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Abstract. We studied the temporal evolution of fractality for geomagnetic activity, by calculating fractal dimensions from Dst

data and from an MHD shell model for a turbulent magnetized plasma, which may be a useful model to study geomagnetic

activity under solar wind forcing. We show that the shell model is able to reproduce the relationship between the fractal

dimension and the occurrence of dissipative events, but only in a certain region of viscosity and resistivity values. We also

present preliminary results of the application of these ideas to the study of the magnetic field time series in the solar wind5

during magnetic clouds. Results suggest that the fractal dimension is able to characterize the complexity of the magnetic cloud

structure.

Copyright statement. TEXT

1 Introduction

The nontrivial interaction between the Sun’s and the Earth’s magnetosphere, coupled by the solar wind, leads to a rich variety10

of phenomena which has attracted interest to the study of space plasmas for decades, and more recently to the possibility of

forecasting of space weather, an issue of large relevance in our increasing technology-dependent society.

Various models and techniques have been developed to study the plasma behavior in the Sun-Earth system. Of these, the

study of complexity has been of great interest, as they are capable of providing new insights and reveal possible universalities

on issues as diverse as geomagnetic activity, turbulence in laboratory plasmas, physics of the solar wind, among others. (Dendy15

et al., 2007; Klimas et al., 2000; Takalo et al., 1999; Chang and Wu, 2008; Valdivia et al., 1988). In particular, these studies have

shown that systems such as the magnetosphere (Chang, 1999; Valdivia et al., 2005, 2003, 2006, 2013), the solar wind (Macek,

2010), the solar photosphere, and solar corona (Berger and Asgari-Targhi, 2009; Dimitropoulou et al., 2009), are in a self-

organized critical state, and exhibit complex features such as fractality and multifractality. Some authors have discussed the

relationship between the fractal dimension, as a measure of complexity, and physical processes in magnetized plasmas in the20

Sun-Earth system, including the possibility of forecasting geomagnetic activity (Aschwanden and Aschwanden, 2008; Uritsky
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et al., 2006; Georgoulis, 2012; McAteer et al., 2005, 2010; Dimitropoulou et al., 2009; Conlon et al., 2008; Chapman et al.,

2008; Kiyani et al., 2007).

In our work we use the box-counting fractal dimension (Addison, 1997), because of its simplicity and its intuitive meaning.

Certainly, a single fractal dimension cannot provide all information on complexity for arbitrary systems, in particular if they

also exhibit multifractal behavior as well, as expected in the magnetospheric system (Chang, 1999), models of turbulence5

(Kadanoff et al., 1995; Pisarenko et al., 1993), and the solar wind (Chapman et al., 2008); but it is interesting to note that

it does describe some relevant features of these time series’ complexity, as it has been successfully used in previous works

relevant to the Sun-Earth system (Osella et al., 1997; Kozelov, 2003; Gallagher et al., 1998; Georgoulis, 2012; Lawrence et al.,

1993; Cadavid et al., 1994; McAteer et al., 2005). Furthermore, the box-counting dimension is a fast approach to systematically

study our systems of interest, and a first step to detect universal features worth of further study.10

It is also worth noting that the fractal dimension we calculate is based on a scatter diagram (see e.g. (Witte and Witte, 2009)),

whereas previous studies have been done with other methods or data (Kozelov, 2003; Uritsky et al., 2006; Balasis et al., 2006;

Dias and Papa, 2010).

These ideas were implemented by us in Ref. (Domínguez et al., 2014) to study the Dst time series and solar magnetograms,

and the possible correlation between solar and geomagnetic activities as evidenced by the box-counting fractal dimension.15

Individual events, complete years of high geomagnetic activity, and the full 23rd solar cycle were studied with this technique,

successfully finding that the fractal dimension, and more specifically its evolution, has —despite its simplicity— relevant

information on the complex behavior of these systems and their eventual correlation.

Results above were robust, in the sense that they were observed across a wide range of time scales, which suggests that any

model describing the dynamics of geomagnetic activity should reproduce a similar fractal behavior. This is our motivation to20

study a shell model for MHD turbulence within this framework.

