
Optimal transport for variational data assimilation
Nelson Feyeux1, Arthur Vidard1, and Maëlle Nodet1

1Univ. Grenoble Alpes, Inria, CNRS, Grenoble INP, LJK, 38000 Grenoble, France

Correspondence to: A. Vidard (arthur.vidard@inria.fr)

Abstract.

Usually data assimilation methods evaluate observation-model misfits using weighted L2 distances. However it is not well

suited when observed features are present in the model with position error. In this context, the Wasserstein distance stemming

from optimal transport theory is more relevant.

This paper proposes to adapt variational data assimilation to the use of such a measure. It provides a short introduction5

to optimal transport theory and discusses the importance of a proper choice of scalar product to compute the cost function

gradient. It also extends the discussion to the way the descent is performed within the minimisation process.

These algorithmic changes are tested on a non-linear shallow-water model, leading to the conclusion that optimal transport-

based data assimilation seems to be promising to capture position errors in the model trajectory.

Copyright statement.10

1 Introduction

Understanding and forecasting the evolution of a given system is a crucial topic in an ever increasing number of application

domains. To achieve this goal, one can rely on multiple sources of information, namely observations of the system, numerical

model describing its behaviour, as well as additional a priori knowledge such as statistical information or previous forecasts.

To combine these heterogeneous sources of observation it is common practice to use so-called data assimilation methods (e.g.,15

see reference books Lewis et al. (2006); Law et al. (2015); Asch et al. (2016)). Their aim is multiple: finding the initial and/or

boundary conditions, parameter estimation, reanalysis, and so on. They are extensively used in numerical weather forecasting

for instance (e.g., see reviews in the books Park and Xu (2009, 2013)).

The estimation of the different elements to be sought, the control vector, is performed in data assimilation through the

comparison between the observations and their model counterparts. The control vector should be adjusted such that its model20

outputs would fit the observations, while taking into account that these observations are imperfect and corrupted by noise and

errors.

Data assimilation methods are divided into three distinct classes. First, there is statistical filtering based on Kalman filters.

Then, variational data assimilation methods based on optimal control theory. More recently hybrids of both approaches have
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been developed (Hamill and Snyder, 2000; Buehner, 2005; Bocquet and Sakov, 2014). In this paper we focus on variational

data assimilation. It consists in minimizing a cost function written as the distance between the observations and their model

counterparts. A Tikhonov regularization term is also added to the cost function as a distance between the control vector and a

background state carrying a priori information.

Thus the cost function contains the misfit between the data (a priori and observations) and their control and model counter-5

parts. Minimizing the cost function aims at reaching a compromise in which these errors are as small as possible. The errors

can be decomposed into amplitude and position errors. Position errors mean that the structural elements are present in the data,

but misplaced. Some methods have been proposed in order to deal with position errors (Hoffman and Grassotti, 1996; Ravela

et al., 2007). These involve a preprocessing step which consists in displacing the different data so they fit better with each other.

Then the data assimilation is performed accounting for those displaced data.10

A distance has to be chosen in order to compare the different data and measure the misfits. Usually, a Euclidean distance is

used, often weighted to take into account the statistical errors. But Euclidean distances have trouble capturing position errors.

This is illustrated in Fig. 1, which shows two curves ρ0 and ρ1. The second curve ρ1 can be seen as the first one ρ0 with position

error. The minimizer of the cost function ‖ρ−ρ0‖2+‖ρ−ρ1‖2 is given by ρ∗ = 1
2 (ρ0+ρ1), plotted with violet stars of Fig. 1. It

is the average of curves ρ0 and ρ1 with respect to the L2 distance. As we can see on Fig. 1, it does not correct for position error,15

but instead creates two smaller amplitude curves. We investigate in this article the idea of using instead a distance stemming

from optimal transport theory, the Wasserstein distance, which can take into account position errors. In Fig. 1 we plot (green

dots) the average of ρ0 and ρ1 with respect to the Wasserstein distance. Contrary to the L2 average, the Wasserstein average

is what we want it to be: same shape, same amplitude, located in-between. It conserves the shape of the data. This is what we

want to achieve when dealing with position errors.20
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Figure 1. Wasserstein (W) and Euclidean (L2) averages of two curves ρ0 and ρ1.
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Optimal transport theory has been pioneered by Monge in 1781 (Monge, 1781). He searched for the optimal way of displac-

ing sand piles onto holes of the same volume, minimizing the total cost of displacement. This can be seen as a transportation

problem between two probability measures. A modern presentation can be found in Villani (2003) and will be discussed in

Section 2.2.

