
Response to the First Referee.

First, we would like to thank the Referee for her/his comment.
The referee has made a point that the similarity report is too high even

for a review article. We have addressed this issue, rewriting several portions
of the manuscript, refering to the relevant references where necessary, and
dropping some paragraphs not necessary for this review’s discussion. We
hope that the manuscript is now in a more satisfactory state.



Response to the Second Referee.

First, we would like to thank the Referee for her/his comments, all of
which we have attempted to address. We think that the paper has been
improved by them. Now we detail our response to each comment.

1. Despite the intuitive, valid fractal analysis, I feel that the
manuscript does not have many new elements to showcase.
The reference to turbulence in efforts to physically connect
solar, interplanetary, and magnetospheric timeseries is biased
in its framework. The manuscript effectively shows the effect
of intermittency in the fractal dimension of timeseries, regard-
less of turbulence. Intermittency is a term that is broader
than turbulence: turbulent timeseries may be intermittent,
but not all intermittent timeseries stem from turbulent sys-
tems.

The scatter diagram of Figure 1 creates some “dust-like” frac-
tals in case of intermittency (in this case, storm-time dips in
Dst). Dust-like structures typically give rise to a fractal di-
mension smaller than Dmax=1, where Dmax is the embedding
(i.e., Euclidean) dimension of the studied space. In Figure
1, Dmax=2, hence the dust-like structures in the lower-left
part of the image show a fractal dimension D < 1 (see, e.g.
Schroeder, M,: Fractal, Chaos, Power Laws. Minutes from an
Infinite Paradise, Freeman, New York, NY). If no significant
intermittency is present, one is left with the upper right part
of Figure 1 that typically gives 1 < D < 2.

Interpreting intermittency in general as turbulence and draw-
ing physical conclusions from it is the main drawback of the
manuscript.

It was not our intention to force a connection between all three systems
studied through the concept of turbulence. As stated in the manuscript,
the GOY shell model has been shown to exhibit dissipative events whose
distribution follows the same power-law statistics as observed in tur-
bulent magnetized plasmas (Boffetta et al., 1999; Lepreti et al., 2004;
Carbone et al., 2002), and our main goal was to test whether such



bursty behavior exhibited fractal features similar to those found in the
Dst analysis.

Although various works suggest the presence of turbulence in the Earth’s
magnetosphere, the question of the validity of the GOY shell model to
describe such phenomena is far beyond the scope of our paper. As the
referee correctly points out, it is the intermittency of the time series
which is the relevant feature, and in fact that is what justifies the use
of certain values of ν and η for the simulations, since, in general, in-
termittency levels similar to the Dst timeseries are not observed for
arbitrary values of these parameters.

We have attempted to clarify this issue in various parts of the text. For
instance, in the second paragraph of Sec. 4.

The new text reads:

We first notice that, in general, setting parameters ν and η with arbi-
trary values yields εb(t) series which do not have the necessary inter-
mittency level to resemble the Dst time series. Compare, for instance,
the different panels in Fig. 16 in Domı́nguez et al. (2017), which shows
that Pm = 0.2 leads to a very noisy output, unlike simulations with
Pm = 1.0 or 2.0, where individual, large peaks can be easily identi-
fied from the background. In fact, previous studies have shown that the
statistics of bursts follows a power law for Pm = 1 (Boffetta et al.,
1999; Lepreti et al., 2004; Carbone et al., 2002), and for this reason
we start by taking Pm = ν/η = 1.

Also, in the final paragraph of the same section.

The new text reads:

Results suggest that the intermittency level of the output time series is
relevant, which has led us to perform the analyses for the shell model
within a certain range of values of the Prandtl number, as well as of
the viscosity and resistivity.

2. This leads to insufficiently justified conclusions such as the
correlations between D from Dst timeseries and the solar flare



/ coronal indices over tens of days (Figure 9). Indeed, there is
connection if an eruptive flare (flare + coronal mass ejection)
leads to a magnetospheric storm within 1 3 days. However,
the correlation seen in Figure 9 is not due to physics but due
to the fact that any two intermittent timeseries with inter-
mittent excursions roughly matching in time will show similar
correlations. I am afraid this is a common fallacy, appearing
in several interdisciplinary studies of timeseries giving, not
surprisingly, incidental correlations.

Thanks for pointing out this issue. The figure that the referee men-
tions (Fig. 9 in the previous version of the manuscript), was part of an
exploration of possible correlations between fractal dimensions and var-
ious indices, using solar and geomagnetic timeseries, which was made
in Domı́nguez et al. (2014). As the referee says, a better statistical and
physical analysis is needed to state whether these correlations hold or
not. Besides, in the context of the present manuscript, it is not a rel-
evant discussion, since we focus on the series themselves, not on their
correlations with others. We have thus dropped Fig. 9 in this version
of the manuscript.

3. Another unjustified conclusion is the one drawn from Figures
7, 8, namely that “results suggest that the box-counting di-
mension consistently decreases when the storm approaches”
(p.8; top). However, the decrease is not due to the storm
but due to the pre-storm disturbances (hours > 1400 and up
to the storm’s onset). These disturbances are not necessarily
related to the storm. Similar disturbances appear at times
< 500 hours in the absence of a storm. Not surprisingly, D
in this interval is very similar to the pre-storm D that is in-
deed decreasing. Again, it is the (most likely incidental, as
it starts ∼300 hours prior to the storm) minor intermittency
in the timeseries that causes the decrease in both cases, re-
gardless of the storm. Finding a unique pre-storm signature
is the challenge here and the manuscript does not seem to
contribute significantly to this cause.



We agree that conclusions need to be toned down, and that the present
analysis cannot suggest that the decrease observed before the storm
is related to the storm itself. However, our aim in this manuscript
is focused rather on the dissipative events themselves and the fractal
dimension, not on the finding of precursors for geomagnetic activity,
an issue which requires further, detailed analysis.

Thus, we have changed the wording in the sentence mentioned (now at
the bottom of page 5).

The new text reads:

As shown in Domı́nguez et al. (2014), the box-counting dimension of
the Dst index decreases as the storm approaches for all cases studied.
Moreover, this decrease occurs before the window includes the geomag-
netic storm, as marked by the vertical lines in Fig. 5. Whether this
is relevant for forecasting geomagnetic storm needs further study, as
it may simply be due to an increase of the intermittency in the time
series, unrelated to the upcoming dissipative event.

4. The above issues render the penultimate conclusion of the
manuscript (p.14) also biased. I see no point in re-doing the
analysis unless more physical and statistical arguments for
the apparent correlations are used alongside the analysis of
the fractal dimension.

We have indeed performed more systematic analysis than the ones men-
tioned in this manuscript, but were left in the cited references and not
included in the current text.

Cross correlation analyses between the Dst timeseries and its fractal di-
mension were performed. This is not a direct calculation, as both time
series have different resolutions, and thus interpolation of the fractal
dimension time series is needed to match the resolution of the geomag-
netic index. This analysis was made for individual storms and full year
data, and is included in Domı́nguez et al. (2014). This is mentioned in
the final paragraph of Sec. 3.

On the other hand, p-value analyses were systematically done for the



shell model simulations, for a wide range of values of ν and η, consid-
ering Pm = 1 and Pm 6= 1. This allowed us to find a range of values of
the simulation parameters where the correlation between εb(t) and its
fractal dimension is statistically significant.

We have mentioned this issue in the first paragraph of page 8, relating
it to the problem of intermittency.

The new text reads:

We first notice that, in general, setting parameters ν and η with arbi-
trary values yields εb(t) series which do not have the necessary inter-
mittency level to resemble the Dst time series. Compare, for instance,
the different panels in Fig. 16 in Domı́nguez et al. (2017), which shows
that Pm = 0.2 leads to a very noisy output, unlike simulations with
Pm = 1.0 or 2.0, where individual, large peaks can be easily identi-
fied from the background. In fact, previous studies have shown that the
statistics of bursts follows a power law for Pm = 1 (Boffetta et al.,
1999; Lepreti et al., 2004; Carbone et al., 2002), and for this reason
we start by taking Pm = ν/η = 1.

And again in the last paragraph of Sec. 4.

The new text reads:

In Domı́nguez et al. (2017) a more detailed analysis is carried out on the
shell model results, exploring other simulation parameters (ν, η, mag-
netic Prandtl number), other criteron for defining active states (n = 5),
and a systematic study of the correlations between the fractal dimen-
sion and the occurrence of dissipative events by means of the Student’s
t-test. Results suggest that the intermittency level of the output time
series is relevant, which has led us to perform the analyses for the shell
model within a certain range of values of the Prandtl number, as well
as of the viscosity and resistivity.



