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Recommendation :

Minor revision

General comments :

The aim of the paper is to introduce an alternative to the Euclidian distance emploied in
variational  formulation of  data  assimilation:  the Wasserstein  distance.  The Wasserstein  distance
originates from the optimal transport and provides a better solution to the problem of phase error.
The manuscript introduces this new metric and its use in DA at a theoretical level. Then numerical
illustrations  are  provided in  one dimension for  a  linear  advection  problem and for  a  nonlinear
shallow  water.  This  method  relies  on  the  restrictive  assumption  that  part  of  the  fields  are
“probability distribution” over compact support in geographical domain of physical space. Such
“probability  distribution”  should  not  be  confused  by  the  classical  probability  distributions
encountered in DA that represent the uncertainty in state space e.g. the forecast error distribution or
the analysis error distribution.

The  manuscript  is  well  organized  with  an  appropriate  balance  between  the  theoretical
presentation from optimal-transport background and the numerical illustrations. However, it can be
improved to facilitate its reading following the recommandations made in major comments.

Major comments :
1) The example introduced in Fig. 1 to illustrate the potential of the method is not clear and

could be improve as follows: 
a) You should precise the distribution name within the paragraph: “This is illustrated in Fig.
1 which shoes two densities $\rho_0$ and $\rho_1$. The second density $\rho_1$ can be
seen as the first one $\rho_0$ with position error.” ;
b) I guess the terminology of density & distribution & probability distribution should be
avoid to  prevent  from any confusion in  DA application,  and especially  the probabilistic
interpretation of DA  (see next comments 2) );
c) You should introduce the formalism for L^2 cost functions saying that the minimum of
the cost function $||\rho - \rho_0||^2_2 + ||\rho-\rho_1||^2_2$ is given by $\rho_* = \frac{1}
{2}(\rho_0 + \rho_1)$ ; while the average in the sens of the Wasserstein distance is the one
of  the  figure,  that  is  in  between  the  two  densities  –  without  detailing  the  Wasserstein
distance, as it is in the present manuscript. 

2) The work presented here is limited to the case where the state vector and observations are
positive fields with finite and normalized integral – part of the state vector is assume to be a
probability  measure  over  the  domain  –  this  seems  very  restrictive  compared  with  the
diversity of fields usually considered in data assimilation but solution to manage this issue
can  be  considered  (especially  for  image  data).  However  the  restriction  to  beeing  a
probability measure is not my objection: the problem I see is the possible confusion between
probability distribution of error (forecast and analysis error distributions) and the particular
case where a field (or part of the state vector) is a probability distribution. I think it would
help the reader to insist on the difference between the classical framework of DA (with
generic  vector  state)  and  this  particular  case,  so  to  avoid  any  confusion  between  the
particular field property (probability in compact domain in the physical space) and classical



error distribution (probability in state space): while mathematically appropriate, I think the
terminology of probability densities P(Omega) (section2.2.1 and definition 2.1) should be
replaced by something far from “probability densities”. For instance in place of “probability
densities” (title section 2.2.1 & definition), you could introduce a particular class for the
fields, for instance it could be called “mass-class”, keeping this terminology all along the
manuscript, with a remark paragraph that would precise that in optimal transport what  is
socalled mass-class is actually probability distribution,  indicating that the terminology is
introduced to prevent from confusion with state/error probability distribution.

3) Kantorovitch potential (K-potential) plays a crucial role in the theoretical presentation as
well as in the numerical solution of the minimizing process, but very few is said about its
computation.
- How the K- potential is it computed in this study : please give the detail of the algorithm
used  here,  the  indication  provided  in  the  manuscript  about  the  construction  of  the  K-
potential in 1D (line 1-6 p6) is not enough. Detail, at least within a paragraph, how the K-
potential can be computed in 2D/3D, even if only 1D example are considered here.
- Illustrate what is the K-potential for the particular case of two gaussian distribution where
$\rho_0$ ($\rho_1$) is  a Gaussian of mean $m_0$ ($m_1$) and variance $\sigma_0^2$
($\sigma_1^2$). If it exists, give the analytical expression for the potential in this case ? 

4) p12,l1-2 and l14-15: Following the author and the numerical example developped in this
section,  the  minimizing  problem Eq(14)  leads  to  two  different  solutions  depending  the
choice  of  the  dot  product  used  along  the  minimizing  process,  but  no  detail  is  given
explaining why this situation occurs. This could be due to possible mutliple minima of the
cost function or to a non-convergence of the minimizing process when using the L^2 dot
product.  Authors mentioned the “success of the minimization of J_w” (l15)  but  without
clearly indicating if the convergence was successful, or not, for the L^2 dot product. In this
simple example, uniqueness of the minimum should be guaranted, indicating that the L^2
dot-product is not able to provide a good path toward the minimum. If this is correct than the
author should mention it more clearly: 
“In this example, the minimizing process based on the L^2 scalar product fails to reach the
unique minimum of the cost function as shown on … (additional illustration)”
An additionnal figure (or panel in Fig.3) is needed to observe the non-convergence toward
the minimum for this situation: please shows the value of the cost function J_w along the
iterations of the minimizing process when using the two dot-products.
I think a discussion is missing concerning existence and unicity of the J_w cost function,
this should be included at the end of section 3.1. 
Is it possible to replace the steppest descent by a conjugated gradient ? Do you think that
this replacement could improve the convergence for the L2 gradient ?

Minor comments:

1) p1, l11: “To achieve that goal” → “... this goal”
2) p1,l17: “.. to be sought (the control vector) is ..” → “.. to be sought, the control vector, is ..”
3) p7, l9: $\omega_b$ is not defined in Eq(13)
4) p3,l8: “Wasserstein distance is to compare” → “ Wasserstein distance to compare”
5) p3,l9: “data assimilation Actual” → “data assimilation. Actual”
6) p3,  l32:  Observational  operator  is  denoted  by  “G”  in  place  of  the  more  classical  “H”

notation. Please replace G into H along the manuscript. 
7) P5,l23: Precise the page/section number in Ambrosio et al. (2008).
8) p 10, l14-18: Remind the equation number associated with the cost function and gradient.

L^2 cost function is related with Eq.(2), Wasserstein cost function with Eq.(14), and the



iteration steps are deduced from Eq.(18).
9) P9, l17: write the push-forward for a given $x\in\Omega$ as $\rho_1[T(x)] |det\nabla T_x| =

\rho_0(x) $.
10) P10, l19: “$\alpha^n$ is chosen as optimal”: explain how it is computed, and provide an

appropriate reference.