Optimal transport has a wide spectrum of applications, from pure mathematical analysis on Riemannian spaces to ap-5

plied economics, from functional inequalities (Cordero-Erausquin et al., 2004) to the semi-geostrophic equations (Cullen and

Gangbo, 2001), through astrophysics (Brenier et al., 2003), medicine (Ratner et al., 2015), crowd motion (Maury et al., 2010)

or urban planning (Buttazzo and Santambrogio, 2005). From optimal transport theory several distances can be derived, the

most widely known being the Wasserstein distance (denotedW) which is sensitive to misplaced features, and is the primary

focus of this paper. This distance is also widely used in computer vision, for example in classification of images (Rubner et al.,10

1998, 2000), interpolation (Bonneel et al., 2011), or movie reconstruction (Delon and Desolneux, 2010). More recently, Farchi

et al. (2016) used the Wasserstein distance to compare observation and model simulations in an air pollution context, which is

a first step toward data assimilation.

Actual use of optimal transport in a variational data assimilation has been proposed by Ning et al. (2014), to tackle model

error. The authors use the Wasserstein distance instead of the classical L2 norm for model error control in the cost function, and15

they offer promising results. Our contribution is in essence similar to them, in the fact that the Wasserstein distance is proposed

in place of the L2 distance. Looking more closely, we investigate a different question, namely the idea of using the Wasserstein

distance to measure the observation misfit. Also, we underline and investigate the impact of the choice of the scalar products,

gradient formulations, as well as minimization algorithm choices on the assimilation performance, which is not discussed in

Ning et al. (2014). These particularly subtle mathematical considerations are indeed crucial for the algorithm convergence, as20

will be shown in this paper, and is our main contribution.

The goal of the paper is to perform variational data assimilation with a cost function written with the Wasserstein distance.

It may be extended to other type of data assimilation methods such as filtering methods, which largely exceeds the scope of

this paper.

The present paper is organized as follows: first, in Section 2, variational data assimilation as well as Wasserstein distance25

are defined, and the ingredients required in the following are presented. The core of our contribution lies in Section 3: we

first present the Wasserstein cost function, then propose two choices for its gradients, as well as two optimization strategies

for the minimization. In Section 4 we present numerical illustrations, discuss the choices for the gradients and compare the

optimization methods. Also, some difficulties related to the use of optimal transport will be pointed out and solutions will be

proposed.30
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2 Materials and Methodology

This section deals with the presentation of variational data assimilation concepts and method on the one hand, and optimal

transport and Wasserstein distance concepts, principles, and main theorems on the other hand. Section 3 will combine both

worlds and will constitute the core of our original contribution.

2.1 Variational data assimilation5

This paper focuses on variational data assimilation in the framework of initial state estimation. Let us assume that a system

state is described by a variable x, denoted x0 at initial time. We are also given observations yobs of the system, which might

be indirect, incomplete and approximate. Initial state and the observations are linked by operator G, mapping the system initial

state x0 to the observation space, so that G(x0) and yobs belong to the same space. Usually G is defined using two other

operators, namely the modelM which gives the model state as a function of the initial state and the observation operator H10

which maps the system state to the observation space, such that G =H◦M.

Data assimilation aims to find a good estimate of x0 using the observations yobs and the knowledge of the operator G.

Variational data assimilation methods do so by finding the minimizer x0 of the misfit function J (the cost function) between

the observations yobs and their computed counterparts G(x0),

J (x0) = dR(G(x0),yobs)2

with dR some distance to be defined. Generally, this problem is ill-posed. For the minimizer of J to be unique, a background15

term is added and acts like a Tikhonov regularization. This background term is generally expressed as the distance with a

background term xb, which contains a priori informations. The actual cost function then reads

J (x0) = dR(G(x0),yobs)2 + dB(x0,x
b)2, (1)

with dB another distance to be specified. The control of x0 is done by the minimization of J . Such minimization is generally

carried out numerically using gradient descent methods. Paragraph 3.3 will give more details about the minimization process.20

The distances to the observations dR and to the background term dB have to be chosen in this formulation. Usually, Euclidean

distances (L2 distances, potentially weighted) are chosen, giving the following Euclidean cost function

J (x0) = ‖G(x0)−yobs‖22 + ‖x0−xb‖22, (2)

with ‖ · ‖2 the L2 norm defined by25

‖a‖22 :=

∫
|a(x)|2 dx. (3)

Euclidean distances, such as the L2 distance, are local metrics. In the following we will investigate the use of a non-local

metric, the Wasserstein distanceW , in place of dR and dB in equation (1). Such a cost function will be presented in Section 3.

The Wasserstein distance is presented and defined in the following subsection.
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2.2 Optimal transport and Wasserstein distance

The essentials of optimal transport theory and Wasserstein distance required for data assimilation are presented.

We define, in this order, the space of mass functions where the Wasserstein distance is defined, then the Wasserstein distance

and finally the Wasserstein scalar product, a key ingredient for variational assimilation.