Response to the Third Referee.

First, we would like to thank the Referee for her/his comments, all of
which we have attempted to address. We think that the paper has been
improved by them. Now we detail our response to each comment.

1. The similarity index of 28% could be acceptable for a review
provided that all credits are given, even if the authors of the
previous published papers are also on the authors list of the
review. But 26% (including Figures 1 and 2) are simply copied
from Dominguez et al. (2014).

We have made several modifications in various parts of the manuscript
in order to deal with this issue, including dropping parts of the text
that were not relevant for the line of the discussion intended in this
paper.

2. Obviously, as mentioned in the introduction fractal dimen-
sions have already often been calculated for space and labo-
ratory magnetized plasmas in nature, including the magne-
tosphere (e.g., J. Geophys. Res. 96, 16031, 1991) and the
solar wind (e.g., J. Geophys. Res. 114, A03108, 2009; Astro-
phys. J. Lett., 793:L30, 2014). But the subject of the sub-
mitted review is rather limited to very selected examples of
space plasmas, basically only to geomagnetic activity (besides
preliminary results applied to magnetic clouds and additional
discussion in the context of the turbulence shell model) and
therefore the title of the review should possibly be much more
specific.

We have changed the title to “Evolution of fractality in space plasmas
of interest to geomagnetic activity”, in order to be more specific and
consistent with the content of the manuscript.

3. By the way, the phenomenological MHD shell model describes
the energy cascade in turbulence that sometimes exhibits frac-
tal characteristics, but geomagnetic storms have quite differ-
ent more intermittent characters, sometimes related to mul-
tifractality. It would be nice to provide convincing physical



arguments justifying application of this model to dynamics of
geomagnetic activity.

Maybe we should stress that we are not attempting to use the MHD
shell model to account for Dst dynamics. Our interest in the connec-
tion between two model arises from the possibility of having similar
intermittent behaviors, as the shell model can also yield simulations
which do not exhibit intermittency levels which resemble the Dst time
series.

We have added a text in the first paragraph of page 8, related to this
issue.

The new text reads:

We first notice that, in general, setting parameters ν and η with arbi-
trary values yields εb(t) series which do not have the necessary inter-
mittency level to resemble the Dst time series. Compare, for instance,
the different panels in Fig. 16 in Domı́nguez et al. (2017), which shows
that Pm = 0.2 leads to a very noisy output, unlike simulations with
Pm = 1.0 or 2.0, where individual, large peaks can be easily identi-
fied from the background. In fact, previous studies have shown that the
statistics of bursts follows a power law for Pm = 1 (Boffetta et al.,
1999; Lepreti et al., 2004; Carbone et al., 2002), and for this reason
we start by taking Pm = ν/η = 1.

We have also been careful in the use of words, refering to dissipative
events in the shell model as “active” states, whereas in the Dst time
series they correspond to “storm” states, with definite physical mean-
ing.

The possible connection between geomagnetic activity and the GOY
shell model has been suggested in Lepreti et al. (2004), but testing this
goes beyond the simple fractal analysis we propose in this manuscript.

4. page 3, lines 16-18: Admittedly, there is no commonly ac-
cepted definition of a fractal (for example, according to B. B.
Mandelbrot, 1977: “a fractal is by definition as set for which
the Hausdorff Besicovitch dimension strictly exceeds the topo-



logical dimension”). But certainly, “noninteger numbers mea-
suring the complexity” is rather unclear (maybe roughness,
irregularity) and certainly not general (e.g., for the trail frac-
tal Brownian motion its fractal dimension is integer, equal to
2, but greater than 1, the topological dimension).

We agree with the Referee in that one has to be careful with defini-
tions. However, we should notice that the cited sentence in our paper
refers to the problem of defining fractal dimensions , rather than fractal
objects. So, for a given fractal object, there are several ways to define
its dimension, and this is what we intended to stress. We have modified
the sentence to be more clear.

The new text reads:

In general it can be said that they are numbers, which can be non-
integer, measuring the complexity of a data set.

5. Section 2: The methods of nonlinear time series are well-
known, see e.g. the textbook of H. Kantz and T. Schreiber
published by Cambridge University Press in 1997. Besides the
box-counting (zero-order, capacity) dimension one can also
define the (higherorder) generalized dimensions (related to a
multifractal spectrum), which are (e.g., the correlation dimen-
sion) much more suitable for nonlinear dynamical systems as
is in the case of the magnetosphere. Therefore, I would like
to ask why the authors use only the box-counting method,
which is certainly not very reliable?

Our aim was specifically to investigate whether a single fractal dimen-
sion may yield useful information on the systems studied, and in what
sense. Certainly, given the complexity of the system, there is no guar-
antee that this is possible at all, but we have found some positive results
as described in the manuscript, which we think are interesting. Other
choices for that single fractal dimension could have been made. How-
ever, rather than changing the type of dimension used, we think it is



more interesting to perform a multifractal analysis, in accordance with
the nature of the systems studied, and this is currently in process.

This is mentioned in the final paragraph of Sec. 7.

The new text reads:

Given the rich and complex dynamics governing the evolution of mag-
netized plasmas, we would not expect that a single index would be able
to capture all their relevant information. In fact, multifractal analysis
should be made in order to represent the dynamics of the systems stud-
ied more accurately, and such an analysis is currently being prepared
for future publication.

6. Further, for estimation of any fractal dimension one would
require at least approximate stationarity. Hence, my main
question is how do the authors cope with non-stationarity of
the data under their study, especially during storms. I think
that in the magnetospheric studies it would be more difficult
task than in the case of the solar wind plasma. Maybe also
some filtering is needed before estimating the actual dimen-
sion of the fractal structure (see, e.g.: Phys. Rev. E 47, 2401,
1993; Physica D 122, 254, 1998).

It is not clear that, for the kind of analysis we are interested, stationar-
ity is a requisite to get meaningful results. For instance, the magnetic
cloud analysis clearly involves a process where various degress of sta-
tionarity are found. Without looking at the fractal dimension, one
could argue that the flux rope stage satisfies the stationarity criterion,
the sheath does not, and the solar wind stages could also be approx-
imately stationary. And yet, calculation of the fractal dimension on
each state, regardless of its level of stationarity, yields useful results,
being able to distinguish the various stages.

This is because the fractal dimension that we calculate is related to the
intermittency level of the time series, which is also why storms leave
a signature in the dimension, a signature which could be lost with
filtering, as suggested by Fig. 8 in our paper. The issue of the need



for stationarity in the Dst or shell model time series should be studied
more systematically in order to give a definitive answer.

7. Results and Conclusions: Relation of the fractal dimensions
to storms should be better justified. Namely, a decrease of the
fractal dimension based on Dst index presented in Figures 8
and 9 during storms may simply artificially result from lack of
stationarity. Anyway, a more comprehensive nonlinear time
series analysis is needed before drawing any robust conclusion
(e.g., page 13, line 8ff).

We have attemted to tone down the conclusion in this respect. Figure 9
of the previous manuscript has been dropped from the current version
of the manuscript, since it was not relevant to the main discussion.
Regarding Fig. 8 in the previous version (Fig. 5 in the current one), it
is true that the decrease in the fractal dimension previous to the storm
could be due to pre-storm intermittency unrelated to the upcoming
storm. However, our aim in this manuscript is focused rather on the
dissipative events themselves and the fractal dimension, not on the
finding of precursors for geomagnetic activity, an issue which requires
further, detailed analysis.

Thus, we have changed the wording in the sentence mentioned (now at
the bottom of page 5).

The new text reads:

As shown in Domı́nguez et al. (2014), the box-counting dimension of
the Dst index decreases as the storm approaches for all cases studied.
Moreover, this decrease occurs before the window includes the geomag-
netic storm, as marked by the vertical lines in Fig. 5. Whether this
is relevant for forecasting geomagnetic storm needs further study, as
it may simply be due to an increase of the intermittency in the time
series, unrelated to the upcoming dissipative event.