Evidence of turbulence in the Earth’s magnetosphere has been found by various spacecraft observations (Nykyri et al., 2006;

Sundkvist et al., 2005; Zimbardo et al., 2008), and several authors have studied magnetospheric MHD turbulence (see, e.g.,

Borovsky (2004); Hwang et al. (2011); El-Alaoui et al. (2012)). One interesting approach has been the proposal of analytical

models depending on few degrees of freedom, which nevertheless retain relevant statistical properties of the magnetospheric25

behavior, such as the power-law distribution and multifractal features of dissipative events (Chapman et al., 1998; Valdivia

et al., 2006).

Shell models constitute an intermediate level between such models and first principles approaches. They are low dimen-

sional models, based on a system of coupled equations mimicking the spectral Navier-Stokes equation, and have been used

to describe turbulence in magnetized fluids, describing the main statistical properties of magnetohydrodynamic (MHD) turbu-30

lence (Chapman et al., 2008), without the computational cost of performing high Reynolds numbers simulations directly from

the fully nonlinear fluid equations (Ditlevsen, 2011).

Dissipative events in shell models have been shown to follow the same power-law statistics of observed events in turbulent

magnetized plasmas, as found in Refs. Boffetta et al. (1999); Lepreti et al. (2004); Carbone et al. (2002), where dissipative
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events in the model were taken to represent solar flares. In fact, these works suggest that flares and geomagnetic activity should

be the result of dissipation bursts within a turbulent environment (Lepreti et al., 2004)

In a previous work (Domínguez et al., 2017), we have applied the box-counting fractal dimension to study the complexity

in an MHD shell model, analyzing the correlation between it and the energy dissipation rate, showing that, for certain values

of the viscosity and the magnetic diffusivity, the fractal dimension exhibits correlation with the occurrence of bursts, similar to5

what had been found with geomagnetic data (Domínguez et al., 2014). This suggests that shell models do not only reproduce

the power-law statistics of dissipative events in turbulent plasmas, but also some features of its fractal behavior.

In this manuscript we review our results in this field, where the fractal dimension is calculated in order to measure complexity

in magnetic field times series. The method is used to characterize the occurrence of events such as geomagnetic storms by

means of analyzing the Dst time series in various time scales (described in Secs. 2–8, and discussed previously in more details10

in Domínguez et al. (2014)), and the occurrence of dissipative events in an MHD shell model simulation (Secs. 6–7, see

Domínguez et al. (2017) for more details). We also present preliminary results dealing with spacecraft data for the solar wind,

related to the appearance of magnetic clouds (Muñoz et al., 2016) (Sec. 8).

2 Fractal dimension

We are interested to estimate the fractal dimension to various time series for magnetic data. We now explain the method, using15

as an example the hourly Dst time series (World Data Center for Geomagnetism, Kyoto).

There are various ways to define a fractal dimension for a time series (Addison, 1997; Theiler, 1990). Although there is no

simple way to relate different definitions, in general it can be said that they are noninteger numbers measuring the complexity

of a data set. In this work, we estimate the fractal dimension using the box-counting method (Addison, 1997) in the way we

now describe. First, we construct a scatter diagram for each Dst time series. If Dsti is the i-th Dst datum in the series and N is20

the total number of data, the scatter diagram is a plot of Dsti+1 versus Dsti, for 1≤ i≤N − 1, as shown in Fig. 1.
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Figure 1. Scatter diagram for the hourly Dst time series corresponding to the first storm state (6 to 20 March) 1989. (More details in Sec. 3.)

The size of the square box is ε.

3

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-47
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 7 August 2017
c© Author(s) 2017. CC BY 4.0 License.



Then, the scatter diagram is divided into square cells of a certain size ε, and we count the numberN(ε) of cells which contain

a point belonging to the set. Finding the range of values of ε where log(N(ε)) scales linearly with log ε, the scatter diagram

box-counting dimension D is then defined by the slope in this linear regime, that is,

N(ε)∝ ε−D , (1)

We estimate the error in D through the least squares fit for the slope.5

Further details and discussion on the method can be found in Ref. Domínguez et al. (2014).

It is clear that, in order to calculate D, a certain time frame of the dataset must be chosen. Given the time windows chosen

for Dst

The method as stated above was applied to the Dst time series where, given the width of the data windows used (the criterion

is discussed in Sec. 3) and the time resolution of the data (one point per hour), it only made sense to build the scatter plot with10

consecutive data points.