2.2.1 Mass functions5

We consider the case where the observations can be represented as positive fields that we will call “mass functions”. A mass

function is a non-negative function of space. For example, a grey-scaled image is a mass function, it can be seen as a function

of space to the interval [0,1] where 0 encodes black and 1 encodes white.

Definition 2.1. Let Ω be a closed, convex, bounded set of Rd and let define the set of mass functions P(Ω) be the set of

non-negative functions of total mass 1:10

P(Ω) :=

ρ≥ 0:

∫
Ω

ρ(x)dx= 1

 . (4)

Let us remark here that, in the mathematical framework of optimal transport, mass functions are continuous and they are

called “probability densities”. In the data assimilation framework the concept of probability densities is mostly used to represent

errors. Here, the positive functions we consider actually serve as observations or state vectors, so we chose to call them mass

functions to avoid any possible confusion with state or observation error probability distributions.15

2.2.2 Wasserstein distance

The optimal transport problem is to compute among all the transportations between two mass functions, the one minimizing the

kinetic energy. A transportation between two mass functions ρ0 and ρ1 is given by a time path ρ(t,x) such that ρ(t= 0) = ρ0

and ρ(t= 1) = ρ1, and a velocity field v(t,x) such that the continuity equation holds,

∂ρ

∂t
+ div(ρv) = 0. (5)20

Such a path ρ(t) can be seen as interpolating ρ0 and ρ1. For ρ(t) to stay in P(Ω), a sufficient condition is that the velocity

field v(t,x) should be tangent to the domain boundary, meaning that ρ(t,x)v(t,x) ·n(x) = 0 for almost all (t,x) ∈ [0,1]×∂Ω.

With this condition, the support of ρ(t) remains in Ω.

Let us be clear here that the time t is fictitious, and has no relationship whatsoever with the physical time of data assimilation.

It is purely used to define the Wasserstein distance and some mathematically related objects.25

The Wasserstein distanceW is hence the minimum in terms of kinetic energy among all the transportations between ρ0 and

ρ1,

W(ρ0,ρ1) =

√√√√ min
(ρ,v)∈C(ρ0,ρ1)

∫∫
[0,1]×Ω

ρ(t,x)|v(t,x)|2 dtdx (6)
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with C(ρ0,ρ1) representing the set of continuous transportations between ρ0 and ρ1 described by a velocity field v tangent to

the boundary of the domain,

C(ρ0,ρ1) :=

(ρ,v) s.t.

∂tρ+ div(ρv) = 0,

ρ(t= 0) = ρ0, ρ(t= 1) = ρ1,

ρv ·n = 0 on ∂Ω

 . (7)

This definition of the Wasserstein distance is the Benamou-Brenier formulation (Benamou and Brenier, 2000). There exist

other definitions, based on the transport map or the transference plans, but slightly out of the scope of this article. See the5

introduction of Villani (2003) for more details.

A remarkable property is that the optimal velocity field v is of the form

v(t,x) =∇Φ(t,x)

with Φ following the Hamilton-Jacobi equation (Benamou and Brenier, 2000)

∂tΦ +
|∇Φ|2

2
= 0. (8)

The equation of the optimal ρ is the continuity equation using this velocity field. Moreover, the function Ψ defined by

Ψ(x) :=−Φ(t= 0,x) (9)10

is said to be the Kantorovich potential of the transport between ρ0 and ρ1. It is a useful feature in the derivation of the

Wasserstein cost function presented in Section 3.

A remarkable property of the Kantorovich potential allows to compute the Wasserstein distance, this is the Benamou-Brenier

formula (see (Benamou and Brenier, 2000) or (Villani, 2003, Th. 8.1)), given by

W(ρ0,ρ1)2 =

∫
Ω

ρ0(x)|∇Ψ(x)|2 dx (10)15

Example 2.2. The classical example for optimal transport is the transport of Gaussian mass functions. For Ω = Rd, let us

consider two Gaussian mass functions: ρi of mean µi and variance σ2
i for i= 0 and i= 1. Then the optimal transport ρ(t)

between ρ0 and ρ1 is a transportation-dilatation function of ρ0 to ρ1. More precisely, ρ(t) is a Gaussian mass function whose

mean is µ0 + t(µ1−µ0) and variance is (σ0 + t(σ1−σ0))2. The corresponding computed Kantorovich potential is (up to a

constant):20

Ψ(x) =

(
σ1

σ0
− 1

)
|x|2

2
+

(
µ1−

σ1

σ0
µ0

)
·x.