Also, the “Some robust behaviors are identified” sentence in the con-
clusions has been dropped, in order to moderate the conclusions.
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Abstract. We studied the temporal evolution of fractality for geomagnetic activity, by calculating fractal dimensions from Dst

data and from an MHD shell model for a turbulent magnetized plasma, which may be a useful model to study geomagnetic

activity under solar wind forcing. We show that the shell model is able to reproduce the relationship between the fractal

dimension and the occurrence of dissipative events, but only in a certain region of viscosity and resistivity values. We also

present preliminary results of the application of these ideas to the study of the magnetic field time series in the solar wind5

during magnetic clouds. Results suggest that ,
::::::
which

::::::
suggest

::::
that

::
it

:
is
::::::::

possible,
:::
by

:::::
means

:::
of the fractal dimensionis able

:
, to

characterize the complexity of the magnetic cloud structure.

Copyright statement. TEXT

1 Introduction

The nontrivial interaction between the Sun ’s and the Earth’s magnetosphere
::::
There

::
is
::
a

::::::::
nontrivial

::::::::
magnetic

:::::::::
interaction

:::::::
between10

:::
Sun

::::
and

:::::
Earth, coupled by the solar wind, leads to a rich variety of phenomena which has attracted interest to the study of

space plasmas for decades, and more recently to the possibility of forecasting of space weather, an issue of large relevance in

our increasing technology-dependent society.

Various models and techniques have been developed to study the plasma behavior in the Sun-Earth system. Of these,

the study of complexity has been of great interest, as they are
:
it
:::

is capable of providing new insights and reveal possible15

universalities on issues as diverse as
:::::::
regarding

::::::::
universal

::::::::
behavior

::::::
related

::
to
:

geomagnetic activity, turbulence in laboratory

plasmas , physics of
::
or

:
the solar wind, among others.

:
to
:::::

name
::

a
::::
few (Dendy et al., 2007; Klimas et al., 2000; Takalo et al.,

1999; Chang and Wu, 2008; Valdivia et al., 1988). In particular, these studies have shown that systems such as the
:
it
::::

has

::::
been

::::::::
suggested

::::
that

::::::
various

::::::::::
magnetized

::::::
plasma

:::::::
systems

::
are

:::
in

:
a
::::::::::::
self-organized

::::::
critical

::::
state,

:::::::::
exhibiting

::::::
fractal

:::
and

::::::::::
multifractal

1



::::::
features

::::::
which

:::::
relate

:::::
them

::
to

:
a
::::::
broder

:::::
class

::
of

::::::::
complex

:::::::
systems.

::::
This

::::
has

::::
been

:::
the

::::
case

::
in

::::::
studies

:::
on

:::
the

:::::::
Earth’s magneto-

sphere (Chang, 1999; Valdivia et al., 2005, 2003, 2006, 2013), the solar wind (Macek, 2010), the solar photosphere, and solar

corona (Berger and Asgari-Targhi, 2009; Dimitropoulou et al., 2009), are in a self-organized critical state, and exhibit complex

features such as fractality and multifractality. Some authors have discussed the relationship between the fractal dimension , as

a measure of complexity, and physical processes in magnetized plasmas in the Sun-Earth system, including the possibility of5

forecasting geomagnetic activity (Aschwanden and Aschwanden, 2008; Uritsky et al., 2006; Georgoulis, 2012; McAteer et al.,

2005, 2010; Dimitropoulou et al., 2009; Conlon et al., 2008; Chapman et al., 2008; Kiyani et al., 2007).

In our work we use the box-counting fractal dimension (Addison, 1997), because of its simplicity and its
:::::
which

::
is

::
as

::::::
simple

:::::::
measure

::
of

::::::::::
complexity,

::::
and

::::
with

::
an

:
intuitive meaning. Certainly, a single fractal dimension cannot provide all information

on complexity for arbitrary systems , in particular if they also exhibit multifractal behavior as well, as expected in
:::::::
systems10

::
in

:::::::
general.

:::::::::
Moreover,

::::
most

:::::::
systems

:::
of

::::::
interest

::::
also

:::::
have

::::::::::
multifractal

:::::::
features,

::::
such

:::
as

:
the magnetospheric system (Chang,

1999), models of turbulence (Kadanoff et al., 1995; Pisarenko et al., 1993), and the solar wind (Chapman et al., 2008); but it is

interesting to note that it does describe some relevant features of these time series’ complexity, as it has been successfully used

in previous works relevant to the Sun-Earth system (Osella et al., 1997; Kozelov, 2003; Gallagher et al., 1998; Georgoulis,

2012; Lawrence et al., 1993; Cadavid et al., 1994; McAteer et al., 2005). Furthermore,
:::
We

::::
will

::::
thus

:::
use

:
the box-counting15

dimension is
:
as

:
a fast approach to systematically study our systems of interest, and a first step to detect universal features worth

of further study.

It is also worth noting that the fractal dimension we calculate is
:::::::
Besides,

:::
we

:::
will

::::::::
calculate

:::::
fractal

::::::::::
dimensions based on a scat-

ter diagram (see e.g. (Witte and Witte, 2009) ), whereas previous studieshave been done with other
::::::::::::::::::::
Witte and Witte (2009) ),

:::::
unlike

:::::
some

:::::::
previous

:::::::
studies,

:::::
where

::::::::
different methods or data (Kozelov, 2003; Uritsky et al., 2006; Balasis et al., 2006; Dias20

and Papa, 2010)
::::
were

::::
used.

These ideas were implemented by us in Ref. (Domínguez et al., 2014)
::::::::::::::::::::
Domínguez et al. (2014) to study the Dst time series

and solar magnetograms, and the possible correlation between solar and geomagnetic activities as evidenced by the box-

counting fractal dimension. Individual events, complete years of high geomagnetic activity, and the full 23rd solar cycle were

studied with this technique, successfully finding that the fractal dimension, and more specifically its evolution, has —despite25

its simplicity— relevant information on the complex behavior of these systems and their eventual correlation.

Results above were robust, in the sense that they were observed across a wide range of time scales, which suggests that any

model describing the dynamics of geomagnetic activity should reproduce a similar fractal behavior. This is our motivation to

study a shell model for MHD turbulence within this framework.

Evidence of turbulence in the Earth’s magnetosphere has been found by various spacecraft observations (Nykyri et al., 2006;30

Sundkvist et al., 2005; Zimbardo et al., 2008), and several authors have studied magnetospheric MHD turbulence (see, e.g.,

Borovsky (2004); Hwang et al. (2011); El-Alaoui et al. (2012)). One interesting approach has been the proposal of analytical

models depending on few
:::::::
However,

:::::
given

:::
the

::::
large

:::::::
number

::
of degrees of freedom, which nevertheless retain relevant

:::::::::
simulation

::
of

:::::::
turbulent

:::::::
systems

:::
has

:
a
:::::
large

::::::::::::
computational

::::
cost,

:::::
which

:::
has

:::
led

::
to

:::
the

::::::::::
development

::
of

:::::::::
analytical

::::::
models

::::::
which,

::::
while

:::::::
sharing

2



statistical properties of the magnetospheric behavior, such as the power-law distribution and multifractal features of dissipative

events
::::::
systems

:::::
under

::::::
study,

::::::
depend

::::
only

::
on

::
a
:::
few

:::::::
degrees

::
of

:::::::
freedom (Chapman et al., 1998; Valdivia et al., 2006).

Shell models constitute
::
At

:
an intermediate level between such

::::
these

:
models and first principles approaches . They are

low dimensional models, based on a system
::
we

::::
find

::::
shell

:::::::
models,

:::::::::
consisting

::
of

::
a
:::
set of coupled equations mimicking

:::::
which

::
are

:::::::
similar

::
to

:
the spectral Navier-Stokes equation, and have been

::
but

::::::
which

:::
are

::::
also

::::
low

::::::::::
dimensional

:::::::
models.

:::::
They

:::::
have5

::::
been

::::::::::
successfully

:
used to describe turbulence in magnetized fluids,

::::
being

::::
able

::
to

::::
deal

::::
with

:::::
large

:::::::
Reynold

::::::::
numbers

:::::::
without

::
the

:::::::::
associated

::::::::::::
computational

::::
cost

:::
of

::::::::::
simulations

:::::
based

:::
on

:::
first

::::::::::
principles,

::::::::
nonlinear

::::
fluid

::::::::
equations

::::::::::::::::
(Ditlevsen, 2011) ,

::::
and

describing the main statistical properties of magnetohydrodynamic (MHD) turbulence (Chapman et al., 2008), without the

computational cost of performing high Reynolds numbers simulations directly from the fully nonlinear fluid equations (Ditlevsen, 2011) .