However, when resolution is larger, as is the case with simulation and solar wind data, it is possible to consider different time

delays. Thus, the scatter plot can be built by plotting the i-th data in the set, versus de (i+j)-th data, with j ≥ 1 in general, and

then the fractal dimension calculated depends on j, Dj . This was the approach in Refs. Domínguez et al. (2017) and Muñoz

et al. (2016), and presented here in Secs. 6 and 8.15

3 Dst time series: Storm and quiet states

We first apply this technique to quiet and active periods with magnetic storms in order to investigate the relationship between

the intensity of the Dst index and its fractal dimension, a relationship which has also been suggested by other studies of the

complexity of the Dst series. (Balasis et al., 2009; Papa and Sosman, 2008)

Following Ref. Domínguez et al. (2014), we identify “storm states” and “quiet states” by locating peaks in the Dst series20

where Dst <−220 nT, and then a “storm state” is defined by a window starting one week before the minimum value of the

peak, and ending one week after it. This is done considering the typical time scale of a geomagnetic storm (Tsurutani and

Gonzalez, 1994; Gonzalez et al., 1994). Then, the “quiet state” corresponds to the period of time between two “storm states”.

Figure 2 illustrates this by showing the four peaks detected in 1989 and the corresponding windows.

For future identification, we label each state in a year with consecutive integer numbers, starting from 1. For instance, in25

Fig. 2, the year starts with a quiet state, then that will be state “1”; the following state will be a storm, and it will be state “2”.

Thus, all future quiet states within the year will be labeled with consecutive odd numbers, whereas storm states will be labeled

with consecutive even numbers.

The box-counting dimension for each storm and quiet state, calculated as described in Sec. 2, is shown in Fig. 3. Red circles

indicate storm states. Error bars in D are given by the error of its least squares linear fit.30

Similar plots for 5 years of high geomagnetic activity were obtained (Domínguez et al., 2014). In general, it is found that

storm states have smaller fractal dimension than the surrounding quiet states, although there does not seem to be a clear
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Figure 2. Dst time series for 1989, identifying the storm and quiet states as explained in Sec. 3. The solid horizontal line shows the average

value, and the dashed horizontal line the threshold value used to identify a geomagnetic storm. Red dots show the minimum Dst value used

to identify a “storm state”. Red and black arrows show windows corresponding to storm and quiet states, respectively.
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Figure 3. Box-counting dimension D for storm and quiet states for year 1989. The abscisa represents the labeling of the states as explained

in Ref. 3. Red circles indicate storm states.

correlation on the value of Dst itself, and the fractal dimension, as shown in Fig. 4 for all states, for all years studied in

Domínguez et al. (2014). No obvious correlation is found if individual years are considered either. Thus, our statement on the

decrease of the fractal dimension is an argument on its variation, rather than on its actual value.
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Figure 4. Mean value of Dst for each state as function of the box-counting dimension D with respective error bars (calculated as in Fig. 3),

for five years of high geomagnetic activity: 1960, 1989, 2000, 2001, and 2003.
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4 Dst time series: Variable width windows around a storm

If the qualitative connection between fractal dimension and existence of a storm observed in Sec. 3 is robust, then widening

the window around a storm should increase its fractal dimension, as more “quiet” data are taken into account.

To this end, we take windows starting/ending n weeks before/after the peak, with n= 1, . . . ,6. We illustrate this in Fig. 5,

where the windows considered around the 13 March 1989 storm are shown.5
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Figure 5. Variable size windows around the 13 March 1989 storm (peak at abscissa 1729). The plot shows the Dst index as a function of

time, measured in hours since the beginning of the year.

Figure 6(a) shows the results for four particular storms: 1 April 1960, 13 March 1989, 6 April 2000, and 30 March 2001, with

minimum intensities of −327 nT, −589 nT, −288 nT, and −387 nT, respectively. These storms have been chosen because they

are isolated, so that windows can be enlarged (up to four weeks on each side) without including new “storm states” (Domínguez

et al., 2014).
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Figure 6. (a) Box-counting dimension D for a storm state with respective error bars, as a function of the width of the window around it. (b)

Mean value of Dst for each variable width window around the same storms in (a), as function of the box-counting dimension with respective

error bars.

