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We would like to thank the referee for his/her extensive review on our paper and for
giving us the opportunity to improve our paper.
We copied your commentary in italics below, we reply in normal font.

Major comments :

1) The example introduced in Fig. 1 to illustrate the potential of the method is not clear
and could be improve as follows: a) You should precise the distribution name within
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the paragraph: “This is illustrated in Fig. 1 which shoes two densities ρ0 and ρ1. The
second density ρ1 can be seen as the first one ρ0 with position error.” ;

Corrected, thank you.

b) I guess the terminology of density & distribution & probability distribution should be
avoid to prevent from any confusion in DA application, and especially the probabilistic
interpretation of DA (see next comments 2) );

Ok. In the introduction, we replaced "density" with either "curve" (to describe ρ0 and
ρ1) or "measure" or "mass" (in the optimal transport section). See comments 2 for the
rest of the paper.

c) You should introduce the formalism for L2 cost functions saying that the minimum of
the cost function ||ρ− ρ0||22 + ||ρ− ρ1||22 is given by ρ∗ = 1

2(ρ0 + ρ1) ; while the average
in the sens of the Wasserstein distance is the one of the figure, that is in between
the two densities – without detailing the Wasserstein distance, as it is in the present
manuscript.

Ok.

2) The work presented here is limited to the case where the state vector and obser-
vations are positive fields with finite and normalised integral – part of the state vector
is assume to be a probability measure over the domain – this seems very restrictive
compared with the diversity of fields usually considered in data assimilation but so-
lution to manage this issue can be considered (especially for image data). However
the restriction to being a probability measure is not my objection: the problem I see is
the possible confusion between probability distribution of error (forecast and analysis
error distributions) and the particular case where a field (or part of the state vector)
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is a probability distribution. I think it would help the reader to insist on the difference
between the classical framework of DA (with generic vector state) and this particular
case, so to avoid any confusion between the particular field property (probability in
compact domain in the physical space) and classical error distribution (probability in
state space): while mathematically appropriate, I think the terminology of probability
densities P(Omega) (section2.2.1 and definition 2.1) should be replaced by something
far from “probability densities”. For instance in place of “probability densities” (title sec-
tion 2.2.1 & definition), you could introduce a particular class for the fields, for instance
it could be called “mass-class”, keeping this terminology all along the manuscript, with
a remark paragraph that would precise that in optimal transport what is so-called mass-
class is actually probability distribution, indicating that the terminology is introduced to
prevent from confusion with state/error probability distribution.

Ok, thank you. We removed all occurrences of “densities”, we replaced them by “mass
functions”. Following your suggestion, we included a remark in paragraph 2.2.1 Mass
functions (previously “probability densities”).

3) Kantorovitch potential (K-potential) plays a crucial role in the theoretical presentation
as well as in the numerical solution of the minimising process, but very few is said about
its computation. - How the K- potential is it computed in this study : please give the
detail of the algorithm used here, the indication provided in the manuscript about the
construction of the K- potential in 1D (line 1-6 p6) is not enough. Detail, at least within
a paragraph, how the K- potential can be computed in 2D/3D, even if only 1D example
are considered here.

Ok, we added such a paragraph detailing numerical computation of K and W2 in 1D
and 2/3D, at the end of 2.2.2.

- Illustrate what is the K-potential for the particular case of two gaussian distribution
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where ρ0 (ρ1) is a Gaussian of mean m0 (m1) and variance σ2
0 (σ2

1). If it exists, give the
analytical expression for the potential in this case ?

Ok. We included such an example (Example 2.3) at the end of Section 2.2.2.

4) p12,l1-2 and l14-15: Following the author and the numerical example developed in
this section, the minimising problem Eq(14) leads to two different solutions depending
the choice of the dot product used along the minimising process, but no detail is given
explaining why this situation occurs. This could be due to possible multiple minima of
the cost function or to a non-convergence of the minimising process when using the L2

dot product. Authors mentioned the “success of the minimisation of J ′′w (l15) but without
clearly indicating if the convergence was successful, or not, for the L2 dot product. In
this simple example, uniqueness of the minimum should be guaranteed, indicating that
the L2 dot-product is not able to provide a good path toward the minimum. If this is
correct than the author should mention it more clearly: “In this example, the minimising
process based on the L2 scalar product fails to reach the unique minimum of the cost
function as shown on ... (additional illustration)”

An additional figure (or panel in Fig.3) is needed to observe the non-convergence to-
ward the minimum for this situation: please shows the value of the cost function Jw

along the iterations of the minimising process when using the two dot-products.

I think a discussion is missing concerning existence and unicity of the Jw cost function,
this should be included at the end of section 3.1.

Is it possible to replace the steepest descent by a conjugated gradient ? Do you think
that this replacement could improve the convergence for the L2 gradient ?

Ok, thank you for this helpful comment.

Regarding unicity of Jw’s minimiser, we added a few sentences at the end of Section
3.1 (page 8).
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Regarding conjugate gradient, we added a plot in Figure 3 comparing convergence
speed of (DG#), (DG2) and a version of (DG2) using the conjugate gradient algorithm.
Conjugate gradient speeds up the algorithm, but is not as fast as (DG#). See Figure 3
(page 13) and the third paragraph of 4.1 (page 12) about it.

Minor comments:

1) p1, l11: “To achieve that goal”→ “... this goal” Ok

2) p1,l17: “.. to be sought (the control vector) is ..” → “.. to be sought, the control
vector, is ..” Ok

3) p7, l9: ωb is not defined in Eq(13) Ok

4) p3,l8: “Wasserstein distance is to compare” → “ Wasserstein distance to compare”
Ok

5) p3,l9: “data assimilation Actual”→ “data assimilation. Actual” Ok

6) p3, l32: Observational operator is denoted by “G” in place of the more classical “H”
notation. Please replace G into H along the manuscript.

Actually in our manuscript, G denote H ◦ M , and it is a classical notation in DA.
However, our phrasing was indeed unfit in Section 2.1, so we clarified: our control
vector is x0 the system initial state, and not x as we wrote in the first version of our
paper. All occurrences of x have been replaced accordingly in Section 2.1, so that the
use of G is now fit.
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7) P5,l23: Precise the page/section number in Ambrosio et al. (2008).

It is more easily accessible in Benamou and Brenier, 2000, so we actually changed
the reference.

8) p 10, l14-18: Remind the equation number associated with the cost function
and gradient. L2 cost function is related with Eq.(2), Wasserstein cost function with
Eq.(14), and the iteration steps are deduced from Eq.(18). Ok

9) P9,l17:write the push-forward for a given x ∈ Ω as ρ1[T (x)]|det∇Tx| = ρ0(x).

This remark has been removed, following Referee’s 2 comment. See Section 3.3
where the Monge-Ampere terminology of OT (with a transport map T ) has been
removed to only deal with the Benamou and Brenier formulation (with v).

10) P10, l19: “αn is chosen as optimal”: explain how it is computed, and provide an
appropriate reference.

We specified that αn is found using a line search algorithm. It is therefore not strictly
optimal but approximately optimal.
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