Dissipative
:
In

:::::
fact,

::
it

:::
has

:::::
been

::::::
shown

:::
that

::::::::::
dissipative events in shell models have been shown to follow

:::
can

:::
be

:::::
taken10

::
to

::::::::
represent

::::
solar

::::::
flares,

::::
and

::::
that

::::
their

::::::::::
distribution

:::::::
follows

:
the same power-law statistics of observed events

::
as

::::::::
observed

in turbulent magnetized plasmas, as found in Refs. Boffetta et al. (1999); Lepreti et al. (2004); Carbone et al. (2002) , where

dissipative events in the model were taken to represent solar flares. In fact, these works suggest that
::::::::::::::::::::::::::::::::::::::::::::::::::::
(Boffetta et al., 1999; Lepreti et al., 2004; Carbone et al., 2002) .

::
As

:::::::::
suggested

::
in

:::::::::::::::::
Lepreti et al. (2004) ,

:
flares and geomagnetic activity should be the result

:::::
could

::
be

:::
the

::::::
results

:
of dissipation

bursts within a turbulent environment (Lepreti et al., 2004)
:
.15

In a previous work (Domínguez et al., 2017), we have applied the box-counting fractal dimension to study the complexity

in an MHD shell model, analyzing the correlation between it and the energy dissipation rate, showing that, for certain values

of the viscosity and the magnetic diffusivity, the fractal dimension exhibits correlation with the occurrence of bursts, similar to

what had been found with geomagnetic data (Domínguez et al., 2014). This suggests that shell models do not only reproduce

the power-law statistics of dissipative events in turbulent plasmas, but also some features of its fractal behavior.20

In this manuscript we review our results in this field, where the fractal dimension is calculated in order to measure complexity

in magnetic field times series . The method is used to characterize the occurrence of
::::
time

:::::
series

::
is

::::::::
measured

:::
by

:::::
means

:::
of

:::
the

:::::
fractal

::::::::::
dimension.

:::::
Thus,

:::
we

::::::::::
characterize

:
events such as geomagnetic storms by means of analyzing the Dst time series in

various time scales (described in Secs. 2–5, and discussed previously in more details in Domínguez et al. (2014)), and the

occurrence of dissipative events in an MHD shell model simulation (Secs
::
Sec. 4–5), see Domínguez et al. (2017) for more25

details). We also present preliminary results dealing with spacecraft data for the solar wind, related to the appearance of

magnetic clouds (Muñoz et al., 2016) (Sec. 5).

2 Fractal dimension

We are interested to estimate
::
on

::::::::
estimating

:
the fractal dimension to various time series for magnetic data. We now explain the

method, using as an example the hourly Dst time series (World Data Center for Geomagnetism, Kyoto).30

There are various ways to define a fractal dimension
::::::
Fractal

:::::::::
dimensions

::::
can

::
be

::::::
defined

::
in
:::::::
various

::::
ways

::
in

:::::::
general,

::::
and for a

time series
::
in

::::::::
particular

::
as

::::
well (Addison, 1997; Theiler, 1990). Although there is no simple way to relate different definitions,

in
::
In general it can be said that they are noninteger numbers

::::::::
numbers,

:::::
which

::::
can

::
be

::::::::::
non-integer,

:
measuring the complexity of

3



a data set. In this work, we estimate the fractal dimension using the box-counting method (Addison, 1997) in the way we now

describe
:
as

::::::
shown

:::::
below. First, we construct a scatter diagram for

:
is
::::::::
obtained

::::
from

:
each Dst time series. If Dsti is the i-th Dst

datum in the series and N is the total number of data, the scatter diagram is a plot of Dsti+1 versus Dsti, for 1≤ i≤N − 1, as

shown in ,
:::
by

::::::
plotting

:::::
each

:::::
datum

::::::
versus

:::
the

::::
next

:::
one

::::
(see Fig. 1).
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Figure 1. Scatter diagram for the hourly Dst time seriescorresponding to the first storm state (
:
,
::::
using

::::
data

::::
from 6 to 20 March ) 1989. (More

details in Sec
::::
1989,

::::::::
containing

:
a
::::
large

::::::::::
geomagnetic

::::
storm. 3

:::::
(Taken

::::
from

:::::::::::::::::::
Domínguez et al. (2014) .)The size of the square box is ε.

Then, the scatter diagram is divided into square cells of a certain size ε, and we count the numberN(ε) of cells which contain5

a point belonging to the set. Finding the range of values of
:
.
:::
By

:::::::::
decreasing

:
ε,
:::
we

:::::::::
eventually

::::
find

:
a
::::::
region

:::::
where

:::
the

:::::::
number

::
of

::::
cells

:::::::::
containing

:::::
points

::::
scale

:::
as

:
a
:::::
power

::::
law

::::
with εwhere log(N(ε)) scales linearly with log ε, the scatter diagram :

:

N(ε)∝ ε−D ,
:::::::::::

(1)

:::::
where

::
D

::
is

:::
the

::::::
scatter

:::
plot

:
box-counting dimension D is then defined by the slope in this linear regime, that is,

N(ε)∝ ε−D ,10

We estimate the error in D through the least squares fit for the slope.

Further details and discussion on the method can be found inRef. Domínguez et al. (2014).

It is clear that, in order to calculate D, a certain time frame of the dataset must be chosen. Given the time windows chosen

for Dst

The method as stated above was applied to the Dst time series where, given the width of the data windows used (the criterion15

is discussed in Sec. 3) and the time resolution of the data (one point per hour), it only made sense to build the scatter plot with

consecutive data points.

However, when resolution is larger, as is the case with simulation and solar wind data, it is possible to consider different time

delays. Thus, the scatter plot can be built by plotting the i-th data in the set, versus de (i+j)-th data, with j ≥ 1 in general, and

then the fractal dimension calculated depends on j, Dj . This was the approach inRefs. Domínguez et al. (2017) and Muñoz20

et al. (2016), and presented here in Secs. 4 and 5.
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3 Dst time series: Storm and quiet states

We first apply this technique to quiet and active periods with magnetic storms in order to investigate the relationship between

the intensity of the
::::
Some

:::::::
studies

:::::::::::::::::::::::::::::::::::::::::
(Balasis et al., 2009; Papa and Sosman, 2008) have

:::::::::
suggested

::::
that

:::::
there

::
is

:
a
:::::::::::

relationship

:::::::
between

:::
the

::::::::
intensity

:::
and

:::
the

::::::::::
complexity

:::
of

:::
the

:
Dst index and its fractal dimension , a relationship which has also been

suggested by other studies of the complexity
::::
time

::::::
series.

:::::
Here,

:::
we

::::
will

::::
first

:::::
apply

::::
the

::::::::
technique

:::::::::
discussed

::
in

::::
Sec.

::
2
:::

to5

:::::::::
investigate

::::::
whether

:::::
there

::
is

:
a
:::::::::
connection

::::::::
between

::
the

:::::
level

::
of

:::::::::::
geomagnetic

::::::
activity

:::
and

:::
the

::::::
fractal

:::::::::
dimension of the Dst series.

(Balasis et al., 2009; Papa and Sosman, 2008)
:::::
index.

:

FollowingRef. Domínguez et al. (2014), we identify “storm states” and “quiet states” by locating peaks in the Dst series

where
:::::
peaks,

::::
such

::::
that

:
Dst <−220 nT, and then a

:
.
::
A

:
“storm state” is defined by a window starting one week before

the minimum value of the peak, and ending one week after it
::::::::
two-week

:::::::
window

:::::::
centered

:::
on

:::
the

:::::::::
minimum

:::
Dst

::::
value. This10

is done considering the typical time scale of a geomagnetic storm (Tsurutani and Gonzalez, 1994; Gonzalez et al., 1994).

Then, the “quiet state” corresponds to the period of time between two
::::::
“Quiet

::::::
states”

::::::
simply

:::::::::
correspond

::
to
::::

the
::::
time

:::::::
window

:::::::
between

::::::::::
consecutive “storm states”. Figure 2illustrates this by showing the four peaks detected in

:::
This

::
is
:::::::::
illustrated

::
in

::::
Fig.

::
2,

:::::::::::
corresponding

::
to
::::
year

:
1989and the corresponding windows

:
,
:::
and

::::::
where

:::
four

::::::
peaks

::
are

::::::
found.

Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
month
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Figure 2.
:::::
Storm

:::
and

::::
quiet

:::::
states

:
in
:::

the
:
Dst time series for 1989, identifying the storm and quiet states as explained in Sec. 3. The solid

horizontal line shows
:::
also

:::::::
indicating

:
the average value , and

::
of the dashed

:::
Dst

::::
index

:
(horizontal line

:
),
:::
and

:
the threshold value used to identify

a geomagnetic storm. Red dots show the minimum Dst value used to identify a “storm state”
:::::
storms

::::::
(dashed

::::
line). Red and

:
(black)

:
arrows

show windows corresponding to
:::::
indicate

:
storm and

:
(quiet)

:
states, respectively.

:::::
(Taken

::::
from

::::::::::::::::::::
Domínguez et al. (2014) .)

For future identification, we label each state in a year with consecutive integer numbers ,
::
In

:::
the

::::::::
following,

::::::
states

:::::
within

::
a15

:::
year

:::
are

:::::
label

::
by

::::::
integer

:::::::
numbers

:
starting from 1. For instance, in Fig. 2, the year starts with a quiet state, then that will be state

“1”; the following state will be a storm, and it will be state “2”. Thus, all future quiet states within the year will be labeled with

consecutive odd numbers, whereas storm states will be labeled with consecutive even numbers.

The box-counting dimension
:
A
::::::
fractal

:::::::::
dimension

::
is

::::
then

::::::::
calculated

:
for each storm and quiet state, calculated as described

in Sec. 2, is
:::
each

:::::
quiet

::::
state

::
in

:::
the

:::::
same

::::
year.

:::::::
Results

:::
for

::::
1989

:::
are

:
shown in Fig. 3 . Red circles indicate storm states. Error20

bars in D are given by the error of its least squares linear fit.

Similar plots for 5 years of high geomagnetic activity were obtained (Domínguez et al., 2014). In general, it is found that

storm states
:::::
storm

::::
states

:::
are

:::::
found

:::
to have smaller fractal dimension than the surrounding quiet states

::::
quiet

:::::
states

:::::::::::
immediately

:::::
before

:::
and

::::
after

:::::
them, although there does not seem to be a clear correlation on the value of Dst itself, and the fractal dimension,

5
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Figure 3. Box-counting dimension D for storm and quiet states for year 1989. The abscisa represents the labeling of
:::::
Labels

:
in
:
the

::::::::
horizontal

:::
axis

:::::::
represent

:::::::::
consecutive states as explained

::::::::
mentioned

:
in Ref

:::
Sec. 3. Red circles indicate storm

::::
Storm

:
states

:::
are

::::::
marked

:::
with

:::
red

::::::
circles,

::::::
whereas

:::::
errors

::
are

:::::
taken

:::
from

:::
the

::::
least

::::::
squares

::::
linear

::
fit.

:::::
(Taken

::::
from

::::::::::::::::::::
Domínguez et al. (2014) .)

as shown in Fig. ?? for all states, for all years studied in Domínguez et al. (2014) . No obvious correlation is found if individual

years are considered either
:::::::::::::::::::::
(Domínguez et al., 2014) . Thus, our statement on the decrease of the fractal dimension is an argu-

ment on its variation, rather than on its actual value.

Mean value of Dst for each state as function of the box-counting dimension D with respective error bars (calculated as in

Fig. 3), for five years of high geomagnetic activity: 1960, 1989, 2000, 2001, and 2003.5

4 Dst time series: Variable width windows around a storm

:::
We

::::
have

::::
also

:::::::
studied

:::::::
variable

:::::
width

::::::::
windows

::::::
around

::
a
:::::
storm

::::
and

:::::::
moving

::::::::
windows

:::::
across

:::::::
storms,

::::
and

::::::
results

::::
have

:::::
been

::::::::
consistent

::::
with

:::
the

:::::::
findings

:::::::::
discussed.

If the qualitative connection between fractal dimension and existence of a storm observed in Sec. 3 is robust, then widening

the window
::
In

:::::
effect,

::
as

::
a
:::::::
window

::
is

:::::::
widened

:
around a stormshould increase its fractal dimension, as

:
, more “quiet” data are10

taken into account.

To this end, we take windows starting/ending n weeks before/after the peak, with n= 1, . . . ,6. We illustrate this
:::::::::
consideed,

:::
and

::::
thus

:::
the

:::::
fractal

:::::::::
dimension

:::
of

:::
the

:::
data

::::::
inside

:::
the

:::::::
window

::::::
should

:::::::
increase.

::::
This

::
is
:::::::
actually

:::
the

:::::
case,

::
as

::::::
shown

:::
for

:::::::
instance

in Fig. ??, where the windows considered around the 13 March 1989 storm are shown.

Variable size windows around the 13 March 1989 storm (peak at abscissa 1729). The plot shows the Dst index as a function15

of time, measured in hours since the beginning of the year.

Figure 4(a) shows the
:
4,

::::::
where results for four particular storms : 1 April 1960, 13 March 1989, 6 April 2000, and 30 March

2001, with minimum intensities of −327 nT, −589 nT, −288 nT, and −387 nT, respectively. These storms have been chosen

:::::
storms

:::
are

::::::
taken,

:::::::
selected because they are isolated , so that windows can be enlarged (up to four weeks on each side) without

including new “storm states”
::::::
enough

::
to

:::::
allow

::::::::
enlarging

:::
of

:::
the

:::::::
window

::::::
around

:::::
them

:::::::
without

::::::::::
overlapping

::::
with

:::::::::::
neighboring20

:::::
storms (Domínguez et al., 2014).

Figure 5 shows the results for the fractal dimension
::::::::
Regarding

::::
the

::::::
moving

::::::::
windows

:::::::
analysis,

::::::
results

:::
are

:::::::::
illustrated for the

13 March 1989 storm
:
in

::::
Fig.

:
5, comparing it with the Dst index.
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Figure 4. (a) Box-counting dimensionD for a storm statewith respective error bars, as a function of the width of the window around it
::::
witdth.

(b) Mean value of Dst for each variable width window around the same
::::
Lines

::::::::
correspond

::
to
:
storms in (a)

::
on

:
1
::::
April

::::
1960, as function of the

box-counting dimension with respective error bars
::
13

:::::
March

::::
1989,

::
6

::::
April

::::
2000,

:::
and

::
30

::::::
March

::::
2001.

:::::
(Taken

::::
from

:::::::::::::::::::
Domínguez et al. (2014) .

:
)

Consistent with the results in Sec. 3, the box-counting dimension increases as we zoom out from the storm, which means that the relevance

of the storm itself within the window decreases. This is confirmed by plotting the mean value of Dst in a window as a function of D, for the

same storms. This is shown in Fig. ??(b). We expect that increasing the window width should increase not only the value of D as noted

above, but also the average value of Dst for the same reason, and thus D and 〈Dst〉 should be positively correlated. This is confirmed in

Fig. ??(b). The breaks in the linear behavior for some curves can be explained by the existence of nearby peaks close to the storm studied,

as explained in detail in Domínguez et al. (2014) .

4 Dst time series: Moving windows across a storm

We now calculate the fractal dimension for fixed width windows (two weeks), initially placed well before the storm peak, and move it in

steps of one week crossing the peak. This will give us a better intuition on the evolution of the fractal dimension in time, in particular during

a storm. The initial position of the window is the first day of the year, and it is moved until it reaches the third week after the peak (see

Fig. ??).

Moving windows across a storm (13 March 1989).
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Figure 5. Box-counting dimension D (blue, with error bars) and Dst index (red) for the 13 March 1989 geomagnetic storm. Vertical lines

show windows of data where D decreases before the storm
:
in
:::
the

:::::::
windows

:::::
within

:::
the

:::::
vertical

::::
lines.

:::::
(Taken

::::
from

::::::::::::::::::::
Domínguez et al. (2014) .)

For all cases studied (Domínguez et al., 2014)
::
As

::::::
shown

::
in

::::::::::::::::::::
Domínguez et al. (2014) , the box-counting dimension of the Dst

index decreases as the storm approaches . However, it is very interesting to note that we have a noticeable change in the fractal

dimension, even
::
for

:::
all

:::::
cases

:::::::
studied.

