requiring more modern ships, with more efficient and less

noisy engines), we hypothesise that frequency ranges of the oceanic acoustic noise will be affected320
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unequally, due to multiple factors related to anthropogenic activities.

In (Sardeshmukh et al 2015), the authors consider extreme weather statistics and warn against

seeking anthropogenic components in data with heavy-tailed non-Gaussian distributions. In agree-

ment with their opinion, we do not attempt to introduce an anthropogenic term in our model. How-

ever, the acoustic impact of shipping and other anthropogenic factors on the marine wildlife have325

already been reported: antropogenic sounds affect vocalizing baleen whales, with distance of impact

up to 200 km (Risch et al 2012): such disturbances cause behavioural changes in large animals, and

consequently reduce their acoustic presence in the area of observation.

Some frequency bands may decrease in level because of the technological changes: new develop-

ments in quieter engine technology, establishment of noise mitigation standards, and renewal of the330

fleets. In particular, there is global large-scale replacement of heavy-tonnage ships, where in some

categories, like cargo, containers and bulk curriers ships of age above 25 years are no longer present,

see the report of the European Maritime Safety Agency (EMSA 2015).

Other potential causes of trends in ocean noise levels include changes in the frequency of other

anthropogenic sources such as geophysical surveying, changes in the number and distributions of335

biological sources such as large cetaceans, changes in natural sources of sound such ice breaking

and ice formation, and changes in the ocean environment which may affect the propagation of sound

(for example, sea temperature).

By taking into account all the components of the proposed model (11), i.e. the global trend, the

seasonal trend, the asymmetric system potential structure, and the long-term correlated red noise,340

one can reproduce the considered acoustic data. Our analysis allows one to understand these main

components and derive their specific parameters, which are then used to forecast data, and thus

validate our understanding of this dynamical system. Indeed, there may be other models that can

produce similar structure of time series. The advantage of our model is its simplicity and adequate

representation of the main geophysical processes of this dynamical system.345

The hypothesis of the possible influence of El Niño appeared in the course of our research and

was unexpected. Therefore, our modelling approach, in principle, is capable of discovering such

interesting signatures in the data for further investigation. This demonstrates the capability of the

proposed data analysis, on its part, to stimulate geophysical research.
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