Finally, a few words should be said about the numerical computation of the Wasserstein distance. In one dimension, the

optimal transport ρ(t,x) is easy to compute as the Kantorovich potential has an exact formulation: the Kantorovich potential

of the transport between two mass functions ρ0 and ρ1 is the only function Ψ such that

F1(x−∇Ψ(x)) = F0(x), ∀x (11)25
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with Fi the cumulative distribution function of ρi. Numerically we fix x and solve iteratively equation (11) using binary search

to find ∇Ψ. Then, we obtain Ψ thanks to numerical integration. Finally, equation (10) gives the Wasserstein distance.

For two or three dimensional problems, there exists no general formula for the Wasserstein distance and more complex

algorithms have to be used, like the (iterative) primal-dual one (Papadakis et al., 2014) or the semi-discrete one (Mérigot,

2011). In the former, an approximation of the Kantorovich potential is directly read in the so-called dual variable.5

2.2.3 Wasserstein inner product

The scalar product between two functions is required for data assimilation and optimization: as we will recall later, the scalar

product choice is used to define the gradient value. This paper will consider the classical L2 scalar product as well as the one

associated to the Wasserstein distance. A scalar product defines the angle and norm of vectors tangent to P(Ω) at a point ρ0.

First, a tangent vector in ρ0 is the derivative of a curve ρ(t) passing through ρ0. As a curve ρ(t) can be described by a continuity10

equation, the space of tangent vectors, the tangent space, is formally defined by (cf. Otto, 2001),

Tρ0P =

{
η ∈ L2(Ω), s.t. η =−div(ρ0∇Φ) with Φ s.t. ρ0

∂Φ

∂n
= 0 on ∂Ω

}
. (12)

Let us first recall that the Euclidean, or L2, scalar product 〈·, ·〉2 is defined on Tρ0P by

∀η,η′ ∈ Tρ0P(Ω), 〈η,η′〉2 :=

∫
Ω

η(x)η′(x)dx. (13)

The Wasserstein inner product 〈·, ·〉W is defined for η =−div(ρ0∇Φ),η′ =−div(ρ0∇Φ′) ∈ Tρ0P by15

〈η,η′〉W :=

∫
Ω

ρ0∇Φ · ∇Φ′ dx. (14)

One has to note that the inner product is dependent on ρ0 ∈ P(Ω). Finally, the norm associated to a tangent vector η =

−div(ρ0∇Φ) ∈ Tρ0P is

‖η‖2W =

∫
Ω

ρ0|∇Φ|2 dx (15)

hence the kinetic energy of the small displacement η. This point makes the link between this inner product and the Wasserstein20

distance.

3 Optimal transport-based data assimilation

This section is our main contribution. First, we will consider the Wasserstein distance to compute the observation term of the

cost function; second, we will discuss the choices of the scalar product and the gradient descent method, and their impact on

the assimilation algorithm efficiency.25
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3.1 Wasserstein cost function

In the framework of Section 2.2 we will define the data assimilation cost function using the Wasserstein distance. For this cost

function to be well defined we assume that the control variables belong to P(Ω) and that the observation variables belong to

another space P(Ωo) with Ωo a closed, convex, bounded set of Rd′ . Let us recall that this means that they are all non-negative

functions with integral equal to 1. Having elements with integral 1 (or constant integral) may seem restrictive. Removing it is5

possible by using a modified version of the Wasserstein distance, presented for example in Chizat et al. (2015) or Farchi et al.

(2016). For simplicity we do not consider this possible generalization and all data have the same integral. The cost function (1)

is rewritten using the Wasserstein distance defined in Section 2.2,

JW(x0) =
1

2

N obs∑
i=1

W(Gi(x0),yobs
i )2 +

ωb
2
W(x0,x

b
0)2 (16)

with Gi : P(Ω)→P(Ωo) the observation operator computing the yobs
i counterpart from x0 and ωb a scalar weight associated10

to the background term.

The variables x0 and yobsi may be vectors whose components are functions belonging to P(Ω) and P(Ωo), respectively. The

Wasserstein distance between two such vectors is the sum of the distances between their components. The remainder of the

article is easily adaptable to this case, but for simplicity we set x0 = ρ0 ∈ P(Ω) and yobsi = ρobs
i ∈ P(Ω). The Wasserstein cost

function (16) then becomes15

JW(ρ0) =
1

2

N obs∑
i=1

W(Gi(ρ0),ρobs
i )2 +

ωb
2
W(ρ0,ρ

b
0)2. (17)

As for the classical L2 cost function, JW is convex with respect to the Wasserstein distance in the linear case, and has a

unique minimizer. In the non-linear case, the uniqueness of the minimizer relies on the regularization term ωb

2 W(ρ0,ρ
b
0)2.

To find the minimum of JW , a gradient descent method is applied. It is presented in Section 3.3. As this type of algorithm

requires the gradient of the cost function, computation of the gradient of JW is the focus of next Section.20