Consistent with the results in Sec. 3, the box-counting dimension increases as we zoom out from the storm, which means10

that the relevance of the storm itself within the window decreases. This is confirmed by plotting the mean value of Dst in
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a window as a function of D, for the same storms. This is shown in Fig. 6(b). We expect that increasing the window width

should increase not only the value of D as noted above, but also the average value of Dst for the same reason, and thus D and

〈Dst〉 should be positively correlated. This is confirmed in Fig. 6(b). The breaks in the linear behavior for some curves can be

explained by the existence of nearby peaks close to the storm studied, as explained in detail in Domínguez et al. (2014).

5 Dst time series: Moving windows across a storm5

We now calculate the fractal dimension for fixed width windows (two weeks), initially placed well before the storm peak, and

move it in steps of one week crossing the peak. This will give us a better intuition on the evolution of the fractal dimension in

time, in particular during a storm. The initial position of the window is the first day of the year, and it is moved until it reaches

the third week after the peak (see Fig. 7).
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Figure 7. Moving windows across a storm (13 March 1989).

Figure 8 shows the results for the fractal dimension for the 13 March 1989 storm, comparing it with the Dst index.10
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Figure 8. Box-counting dimension D (blue, with error bars) and Dst index (red) for the 13 March 1989 geomagnetic storm. Vertical lines

show windows of data where D decreases before the storm.

For all cases studied (Domínguez et al., 2014), the box-counting dimension of the Dst index decreases as the storm ap-

proaches. However, it is very interesting to note that we have a noticeable change in the fractal dimension, even before the

window contains any point of the geomagnetic storm. This is illustrated in Fig. 8, where two vertical lines indicate the window

of Dst immediately before the storm. The storm is not included in the window, however the fractal dimension has already

started to decrease.15

In Domínguez et al. (2014), systematic calculations of cross correlation between Dst and D were performed for all storms

analyzed, and for the same five complete years studied in that paper (1960, 1989, 2000, 2001, 2003), which have already been
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analyzed, but only near geomagnetic storms. Results suggest that the box-counting dimension consistently decreases when the

storm approaches, thus suggesting that the box-counting dimension of the Dst series, or similar measures of complexity, could

be of relevance when forecasting geomagnetic storms.

We also studied the possible correlation between the fractal dimension and measures of solar activity, to investigate whether

this simple measure of complexity yields any information about the connection between solar and geomagnetic activities. In5

particular, we considered the solar flare index (Ataç and Özgüç, 1998; Özgüç et al., 2003) and the coronal index (Rybanský

et al., 2001; National Geophysical Data Center (NOAA), Solar Data Services), which are measures of energy released from

the Sun.

Results are shown in the left panel of Fig. 9 for the solar flare index, and in the right panel of the same figure for the coronal

index, using a moving windows approach over the 13 March 1989 storm, the same storm we have described in the previous10

sections. Similar analyses were performed for events in 2000 and 2001, as shown in Domínguez et al. (2014). It is found

that even for solar flare events of different intensities, periods of large solar flare index are accompanied by a decrease in the

fractal dimension D of the Dst time series. In the case of the coronal index, results suggest that one or two weeks before the

minimum value of D, which corresponds to the storm, there is a maximum in the coronal index. However, this is only clearly

seen regarding positions of maximum/minimum values. A more detailed correlations analysis, using daily coronal index data15

does not show any particular signature.
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Figure 9. Box-counting dimension D (with error bars) corresponding to the Dst index, along with the total solar flare (sum of northern and

southern hemispheres indexes) (left panel) and coronal (right panel) indexes for the storms: 13 March 1989, with moving windows.

We observe that two different estimations of solar activity are correlated to some extent with D, thus suggesting a link

between the solar activity and the fractal features of the Earth’s magnetosphere. Certainly, one should probably not expect to

find a single index to reveal this, as geomagnetic dynamics may be mostly but not exclusively determined by solar behavior, and

several other correlated pairs have been proposed (Yurchyshyn et al., 2004), but it is interesting to notice the overall consistency20

of the results, at least when a correlation can be observed.