:::::::::
Moreover,

:::
this

::::::::
decrease

:::::
occurs

:
before the window contains any point of

:::::::
includes the

geomagnetic storm. This is illustrated ,
:::
as

::::::
marked

:::
by

:::
the

::::::
vertical

::::
lines

:
in Fig. 5, where two vertical lines indicate the window

7



of Dst immediately before the storm. The storm is not included in the window, however the fractal dimension has already

started to decrease.
::::::::
Whether

:::
this

::
is

:::::::
relevant

:::
for

:::::::::
forecasting

:::::::::::
geomagnetic

:::::
storm

:::::
needs

::::::
further

:::::
study,

::
as

::
it
::::
may

::::::
simply

::
be

::::
due

::
to

::
an

:::::::
increase

::
of

:::
the

:::::::::::
intermittency

::
in

:::
the

::::
time

::::::
series,

::::::::
unrelated

::
to

:::
the

::::::::
upcoming

:::::::::
dissipative

:::::
event.

In Domínguez et al. (2014), systematic calculations of cross correlation between Dst and D were performed for all storms

analyzed, and for the same five complete years studied in that paper (
::::
using

:::::::::
year-long

::::
data

:::
for 1960, 1989, 2000, 2001,

:::
and5

2003), which have already been analyzed, but only near geomagnetic storms. Results suggest that the box-counting dimension

consistently decreases when the storm approaches, thus
:
, suggesting that the

:::::::
decrease

::
of

:::
the box-counting dimension of the Dst

series, or similar measures of complexity, could be of relevance when forecasting geomagnetic storms.
::::::::
dimension

::
is

:
a
::::::
robust

::::::
feature.

:

We also studied the possible correlation between the fractal dimension and measures of solar activity, to investigate whether10

this simple measure of complexity yields any information about the connection between solar and geomagnetic activities. In

particular, we considered the solar flare index (Ataç and Özgüç, 1998; Özgüç et al., 2003) and the coronal index (Rybanský et al., 2001; National Geophysical Data Center (NOAA), Solar Data Services) ,

which are measures of energy released from the Sun.

Results are shown in the left panel of Fig. ?? for the solar flare index, and in the right panel of the same figure for the

coronal index, using a moving windows approach over the 13 March 1989 storm, the same storm we have described in the15

previous sections. Similar analyses were performed for events in 2000 and 2001, as shown in Domínguez et al. (2014) . It is

found that even for solar flare events of different intensities, periods of large solar flare index are accompanied by a decrease in

the fractal dimensionD of the Dst time series. In the case of the coronal index, results suggest that one or two weeks before the

minimum value of D, which corresponds to the storm, there is a maximum in the coronal index. However, this is only clearly

seen regarding positions of maximum/minimum values. A more detailed correlations analysis, using daily coronal index data20

does not show any particular signature.

Box-counting dimensionD (with error bars) corresponding to the Dst index, along with the total solar flare (sum of northern

and southern hemispheres indexes) (left panel) and coronal (right panel) indexes for the storms: 13 March 1989, with moving

windows.

We observe that two different estimations of solar activity are correlated to some extent with D, thus suggesting a link25

between the solar activity and the fractal features of the Earth’s magnetosphere. Certainly, one should probably not expect to

find a single index to reveal this, as geomagnetic dynamics may be mostly but not exclusively determined by solar behavior,

and several other correlated pairs have been proposed (Yurchyshyn et al., 2004) , but it is interesting to notice the overall

consistency of the results, at least when a correlation can be observed.

4 MHD Shell Model30

Given the intrinsic difficulties in using direct numerical simulations to describe turbulent flows, specially for large Reynolds

numbers, shell models have been used for years in order to reproduce the nonlinear dynamics of fluid systems in large dynam-

ical ranges, but with less degrees of freedom (Obukhov, 1971; Gledzer, 1973; Yamada and Ohkitani, 1988). An MHD shell

8



model (Boffetta et al., 1999), in particular, is a dynamical system which aims to reproduce the main features of MHD turbu-

lence. The model corresponds to a simplified version of the Navier-Stokes or MHD equations for turbulence, that conserves

some of its invariants in the limit of no dissipation.

In this work, we use the MHD GOY shell model, which describes the dynamics of the energy cascade in MHD turbu-

lence (Lepreti et al., 2004). The model is built up by dividing the wave-vector space (k-space) in N discrete shells of radius5

kn = k02
n (n= 0,1, . . . ,N ). Then, two complex dynamical variables un(t) and bn(t) representing velocity and magnetic field

increments on an eddy scale l ∼ k−1
n , are assigned to each shell.

The model consists of the following set of ordinary differential equations:

dun
dt

=−νk2nun+ ikn (un+1un+2− bn+1bn+2)− ikn
{
1

4
(un−1un+1− bn−1bn+1)+

1

8
(un−2bn−1− bn−2un−1)

}∗
+ fn ,

(2)

dbn
dt

=−ηk2nbn+ ikn
1

6
(un+1bn+2− bn+1un+2)− ikn

1

6
{(un−1bn+1− bn−1un+1)+ (un−2bn−1− bn−2un−1)}∗ + gn ,

(3)

10

where ν and η are, respectively, the kinematic viscosity and the resistivity; fn and gn are external forcing terms acting, re-

spectively, on the velocity and magnetic fluctuations. The nonlinear terms have been obtained by imposing quadratic nonlinear

coupling between neighbouring shells and the conservation of three MHD ideal invariants (Gloaguen et al., 1985; Lepreti et al.,

2004).

The forcing terms are calculated according to the Langevin equation15

df̃n
dt

=− f̃n
τ0

+ µ̃ , (4)

where f̃n = fn or gn, τ0 is a characteristic time of the largest shell and µ̃ is a Gaussian white noise of width σ.

The magnetic energy dissipation rate is defined as

εb(t) = η

N∑

n=1

k2n
∣∣b2n
∣∣ . (5)

In our simulation, we set σ = 0.01, τ0 = 0.25, take N = 19 shells, and force the system on the largest shell (f1,g1 6= 0).20

Similar parameters have been considered in previous studies using this model for modelling of solar flares statistics (Boffetta

et al., 1999; Lepreti et al., 2004; Nigro et al., 2004).

We numerically integrate the shell model Eqs. (2)–(3) for various values of ν and η, and then we calculate the magnetic

energy dissipation rate εb(t) (Eq. (5)).

Figure 6 shows a typical time behavior for εb(t).25

Previous works have compared the statistics of bursts in turbulent systems with the statistics of dissipative events in the shell

model (Boffetta et al., 1999; Lepreti et al., 2004; Carbone et al., 2002). There, peaks in the εb(t) time series have been associated

to dissipative events in the magnetized plasma. Following the ideas in Ref. Domínguez et al. (2014)
::::::::::::::::::::
Domínguez et al. (2014) ,

9
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Figure 6. Time series of the energy dissipation rate εb(t), Eq. (5)for
:
,
:::
with

:::::::::::
ν = η = 10−4

::
in the shell modelwith ν = η = 10−4. The red and

blue region inside the dashed box corresponds to an active state, as explained
:::
later

:
in Sec

::
the

:::
text. 5

:::::
(Taken

::::
from

::::::::::::::::::
Domínguez et al. (2017) .

:
)

we focus only on the largest peaks in the εb(t) time series, specifically, on dissipative events where the maximum value is larger

than 〈εb〉+nσ̃ where 〈εb〉 is the average value of εb over all simulation time, σ̃ is the standard deviation of the εb time series in

that window, and n is a certain integer. In this paper we discuss only results for n= 10, but in Ref. Domínguez et al. (2017)
::::::::::::::::::::
Domínguez et al. (2017) n=

5 was also considered, in order to assess the robustness of the results. Our aim is to study the dependence of the conclusions

on ν and η in Eqs. (2) and (3).5

5 Active and quiet states in the MHD shell model

We now apply the same techniques used to study the Dst index, as described in Secs. 3–5, to the εb(t) time series.

First
::
We

::::
first

:::::
notice

:::::
that,

::
in

:::::::
general,

::::::
setting

:::::::::
parameters

::
ν

:::
and

::
η
::::
with

::::::::
arbitrary

:::::
values

::::::
yields

::::
εb(t):::::

series
::::::
which

::
do

:::
not

:::::
have

::
the

:::::::::
necessary

:::::::::::
intermittency

:::::
level

::
to

::::::::
resemble

:::
the

::::
Dst

::::
time

::::::
series.

::::::::
Compare,

:::
for

::::::::
instance,

:::
the

::::::::
different

::::::
panels

::
in

::::
Fig.

::
16

:::
in

:::::::::::::::::::::
Domínguez et al. (2017) ,

:::::
which

::::::
shows

:::
that

::::::::
Pm = 0.2

:::::
leads

::
to

::
a
::::
very

:::::
noisy

::::::
output,

::::::
unlike

:::::::::
simulations

:::::
with

::::::::
Pm = 1.0

::
or

::::
2.0,10

:::::
where

:::::::::
individual,

:::::
large

:::::
peaks

::::
can

::
be

::::::
easily

::::::::
identified

:::::
from

:::
the

:::::::::::
background.