3.2 Gradient of JW

If JW is differentiable, its gradient is given by

∀η ∈ Tρ0P, lim
ε→0

JW(ρ0 + εη)−JW(ρ0)

ε
= 〈η,g〉 (18)

where 〈·, ·〉 represents the scalar product. The scalar product is not unique, so as a consequence neither is the gradient. In this

work we decided to study and compare two choices for the scalar product, the natural one W and the usual one L2. W is25

clearly the ideal candidate for a good scalar product. However, we also decided to study the L2 scalar product because it is the

usual choice in optimisation. Numerical comparison is done in Section 4.
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The associated gradients are respectively denoted gradWJW(ρ0) and grad2JW(ρ0) and are the only elements of the tangent

space Tρ0P of ρ0 ∈ P(Ω) such that

∀η ∈ Tρ0P, lim
ε→0

JW(ρ0 + εη)−JW(ρ0)

ε
=〈gradWJW(ρ0),η〉W

=〈grad2JW(ρ0),η〉2. (19)

Here in the notations, the word "grad" is used for the gradient of a function while the spatial gradient is denoted by the nabla

sign∇. The gradients of JW are elements of Tρ0P and hence functions of space.5

The following theorem allows to compute both gradients of JW :

Theorem 3.1. For i ∈ {1, . . . ,Nobs}, let Ψi be the Kantorovich potential (see equation (9)) of the transport between Gi(ρ0)

and ρobs
i . Let Ψb be the Kantorovich potential of the transport map between ρ0 and ρb0. Then,

grad2JW(ρ0) = ωbΨ
b +

Nobs∑
i=1

G∗i (ρ0).Ψi + c (20)10

with c such that the integral of grad2JW(ρ0) is zero, and G∗i the adjoint of Gi w.r.t. the L2 inner product (see definition

reminder below). Assuming that grad2JW(ρ0) has the no-flux boundary condition (see comment about this assumption below)

ρ0
∂grad2JW(ρ0)

∂n
= 0 on ∂Ω

then the gradient w.r.t. the Wasserstein inner product is

gradWJW(ρ0) =−div
(
ρ0∇[grad2JW(ρ0)]

)
. (21)15

(A proof of this Theorem can be found in Appendix A.)

The adjoint G∗i (ρ0) is defined by the classical equality

∀η,µ ∈ Tρ0P,〈G∗i (ρ0).µ,η〉2 = 〈µ,Gi(ρ0).η〉2 (22)

where Gi[ρ0] is the tangent model, defined by

∀η ∈ Tρ0P,Gi(ρ0).η := lim
ε→0

Gi(ρ0 + εη)−Gi(ρ0)

ε
. (23)20

Note that the no-flux boundary condition assumption for grad2JW(ρ0), that is

ρ0
∂grad2JW(ρ0)

∂n
= 0 on ∂Ω

is not necessarily satisfied. The Kantorovich potentials respect this condition. Indeed, their spatial gradients are velocities thus

tangent to the boundary, see the end of Section 2.2. But it may not be conserved through the mapping with the adjoint model,

G∗i (ρ0). In the case where G∗i (ρ0) does not preserve this condition, the Wasserstein gradient is not of integral zero. A possible25

workaround is to use a product coming from the unbalanced Wasserstein distance of Chizat et al. (2015).
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3.3 Minimization of JW

The minimizer of JW defined in (17) is expected to be a good trade-off between both the observations and the background with

respect to the Wasserstein distance and to have good properties, as shown in Fig. 1. It can be computed through an iterative

gradient-based descent method. Such methods start from a control state ρ0
0 and step-by-step update it using an iteration of the

form5

ρn+1
0 = ρn0 −αndn (24)

where αn is a real number (the step) and dn is a function (the descent direction), chosen such that JW(ρn+1
0 )< JW(ρn0 ).

In gradient-based descent methods, dn can be equal to the gradient of JW (steepest descent method), or to a function of the

gradient and dn−1 (conjugate gradient, quasi-Newton methods, ...). Under sufficient conditions on (αn), the sequence (ρn0 )

converges to a local minimizer. See Nocedal and Wright (2006) for more details.10

We will now explain how to adapt the gradient descent to the optimal transport framework. With the Wasserstein gradient

(21), the descent of JW follows an iteration scheme of the form

ρn+1
0 = ρn0 +αn div(ρn0∇Φn) (25)

with αn > 0 to be chosen.