6 MHD Shell Model

Given the intrinsic difficulties in using direct numerical simulations to describe turbulent flows, specially for large Reynolds

numbers, shell models have been used for years in order to reproduce the nonlinear dynamics of fluid systems in large dynam-

ical ranges, but with less degrees of freedom (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988). An MHD shell25
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model (Boffetta et al., 1999), in particular, is a dynamical system which aims to reproduce the main features of MHD turbu-

lence. The model corresponds to a simplified version of the Navier-Stokes or MHD equations for turbulence, that conserves

some of its invariants in the limit of no dissipation.

In this work, we use the MHD GOY shell model, which describes the dynamics of the energy cascade in MHD turbu-

lence (Lepreti et al., 2004). The model is built up by dividing the wave-vector space (k-space) in N discrete shells of radius5

kn = k02n (n= 0,1, . . . ,N ). Then, two complex dynamical variables un(t) and bn(t) representing velocity and magnetic field

increments on an eddy scale l ∼ k−1
n , are assigned to each shell.

The model consists of the following set of ordinary differential equations:

dun
dt

=−νk2
nun + ikn (un+1un+2− bn+1bn+2)− ikn

{
1
4

(un−1un+1− bn−1bn+1)+
1
8

(un−2bn−1− bn−2un−1)
}∗

+ fn ,

(2)

dbn
dt

=−ηk2
nbn + ikn

1
6

(un+1bn+2− bn+1un+2)− ikn
1
6
{(un−1bn+1− bn−1un+1)+ (un−2bn−1− bn−2un−1)}∗ + gn ,

(3)

10

where ν and η are, respectively, the kinematic viscosity and the resistivity; fn and gn are external forcing terms acting, re-

spectively, on the velocity and magnetic fluctuations. The nonlinear terms have been obtained by imposing quadratic nonlinear

coupling between neighbouring shells and the conservation of three MHD ideal invariants (Gloaguen et al., 1985; Lepreti et al.,

2004).

The forcing terms are calculated according to the Langevin equation15

df̃n
dt

=− f̃n
τ0

+ µ̃ , (4)

where f̃n = fn or gn, τ0 is a characteristic time of the largest shell and µ̃ is a Gaussian white noise of width σ.

The magnetic energy dissipation rate is defined as

εb(t) = η

N∑

n=1

k2
n

∣∣b2n
∣∣ . (5)

In our simulation, we set σ = 0.01, τ0 = 0.25, take N = 19 shells, and force the system on the largest shell (f1,g1 6= 0).20

Similar parameters have been considered in previous studies using this model for modelling of solar flares statistics (Boffetta

et al., 1999; Lepreti et al., 2004; Nigro et al., 2004).

We numerically integrate the shell model Eqs. (2)–(3) for various values of ν and η, and then we calculate the magnetic

energy dissipation rate εb(t) (Eq. (5)).

Figure 10 shows a typical time behavior for εb(t).25

Previous works have compared the statistics of bursts in turbulent systems with the statistics of dissipative events in the

shell model (Boffetta et al., 1999; Lepreti et al., 2004; Carbone et al., 2002). There, peaks in the εb(t) time series have been

associated to dissipative events in the magnetized plasma. Following the ideas in Ref. Domínguez et al. (2014), we focus only

9
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Figure 10. Time series of the energy dissipation rate εb(t), Eq. (5) for the shell model with ν = η = 10−4. The red and blue region inside

the dashed box corresponds to an active state, as explained in Sec. 7.

on the largest peaks in the εb(t) time series, specifically, on dissipative events where the maximum value is larger than 〈εb〉+nσ̃
where 〈εb〉 is the average value of εb over all simulation time, σ̃ is the standard deviation of the εb time series in that window,

and n is a certain integer. In this paper we discuss only results for n= 10, but in Ref. Domínguez et al. (2017) n= 5 was also

considered, in order to assess the robustness of the results. Our aim is to study the dependence of the conclusions on ν and η

in Eqs. (2) and (3).5

7 Active and quiet states in the MHD shell model

We now apply the same techniques used to study the Dst index, as described in Secs. 3–8, to the εb(t) time series.

First, we need to define “active states” and “quiet states”. However, unlike the Dst case (Domínguez et al., 2014), there is no

clear criterion to establish the time scale of a typical dissipative event for our simulation data, and thus we proceed to inspect

the data. To this end, and in order to explore a wide range of parameters, we fix Pm = ν/η = 1, and take values ν = η = 10−µ10

with µ= 1,2,3, . . . ,12. We then solve the shell model equations with a time step dt= 10−4, for 7× 108 iterations. This series

of simulations suggest that n= 10 is enough to identify the largest peaks, filtering out most of the other events.