::
In

::::
fact,

::::::::
previous

::::::
studies

:::::
have

::::::
shown

::::
that

:::
the

:::::::
statistics

::
of

::::::
bursts

::::::
follows

::
a
:::::
power

::::
law

:::
for

:::::::
Pm = 1

::::::::::::::::::::::::::::::::::::::::::::::::::::
(Boffetta et al., 1999; Lepreti et al., 2004; Carbone et al., 2002) ,

::::
and

:::
for

:::
this

::::::
reason

::
we

::::
start

:::
by

:::::
taking

:::::::::::::
Pm = ν/η = 1.

:

::::
Now, we need to define “active states” and “quiet states”. However, unlike

:::
For the Dst case (Domínguez et al., 2014) , there

is no clear criterion to establish the time scale of a typical dissipative event for our simulation data, and thus we proceed
::::
there15

::
are

:::::::
natural

::::
time

:::::
scales

:::
for

:::::
which

::::
were

:::::
used

::
to

:::::
define

:::
the

:::::::::
occurrence

::::
and

:::
the

:::::::
duration

::
of

:
a
:::::::::::
geomagnetic

::::::
storm.

:::::::
However

::::
this

::
is

:::
not

:::::::
available

:::
for

:::
the

::::::
output

::
of

:::
the

::::
shell

:::::::
model,

:::
and

:::
our

::::::::
approach

::::
was to inspect the data . To thisend, and in order to explore

a wide range of parameters, we fix
::
to

::::
gain

:::
an

:::::::
intuition

:::
on

::::
this.

:::
As

::::::::
described

::
in

:::::
detail

:::
in

:::::::::::::::::::::
Domínguez et al. (2017) ,

:::
we

::::
take

Pm = ν/η = 1 , and take values ν = η = 10−µ with µ= 1,2,3, . . . ,12. We then
::
as

:::::
fixed,

:::
and

::::
then

::
a
::::
wide

::::::
range

::
of

:::::
values

:::
of

::
ν,

::
in

:::
the

:::::::
interval

::::::::::::::::
10−12 ≤ ν ≤ 10−1.

:::
For

:::::
each

::::::::
parameter

::::
set,

:::
we

:
solve the shell model equations with

:::::
using a time step

::
of20

dt= 10−4 ,
:::
and

:
for 7× 108 iterations. This series of simulations suggest

:::
We

:::::::
conclude

:
that n= 10 is enough to identify the

largest peaks, filtering out most of the other events
::::
filter

:::::
most

::::::
events,

:::::
except

:::
for

:::
the

::::::
largest

::::
ones.
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Regarding the width of an active states, Fig. 6 is, among the various simulations we performed, the only case where two clear

dissipative events were both close and distinguishable from each other. Thus , this run was taken
:::
we

:::
take

::::
this

:
as a reference

, and we define an active state width such that both peaks in Fig. 6 can be regarded as two separate events. Since
:::
run,

::::
and

::::
since

:
the separation between both peaks is 96 000 time steps, we will define an “active state” by identifying a peak, and then

considering a window starting 48
::
in

:::
the

::::
shell

::::::
model

::::::
output

::
as

:
a
::::::::

window
::
of

::
96 000 time stepsbefore, and ending 48000 time5

steps after it. With this definition, in
:
,
:::::::
centered

::::::
around

::
a

::::
peak

::
in

:::
the

::::::::
magnetic

::::::
energy

::::::::::
dissipation.

:::::::::
Therefore,

:
Fig. 6 we have

:::::
shows two adjacent active states, each one associated with one of the peaks.

With these definitions of
:::
We

::::
now

::::::
analyze

:::
the

::::::
output

::
of

:::
the

:::::::::
simulation

:::
for

:::::
given

:::::
values

:::
of

:
ν
::::
and

::
n,

:::::::
identify active and quiet

states, we analyze the simulation results for ν = η = 10−µ with µ= 3 with
:::
and

::::::::
calculate

:::
the

::::::
scatter

:::::::::::
box-counting

:::::::::
dimension

::
for

::::
each

:::::
state

::
for

:::::::
various

:::::
values

::
of

:::
the

::::::::
sampling

::
j.

::::::
Figure

:
7
::::::
shows

:::
the

:::::
results

:::
for

::::::::::::
ν = η = 10−3,

:
n= 10. Three quiet states and10

two active states are identified. They are identified by integer numbers following the same strategy described
:::::
Integer

::::::::
numbers

::::
label

:::::
states

:::::
across

:::
the

::::::::::
simulation,

::
as

:::::::::
previously

::::::::
explained in Sec. 3, states

:
.
::
In

:::
Fig.

::
7,
::::::
active

:::::
states

:::::::::
correspond

::
to

:::::
labels

:
“2” and

“4”corresponding to the active states.

Performing the procedure described in section 2, we calculate the scatter box-counting dimension for different values of j

for each active and quiet state. Results are shown in Figure 7. Errors bars
:
.
:::::
Errors

:
in D are given by the error of

::::::::
calculated

:::::
from15

the least squares linear fit.

1 2 3 4 5

window

0.6

0.8

1

1.2

1.4

D
j

j = 10

j = 20

j = 30

j = 40

µ = 3 ,  n = 10

Figure 7. Box counting fractal dimension for εb(t) during quiet and active states for n= 10, with µ= 3. Active states correspond to states

labeled “2” and “4”.
:::::
(Taken

::::
from

:::::::::::::::::::
Domínguez et al. (2017) .)

:

We note that in general, an active state has a smaller fractal dimension than the surrounding quiet states. This is observed for

all values of j considered, although quantitative differences occur. For instance, in Fig. 7 we note that when j decreases
::
For

:::
all

:::::
values

::
of

::
j,

:::
we

::::::
notice

:::
that

:::::
active

:::::
states

:::::
have

::::::
smaller

::::::
fractal

:::::::::
dimensions

::::
than

:::::::::::
neighbouring

:::::
quiet

:::::
ones,

:::::::
although

:
the difference

between quiet and active states is less clear.20

Figure 7 also shows
:::
state

:::::::::
decreases

:::
for

:::::
lower

:::::
values

:::
of

::
j.

::
In

::::
fact,

::
it

:::
can

:::
be

::::
seen that the fractal dimension depends on the

distance between consecutive data, represented by the
::::
value

::
of

:::
the

::::::::
sampling

:
parameter j, which may be seen as an indication

of an underlying multifractal structure
:::::::
suggests

::::::::::
multifractal

::::::
features

:
of the data (Kadanoff et al., 1995; Pisarenko et al., 1993).
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In order to further investigate the dependence on j, we plot
:::
We

::::::
follow

:::
this

::::
idea

::
by

:::::::
plotting the fractal dimension for each quiet

and active state in the simulations
::
of

::::
each

::::
state

:
as a function of the distance between data, j . Results are shown in

:::
(see

:
Fig. 8).

0 20 40 60 80 100 120 140
j

0.5

1

1.5

D
j

1

2(s)

3

4(s)

5

µ  = 3 , n = 10

Figure 8. Box counting fractal dimension for quiet and active states, as a function of j, with µ= 3. Numbers for each curve rotulate the

states. We added an “(s)” in the legends, in order to highlight the active states.
::::

(Taken
::::

from
::::::::::::::::::::
Domínguez et al. (2017) .)

As mentioned above, the scatter box fractal dimension when all data are taken
::::::
Notice

:::
that

:::
for

:::
the

:::::::
smallest

:::::
value

::
of

:
j
:
(j = 1)

:
,

::
the

::::::
scatter

::::
plot

:
is a straight line, yielding

:::
thus

:::
its

:::::
fractal

:::::::::
dimension

::
is
:
D = 1, consistent with Fig. 8. On the other hand, as j

increases , a smaller subset of simulation data is taken, and eventually, when j
:::
and is larger than the number of data , only one5

datum is taken, leading to D = 0
::::::
points,

::::::
D = 0,

::::
since

::::
such

::
a
::::::::
sampling

:::::
leaves

::::
only

:::
one

:::::
point

::
in

:::
the

:::::
curve. Both limits are found

:::::::
satisfied for all curves . For

:
in
::::

Fig.
::
8.