The inconveniences of this iteration are twofold. First, for ρn+1
0 to be non-negative, αn may have to be very small. Second,15

the supports of functions ρn+1
0 and ρn0 are the same. A more transport-like iteration could be used instead, by making ρn0

follow the geodesics in the Wasserstein space. All geodesics ρ(α) starting from ρn0 are solutions of the set of partial differential

equations
∂αρ+ div(ρ∇Φ) = 0, ρ(α= 0) = ρn0 ,

∂αΦ +
|∇Φ|2

2
= 0,

(26)

see equation (8). Furthermore, two different values of Φ(α= 0) give two different geodesics. In the optimal transport theory20

community, the geodesic ρ(α) starting from ρn0 with initial condition Φ(α= 0) = Φ0 would be written with the following

notation:

ρ(α) = (I −α∇Φ0)#ρn0 . (27)

see (Villani, 2003, Section 8.2) for more details.

For the gradient iteration, we choose the geodesic starting from ρn0 with initial condition Φ(α= 0) = Φn, i.e. using the25

optimal transport notation ρn+1
0 is given by

ρn+1
0 = (I −αn∇Φn)#ρn0 (28)

with αn > 0 to be chosen. This descent is consistent with (25) because (25) is the first order discretization of (26) with

Φ(α= 0) = Φn. Therefore, (28) and (25) are equivalent when αn→ 0.
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Figure 2. Comparison of iterations (25) and (28) with ρ0 of limited support and Φ such that ∇Φ is constant on the support of ρ0.

Comparison of (28) and (25) is shown on Fig. 2 for simple ρn0 and Φ. This comparison depicts the usual advantage of using

(28) instead of (25): the former is always in P(Ω) and supports of functions change. Iteration (28) is the one used in the

following numerical experiments.

4 Numerical illustrations

Let us recall that in the data assimilation vocabulary, the word “analysis” refers to the minimizer of the cost function at the end5

of the data assimilation process.

In this section the analyses resulting from the minimization of the Wasserstein cost function defined previously in (16) are

presented, in particular when position errors occur. Results are compared with the results given by the L2 cost function defined

in (2).

The experiments are all one-dimensional and Ω is the interval [0,1]. A discretization of Ω is performed and involves 20010

uniformly distributed discretization points. A first, simple experiment uses a linear operator G. In a second experiment, the

operator is non-linear.

Only a single variable is controlled. This variable ρ0 represents the initial condition of an evolution problem. It is an element

of P(Ω), and observations are also elements of P(Ω).

In this paper we chose to work in the twin experiments framework. In this context the true state, denoted ρt0, is known and15

used to generate the observations: ρobs
i = Gi(ρt0) at various times (ti)i=1..Nobs . Observations are first perfect, that is noise-free

and available everywhere in space. Then in Section 4.3, we will add noise in the observations. The background term is supposed

to have position errors only and no amplitude error. The data assimilation process aims to recover a good estimation of the

11



true state, using the cost function involving the simulated observations and the background term. The analysis obtained after

convergence can then be compared to the true state and effectiveness diagnostics can be made.

Both the Wasserstein (17) and L2 (2) cost functions are minimized through a steepest gradient method. The L2 gradient is

used to minimize the L2 cost function. Both the L2 andW gradients are used for the Wasserstein cost functions (cf. Theorem

3.1 for expressions of both gradients), giving respectively, with Φn := grad2JW(ρn0 ), the iterations5

ρn+1
0 = ρn0 −αnΦn (DG2)

ρn+1
0 = (I −αn∇Φn)#ρn0 . (DG#)

The value of αn is chosen close to optimal using a line search algorithm and the descent stops when the decrement of J
between two iterations is lower than 10−6.

4.1 Linear example10

The first example involves a linear evolution model as (Gi)i=1..Nobs with the number of observations Nobs equal to 5. Every

single operator Gi maps an initial condition ρ0 to ρ(ti) according to the following continuity equation defined in Ω = [0,1],

∂tρ+u · ∇ρ= 0 with u= 1. (30)

The operator Gi is linear. We control ρ0 only. The true state ρt0 ∈ P(Ω) is a localised mass function, similar to the background

term ρb0 but located at a different place, as if it had position errors. The true and background states as well as the observations at15

various times are plotted on Fig. 3 (top). The computed analysis ρa,20 for the L2 cost function is shown on Fig. 3 (bottom left).

This Figure shows also the analysis ρa,W0 corresponding to both (DG2) and (DG#) algorithms minimizing the same Wasserstein

JW cost function.

As expected in the introduction, see e.g. Fig. 1, minimizing J2 leads to an analysis ρa,20 being the L2-average of the back-

ground and true states (hence two small localised mass functions), while JW leads to a satisfactorily shaped analysis ρa,W020

in-between the background and true states.

The issue of amplitude of the analysis of ρa,20 and the issue of position of ρa,W0 are not corrected by the time evolution

of the model, as shows Fig. 3 (bottom right). At the end of the assimilation window, each of both of the analyses still have

discrepancies with the observations.