Regarding the width of an active states, Fig. 10 is, among the various simulations we performed, the only case where two

clear dissipative events were both close and distinguishable from each other. Thus, this run was taken as a reference, and we

define an active state width such that both peaks in Fig. 10 can be regarded as two separate events. Since the separation between15

both peaks is 96 000 time steps, we will define an “active state” by identifying a peak, and then considering a window starting

48 000 time steps before, and ending 48 000 time steps after it. With this definition, in Fig. 10 we have two adjacent active

states, each one associated with one of the peaks.

With these definitions of active and quiet states, we analyze the simulation results for ν = η = 10−µ with µ= 3 with n= 10.

Three quiet states and two active states are identified. They are identified by integer numbers following the same strategy20

described in Sec. 3, states “2” and “4” corresponding to the active states.

10
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Performing the procedure described in section 2, we calculate the scatter box-counting dimension for different values of j

for each active and quiet state. Results are shown in Figure 11. Errors bars inD are given by the error of the least squares linear

fit.
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Figure 11. Box counting fractal dimension for εb(t) during quiet and active states for n= 10, with µ= 3. Active states correspond to states

labeled “2” and “4”.

We note that in general, an active state has a smaller fractal dimension than the surrounding quiet states. This is observed for

all values of j considered, although quantitative differences occur. For instance, in Fig. 11 we note that when j decreases the

difference between quiet and active states is less clear.

Figure 11 also shows that the fractal dimension depends on the distance between consecutive data, represented by the5

parameter j, which may be seen as an indication of an underlying multifractal structure of the data (Kadanoff et al., 1995;

Pisarenko et al., 1993). In order to further investigate the dependence on j, we plot the fractal dimension for each quiet and

active state in the simulations as a function of the distance between data, j. Results are shown in Fig. 12.
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Figure 12. Box counting fractal dimension for quiet and active states, as a function of j, with µ= 3. Numbers for each curve rotulate the

states. We added an “(s)” in the legends, in order to highlight the active states.

As mentioned above, the scatter box fractal dimension when all data are taken (j = 1) is a straight line, yielding D = 1,

consistent with Fig. 12. On the other hand, as j increases, a smaller subset of simulation data is taken, and eventually, when j is10

larger than the number of data, only one datum is taken, leading toD = 0. Both limits are found for all curves. For intermediate

11

Nonlin. Processes Geophys. Discuss., https://doi.org/10.5194/npg-2017-47
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 7 August 2017
c© Author(s) 2017. CC BY 4.0 License.



values of j, a nontrivial dependence of the fractal dimension is observed, which also reflects the multifractal nature of the series

as D varies as we change the time scale given by j.

Figure 12 shows that active states have lower fractal dimensions than quiet states, consistently with Fig 11. Moreover, active

states always have fractal dimensions less than 1, whereas it is always larger than 1 for quiet states. It also shows that all quiet

(or equivalently all active) states are not characterized by a single fractal dimension, consistent with our previous findings.

Finally, Fig. 12 shows that the fractal dimension decreases during dissipative events, for a certain range of j. If j > 1, but not5

too large, the fractal dimension during active states is always smaller than during quiet times, which suggests that, for this

range of moderate values of j, the box counting fractal dimension has statistical information on the activity of the time series.

In Ref. Domínguez et al. (2017) a more detailed analysis is carried out on the shell model results, exploring other simulation

parameters (ν, η, magnetic Prandtl number), other criteron for defining active states (n= 5), and a systematic study of the

correlations between the fractal dimension and the occurrence of dissipative events by means of the Student’s t-test.10

8 Magnetic clouds

As a way to illustrate how the ideas described so far could be used to characterize structures in space plasmas, we apply the

method to study the time series for the magnetic field during magnetic clouds, (Burlaga et al., 1981) as found in ACE data (ACE

Science Center). Magnetic clouds are transient structures ejected from the Sun, characterized by a large and smooth rotation

of the magnetic field. Typically, a magnetic cloud event can be identified from single spacecraft measurements by studying the15

evolution of the observed fields. During a given event, various stages can be identified: first, observation of solar wind prior to

the cloud’s arrival, then a sheath of compressed solar wind plasma immediately preceding a flux rope, where the magnetic field

varies smoothly, and finally the background solar wind again. Note that slower-moving clouds traveling at speeds comparable

to that of the ambient solar wind will not display prominent sheath regions.