::::
The

::::::::
nontrivial

::::::::::
dependence

:::
of

::
D

:::
for intermediate values of j , a nontrivial dependence

of the fractal dimension is observed, which also reflects the
:::::::
reflects,

::
as

:::::::::
mentioned

:::::
above,

::
a multifractal nature of the series as

D varies as we change the time scale given by j
::::
εb(t):::::

times
::::::
series,

::::
since

:::
the

::::::
fractal

:::::::::
dimension

:::::::
depends

:::
on

:::
the

::::::::
sampling

::::
time

::::
scale.10

Figure 8 shows that active states have lower fractal dimensions than quiet states, consistently with Fig 7. Moreover, active

states always have fractal dimensions less than 1, whereas it is always larger than 1
:::
As

:::::::
observed

:::
in

:::
Fig.

::
7,
:::

in
:::
Fig.

::
8
:::
we

::::
also

:::
find

:::::
lower

::::::
fractal

:::::::::
dimensions

:::
for

::::::
active

::::
state

::::
than for quiet states. It also shows that all quiet (or equivalently all active) states

are not characterized by a single fractal dimension, consistent with our previous findings. Finally, Fig. 8 shows that the fractal

dimension decreases during dissipative events, for a certain range
:::::::
However,

::::
this

::::
does

:::
not

::::
hold

:::
for

::::::::
arbitrarily

:::::
large

:::::
values

:
of j .15

If
:::
(see

::::
Figs.

::
6

:::
and

:
7
::
in
::::::::::::::::::::::
Domínguez et al. (2017) ).

:::
We

::::
only

::::
find

:
it
:::
for j > 1, but not too large, the fractal dimension during active

states is always smaller than during quiet times, which suggests that , for
:::::::::
suggesting

:::
that

::
it
::
is

::::::
within this range of moderate

values of j ,
:::::
where the box counting fractal dimension has statistical information on the activity of

:::::::::
dissipative

:::::
events

:::
in the

time series.
::::
This,

::
in

::::
turn,

:::::::
suggests

::::
that

:::
the

:::::::
findings

::
in

::::
Sec.

:
3
:::
and

:::::::::::::::::::::::
Domínguez et al. (2014) are

:::
not

::::::
trivial.

:

InRef. Domínguez et al. (2017) a more detailed analysis is carried out on the shell model results, exploring other simulation20

parameters (ν, η, magnetic Prandtl number), other criteron for defining active states (n= 5), and a systematic study of the

correlations between the fractal dimension and the occurrence of dissipative events by means of the Student’s t-test.
::::::
Results

::::::
suggest

::::
that

:::
the

:::::::::::
intermittency

::::
level

::
of

:::
the

::::::
output

::::
time

:::::
series

::
is

:::::::
relevant,

::::::
which

:::
has

:::
led

::
us

::
to

:::::::
perform

:::
the

::::::::
analyses

::
for

:::
the

:::::
shell

:::::
model

:::::::
within

:
a
::::::
certain

:::::
range

::
of

::::::
values

::
of

:::
the

::::::
Prandtl

:::::::
number,

::
as

::::
well

::
as

::
of
:::
the

::::::::
viscosity

:::
and

:::::::::
resistivity.

:
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5 Magnetic clouds

As a way to illustrate how the ideas described so far could be used to characterize structures in space plasmas, we apply the

method to study the time series for the magnetic field during magnetic clouds, (Burlaga et al., 1981)
:::::::::::::::::::
(Burlaga et al., 1981) ,

as found in ACE data (ACE Science Center). Magnetic clouds are transient structures ejected from the Sun, characterized by

a large and smooth rotation of the magnetic field. Typically, a magnetic cloud event can be identified from single spacecraft5

measurements by studying the evolution of the observed fields. During a given event, various stages can be identified: first,

observation of solar wind prior to the cloud’s arrival, then a sheath of compressed solar wind plasma immediately preceding

a flux rope, where the magnetic field varies smoothly, and finally the background solar wind again. Note that slower-moving

clouds traveling at speeds comparable to that of the ambient solar wind will not display prominent sheath regions.

Two events were selected: an event occuring on 12 July 2012 (MC1) and another on 11 July 2014 (MC2). Resolution for the10

magnetic field time series for this event is 16 seconds, covering a time span of 8 days for MC1 and 6 days for MC2, of which

about 2 days correspond to the cloud event itself. It is found that the calculated fractal dimension evolves in a distinctive way

as the various stages of the event as it passes by the spacecraft (namely surrounding solar wind, sheath, and flux rope). Given

the high resolution of the data, it is possible to calculate the box-counting dimension for several delays, given by j, as was

shown in Figs. 7 and 8 for the shell model analysis. In Fig. 9 the fractal dimension is calculated for each magnetic cloud stage,15

and various values of the sampling j are considered.

Figure 9. Box counting fractal dimension for two magnetic cloud events during the four stages of the time series: first the solar wind, then

the sheath, then the flux rope, and finally the solar wind again. Several values for data sampling j are used.

It can be noted that the fractal dimension, as calculated here, is indeed able to characterize magnetic cloud structures. The

sheath state has a large dispersion of fractal dimension values as j is varied, consistent with its more turbulent regime; on

the other hand, the quieter and more organized flux rope state exhibits a very low variation with j, basically a single fractal
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dimension at all time scales explored. As for the surrounding solar wind, it shows dispersion of Dj which is between the

dispersion of values in the sheath and the flux rope (Muñoz et al., 2016).

6 Conclusions

In this manuscript, we have reviewed recent results obtained by us, regarding the evolution of complexity in magnetized

plasmas, as described by geomagnetic data, simulation results for MHD turbulence, and spacecraft data in the solar wind.5

This has been done by calculating a box-counting fractal dimension for time series of magnetic field data for the Dst

geomagnetic index (Domínguez et al., 2014), the GOY shell model (Domínguez et al., 2017), and ACE data for two magnetic

cloud events (Muñoz et al., 2016).

Some robust behaviors are identified. In general, it is found that the fractal dimension D decreases during dissipative events.

In the case of the Dst time series this was verified for three different types of time windows: fixed width and stationary (Sec. 3),10

variable width (Sec. ??), and moving windows (Sec. 5). And it was also found across several time scales, namely individual

storms, full years, and the complete 23rd solar cycle, as detailed inRef. Domínguez et al. (2014).

A similar behavior is found for the MHD shell model (Secs
:::
Sec. 4and 5). Thanks to the larger resolution of the simulation

data as compared with the Dst data, several values of the time delay for data sampling could be made, showing that the results

found inRef. Domínguez et al. (2014) are nontrivial, in the sense that not all samplings yield similar results. Only intermediate,15

not too large, values of the time delay (as represented by the value of j in Sec. 5 are able to clearly distinguish between active

and quiet states. But, within the useful range of values for j, the fractal dimension of the active states is consistently smaller

than the dimension of quiet states, and is always lower than 1, whereas the active states always have a dimension larger than

1. The dependence on j of the fractal dimension is interesting in itself, as it suggests that data have a multifractal structure,

which is consistent with suggestions and finding by other authors for space plasmas (Chapman et al., 2008, 1998; Valdivia20

et al., 2005).

Also, a more systematic test for the correlation between burst events in the shell model and the decrease in fractal dimension

was performed, by means of the Student’s t-test, as well as a more detailed exploration of the parameter space for the simulation.

These results can be found inRef. (Domínguez et al., 2017)
::::::::::::::::::::
Domínguez et al. (2017) .

As an application of these ideas, we take two magnetic cloud events in the solar wind, and use the techniques described25

here to study the corresponding magnetic field time series. Our results, although preliminary, suggest that this method can

characterize the various stages of the magnetic cloud structure.

Given the rich and complex dynamics governing the evolution of magnetized plasmas, we would not expect that a single

index would be able to capture all their relevant information.
::
In

::::
fact,

::::::::::
multifractal

:::::::
analysis

::::::
should

::
be

:::::
made

::
in

:::::
order

::
to

::::::::
represent

::
the

:::::::::
dynamics

::
of

:::
the

:::::::
systems

::::::
studied

:::::
more

:::::::::
accurately,

:::
and

:::::
such

::
an

:::::::
analysis

::
is

::::::::
currently

:::::
being

:::::::
prepared

:::
for

::::::
future

:::::::::
publication.30

However, the findings summarized here suggest that some relevant correlations can be observed, and that the dimension used

here, although simple, may give some insight on the evolution of complexity of plasmas in the Sun-Earth system and MHD

turbulent states.
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