25

Both of the algorithms (DG2) and (DG#) give the same analysis, the minimum of JW . However, the convergence speed is

not the same at all. The values of JW throughout the algorithm are plotted on Fig. 4. It can be seen that (DG#) converges in

a couple of iterations while (DG2) needs more than 2000 iterations to converge. It is a very slow algorithm because it does

not provide the steepest descent associated to the Wasserstein metric. The Figure also shows that even in a conjugate gradient

(CG) version of (DG2), the descent is still quite slow (it needs ∼ 100 iterations to converge). This comparison highlights the30

need for a well-suited inner product and more precisely that the L2 one is not fit for the Wasserstein distance.
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Figure 3. Top: the twin experiments ingredients are plotted, namely true initial condition ρt0, background term ρb0, and observations at

different times. Bottom left: we plot the analyses obtained after each proposed method, compared to ρb0 and ρt0: ρa,20 corresponds to J2 while

ρa,W0 to both (DG2) and (DG#). Bottom right: fields at final time, ρt, ρa,2 and ρa,W , when taking respectively ρt0, ρa,20 and ρa,W0 as initial

condition.
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Figure 4. Decreasing of JW through the iterations of (DG#) and (DG2), and a conjugate gradient version (CG) of (DG2).
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As a conclusion of this first test case, we managed to write and minimize a cost function which gives a relevant analysis,

contrary to what we obtain with the classical Euclidean cost function, in case of position errors. We also noticed that the success

of the minimization of JW was clearly dependent on the scalar product choice.

4.2 Non-linear example

Further results are shown when a non-linear model is used in place of G. The framework and procedure are the same as the first5

test case, see the beginning of Section 4 and Section 4.1 for details. The non-linear model used is the shallow-water system

described by∂th+ ∂x(hu) = 0

∂tu+u∂xu+ g∂xh= 0

subject to initial conditions h(0) = h0 and u(0) = u0, with reflective boundary conditions (u|∂Ω = 0), where the constant g is

the gravity acceleration. The variable h represents the water surface elevation, and u is the current velocity. If h0 belongs to10

P(Ω), then the corresponding solution h(t) belongs to P(Ω).

The true state is (ht0,u
t
0), where velocity ut0 is equal to 0 and surface elevation ht0 is a given localised mass function. The

initial velocity field is supposed to be known and therefore not included in the control vector. Only h0 is controlled, using

Nobs = 5 direct observations of h and a background term hb0, also a localised mass function like ht0.

15

Data assimilation is performed by minimizing either the J2 or the JW cost functions described above. Thanks to the expe-

rience gained during the first experiment, only (DG#) algorithm is used for the minimization of JW .

In Fig. 5 (top) we present initial surface elevation ht0, hb0 as well as 2 of the 10 observations used for the experiment. In Fig. 5

(bottom left), the analyses corresponding to J2 and JW are shown: ha,20 and ha,W,#0 . Analysis ha,20 is close to theL2-average of

the true and background states, even at time t > 0, while ha,W,#0 lies close to the Wasserstein-average between the background20

and true states, and hence has the same shape as them (see Fig. 1).

Figure 5 (bottom right) shows that at the end of the assimilation window, the surface elevation ha,W,# = G(ha,W,#0 ) is still

more realistic than ha,2 = G(ha,20 ), when compared to the true state ht = G(ht0).

The conclusion of this second test case is that even with non-linear models, our Wasserstein-based algorithm can give25

interesting results in case of position errors.

4.3 Robustness to observation noise

In this section, a noise in position and shape has been added in the observations. This type of noise typically occurs in images

from satellites. For example, Fig. 6 (top) shows an observation from the previous experiment where peaks have been displaced

and resized randomly. For each structure of each observations, the displacements and amplitude changes are independent and30

uncorrelated. This perturbation is done so that the total mass is preserved.

14



0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7

h t0 h b0 Observations

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5

6

7
h t0

h b0

h a,W,#0

h a,20

At initial time

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

5
ht

ha,W,#
ha,2

At final time

Figure 5. Top: Ingredients of the second experiment: true initial condition ht
0, background hb

0 and 2 of the 10 observations at different times.

Bottom left: the true and background initial conditions are shown, and also the analyses ha,2
0 and ha,W

0 corresponding respectively to the

Euclidean and Wasserstein cost functions. On the right we show the same plots (except the background one) but at the end of the assimilation

window.

Analyses of this noisy experiment using L2 (1) and Wasserstein (17) cost functions are compared to analyses from the last

experiment where no noise was present.