Two events were selected: an event occuring on 12 July 2012 (MC1) and another on 11 July 2014 (MC2). Resolution for the20

magnetic field time series for this event is 16 seconds, covering a time span of 8 days for MC1 and 6 days for MC2, of which

about 2 days correspond to the cloud event itself. It is found that the calculated fractal dimension evolves in a distinctive way

as the various stages of the event as it passes by the spacecraft (namely surrounding solar wind, sheath, and flux rope). Given

the high resolution of the data, it is possible to calculate the box-counting dimension for several delays, given by j, as was

shown in Figs. 11 and 12 for the shell model analysis. In Fig. 13 the fractal dimension is calculated for each magnetic cloud25

stage, and various values of the sampling j are considered.

It can be noted that the fractal dimension, as calculated here, is indeed able to characterize magnetic cloud structures. The

sheath state has a large dispersion of fractal dimension values as j is varied, consistent with its more turbulent regime; on

the other hand, the quieter and more organized flux rope state exhibits a very low variation with j, basically a single fractal

dimension at all time scales explored. As for the surrounding solar wind, it shows dispersion of Dj which is between the30

dispersion of values in the sheath and the flux rope (Muñoz et al., 2016).
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Figure 13. Box counting fractal dimension for two magnetic cloud events during the four stages of the time series: first the solar wind, then

the sheath, then the flux rope, and finally the solar wind again. Several values for data sampling j are used.

9 Conclusions

In this manuscript, we have reviewed recent results obtained by us, regarding the evolution of complexity in magnetized

plasmas, as described by geomagnetic data, simulation results for MHD turbulence, and spacecraft data in the solar wind.

This has been done by calculating a box-counting fractal dimension for time series of magnetic field data for the Dst5

geomagnetic index (Domínguez et al., 2014), the GOY shell model (Domínguez et al., 2017), and ACE data for two magnetic

cloud events (Muñoz et al., 2016).

Some robust behaviors are identified. In general, it is found that the fractal dimension D decreases during dissipative events.

In the case of the Dst time series this was verified for three different types of time windows: fixed width and stationary (Sec. 3),

variable width (Sec. 4), and moving windows (Sec. 8). And it was also found across several time scales, namely individual10

storms, full years, and the complete 23rd solar cycle, as detailed in Ref. Domínguez et al. (2014).

A similar behavior is found for the MHD shell model (Secs. 6 and 7). Thanks to the larger resolution of the simulation data

as compared with the Dst data, several values of the time delay for data sampling could be made, showing that the results found

in Ref. Domínguez et al. (2014) are nontrivial, in the sense that not all samplings yield similar results. Only intermediate, not

too large, values of the time delay (as represented by the value of j in Sec. 7 are able to clearly distinguish between active and15

quiet states. But, within the useful range of values for j, the fractal dimension of the active states is consistently smaller than

the dimension of quiet states, and is always lower than 1, whereas the active states always have a dimension larger than 1. The

dependence on j of the fractal dimension is interesting in itself, as it suggests that data have a multifractal structure, which is

consistent with suggestions and finding by other authors for space plasmas (Chapman et al., 2008, 1998; Valdivia et al., 2005).
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Also, a more systematic test for the correlation between burst events in the shell model and the decrease in fractal dimension

was performed, by means of the Student’s t-test, as well as a more detailed exploration of the parameter space for the simulation.

These results can be found in Ref. (Domínguez et al., 2017).

As an application of these ideas, we take two magnetic cloud events in the solar wind, and use the techniques described5

here to study the corresponding magnetic field time series. Our results, although preliminary, suggest that this method can

characterize the various stages of the magnetic cloud structure.

Given the rich and complex dynamics governing the evolution of magnetized plasmas, we would not expect that a single

index would be able to capture all their relevant information. However, the findings summarized here suggest that some relevant

correlations can be observed, and that the dimension used here, although simple, may give some insight on the evolution of10

complexity of plasmas in the Sun-Earth system and MHD turbulent states.
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