For the L2 cost function, surface elevation analyses ha,20 are shown in Fig. 6 (bottom left). We see that adding such a noise

in the observations degrades the analysis. In particular, the right peak (associated to the observations) is more widely spread:

this is a consequence of the fact that the L2 distance is a local-in-space distance.5

For the Wasserstein cost function, analyses ha,W0 are shown in Fig. 6 (bottom right). The analysis does not change much with

the presence of noise and remains similar to the one obtained in the previous experiment. This is a consequence of a property

of the Wasserstein distance: the Wasserstein barycenter of several Gaussians is a Gaussian with averaged position and variance

(see example 2.2).
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Figure 6. Top: Plot of an example of noise-free observations used in Section 4.2 experiment, equal to the true surface elevation ht at a given

time. Plot of the corresponding observations with added noise, as described in Section 4.3. Bottom left: Analyses from the L2 cost function

using perfect observations and observations with noise. Bottom right: Likewise with the Wasserstein cost function.

This example shows that Wasserstein cost function is more robust than L2 to such noise. This is quite a valuable feature for

realistic applications.

5 Conclusions

We showed through some examples that, if not taken into account, position errors can lead to unrealistic initial conditions

when using classical variational data assimilation methods. Indeed, such methods use the Euclidean distance which can behave5

poorly under position errors. To tackle this issue, we proposed instead the use of the Wasserstein distance to define the related

cost function. The associated minimization algorithm was discussed and we showed that using descent iterations following

Wasserstein geodesics lead to more consistent results.

16



On academic examples the corresponding cost function produces an analysis lying close to the Wasserstein average between

the true and background states, and therefore has the same shape as them, and is well fit to correct position errors. This also

gives more realistic predictions. This is a preliminary study, some issues have yet to be addressed for realistic applications,

such as relaxing the constant-mass and positivity hypotheses and extending the problem to 2D applications.

Also, the interesting question of transposing this work into the filtering community (Kalman Filter, EnKF, particle filters, ...)5

raises the issue of writing a probabilistic interpretation of the Wasserstein cost function, which is out of our reach for now.

In particular the important theoretical aspect of representation of error statistics still requires to be thoroughly studied.

Indeed classical implementations of variational data assimilation generally make use of L2 distances weighted by inverses

of error covariance matrices. Analogy with Bayes formula allows for considering the minimization of the cost function as a

maximum likelihood estimation. Such an analogy is not straightforward with Wasserstein distances. Some possible research10

directions are given in Feyeux (2016) but this is beyond the scope of this paper. The ability to account for error statistics would

also open the way for a proper use of the Wasserstein distance in Kalman-based data assimilation techniques.

Appendix A: Proof of Theorem 3.1

To prove Theorem 3.1, one first needs to differentiate the Wasserstein distance. The following Lemma from (Villani, 2003,

Theorem 8.13 p.264) gives the gradient of the Wasserstein distance.15

Lemma A.1 (Differentiation of the Wasserstein distance). Let ρ0,ρ1 ∈ P(Ω), η ∈ Tρ0P . For small enough ε ∈ R,

1

2
W(ρ0 + εη,ρ1)2 =

1

2
W(ρ0,ρ1)2 + ε〈η,φ〉2 + o(ε) (A1)

with φ(x) the Kantorovich potential of the transport between ρ0 and ρ1.

Proof of Theorem 3.1. Let ρ0 ∈ P(Ω) and η =−div(ρ0∇Φ) ∈ Tρ0P . From the definition of JW in (16), from the defintion of

the tangent model (23) and in application of the Lemma A.1,20

lim
ε→0

JW(ρ0 + εη)−JW(ρ0)

ε
=

Nobs∑
i=1

〈Gi[ρ0]η,φi〉2 +ωb〈η,φb〉2

=

〈
η,

Nobs∑
i=1

G∗i [ρ0]φi +ωbφ
b

〉
2

=

〈
η,

Nobs∑
i=1

G∗i [ρ0]φi +ωbφ
b + c

〉
2

(A2)

with c such that the integral of the right hand side term is zero, so that the right hand side term belongs to Tρ0P . The L2

gradient of JW is thus

grad2JW(ρ0) =

Nobs∑
i=1

G∗i [ρ0]φi +ωbφ
b + c (A3)
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To get the Wasserstein gradient of JW , the same has to be done with the Wasserstein product. We let η =−div(ρ∇Φ) and

g = grad2JW(ρ0) so that equations (A2) and (A3) give

〈η,g〉2 = 〈−div(ρ0∇Φ),g〉2

=−
∫
Ω

div(ρ0∇Φ)g

=

∫
Ω

ρ0∇Φ∇g. (A4)

Last equality comes from Stokes theorem and from the fact that Φ is of zero normal derivative at the boundary. The last term

gives the Wasserstein gradient because if g is with Neumann boundary conditions, we have5 ∫
Ω

ρ0∇Φ∇g = 〈η,−div(ρ0∇g)〉W , (A5)

hence

∀η ∈ Tρ0P, lim
ε→0

JW(ρ0 + εη)−JW(ρ0)

ε
= 〈η,−div(ρ0∇g)〉W . (A6)
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