
The author sincerely appreciates the 1st referee’s careful review of the Manuscript and Appendix.

The author’s responses to the referee’s comments are as follows:

General remark For an ordinary reader who is not already familiar with the Onsager–Machlup

(OM) functional, Girsanov formula and Radon–Nikodym derivative, the formulations and related

derivations presented in this paper are too sketch to follow.

Considering the reviewer’s general remark, a self-contained explanation of the paper’s funda-

mental concepts is provided as follows. Probably the most difficult and important part of this paper is

establishing why the divergence term is needed in the cost function for 4D-Var. Thus, I have appended

a derivation to the Introduction without explicitly using the above concepts (the OM functional, Gir-

sanov formula, or Radon–Nikodym derivative). (see introduction 1.2 in the revised ms, starting from

Page 3 Lines 20)

I have also added an explanation on the path probability. (see introduction 1.1 in the revised ms,

starting from Page 2 Line 17)

The corresponding mathematical concepts are as follows. If you apply a drift f to a random

walk, and shift the reference frame by φ as in Eq. (15) in the revised ms, then you get a weight

relative to a random walk y, which is a Radon–Nikodym derivative, as in Eq (16). This is nothing

but an application of Girsanov formula (e.g. Example 8.6.9 in Øksendal (2003)). The exponent in

the probability density of φ in Eq. (26) is called the Onsager–Machlup functional. I believe these

explanations will help readers understand the basic concept.

In accordance with these changes, the beginning of the introduction has been simplified. (see

introduction in the revised ms, starting from Page 1 Line 11)

1. The first sentence in the abstract is confusing or inaccurate, because one does not have to re-

sort to the more advanced and more difficult OM functional, as long as the stochastic differential

equation (SDE) is to be solved in a time-discretized form (rather than time-continuous form) for

data assimilation application. Nonlinear SDEs can rarely be solved analytically in time-continuous

form. Although the OM functional is useful and important for rigorous theoretical considerations

when the time-continuous limit is applied to a time-discretized form of quadratic cost function, the

time-continuous limit can be derived formally (or intuitively) without considering the OM functional,

as shown in (5.36)-(5.40) on pages 155-156 of Jazwinski (1970: Stochastic Processes and Filtering

Theory). Since the SDEs are actually solved in time-continuous forms in this paper (as well as in most

data assimilation studies), the importance and utility of the OM functional for real data assimilation

appear to be overstated in this paper.

All of the SDEs are actually solved in time-discrete form in this study; thus, I am sure that

the importance of the OM functional in data assimilation is properly illustrated. The derivation in

Jazwinski (1970) is valid for the assignment of each path probability, but we should be careful when

we consider an optimisation problem. Solving the optimisation problem with Jazwinski’s strategy

should lead to curves like ‘E’ or ‘T’ in Fig. 3 and Fig. 5, which are clearly less meaningful than ‘ED’

or ‘TD’.

Even in a discrete-time setting, a path drawn with a model error term is generally not differentiable

in the time direction, because the random term on each time slice adds an independent noise; thus, a

smoother, whose object is smooth functions, cannot optimise the paths itself. What we can do is to

1



draw smooth curves and compare the densities of paths in their ǫ-neighbourhoods; this is shown in

the manuscript.

Please also refer to the counterexample at the beginning of section 1.2 in the revised ms. (Page 4

Lines 1–10)

2. The noise intensity σ in (1) is a constant rather than a function of xt . In this case, as ex-

plained at the end of section 4.6 (pages 119-120) of Jazwinski (1970), the associated Ito integral and

Stratonovich integral are identical. Thus, as a stochastic differential equation, (1) can be viewed ei-

ther as an Ito equation or its equivalent Stratonovich equation. The authors may need to clarify this

point.

I agree with the reviewer’s comment that there is no need to distinguish the Ito integral from the

Stratonovich integral with regard to the discretisation of the stochastic differential equation (SDE).

Note that in the manuscript, the distinction is applied only to the discretisation of the OM functional,

not to the SDE itself, because the quadratic term in the former contains the product of the noisy term

dxt and the process dependent term f(xt).

3. Eq. (13) is derived from (A2) by the scaling for a smooth curve, but the scaling xn−xn−1 = O(δt)
is not explained in Appendix A.

According to the reviewer’s suggestion, I have added the following explanation.

‘In the case of a smooth curve, there is no stochastic term, and thus ψn − ψn−1 is the product of

a bounded function f(ψn−1) and δt, which results in a value with O(δt)’. (Page 15 Lines 12–13)

4. It appears that (21) is derived from (13) and (19) with φ changed into x, but it is not clear why φ
can be changed into x.

The symbol x in (21) represents either φ or x. Because the notation was confusing, I have changed

the symbol x to ψ in (21) and the related expressions. (Page 8 Lines 1–12)

5. It is not shown and unclear how (22) is derived.

The four cases are the conceivable combinations of the timing of the drift term f(xt) and the

presence or absence of the divergence term. Equation (22) is just one of them. I have added the

following sentence.

‘As a proof-of-concept described in these sections, we will test all the cases with conceivable

combinations of the timing of the drift term f(xt) and the presence or absence of the divergence

term’. (Page 7 Lines 21–22)

6. Due to the questions in above comments 3-4, it is not clear whether the four schemes considered

in section 2 all converge to the same time-continuous limit. If the answer is yes, then the differ-

ences between the numerical results obtained from the four schemes for each example in section 3

are caused the differences in discretization, and these differences should diminish as δt approaches
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to zero. To verify this numerically, the authors need to show for each example that the differences be-

tween the numerical results obtained from the four schemes become increasingly small as δt decreases

toward zero.

Not all of them converge to the same limit. Rather, the schemes that I judged to be applicable

(see table 1) are expected to converge to the common answers, which you can see clearly in Figs. 2

through 5. I have mentioned it in the conclusion.

‘Table 1 lists the discretisation schemes which were found to be applicable, i.e. those expected to

converge to the same result as the reference solution’. (Page 14 Lines 9–10)

7. Section 6.3.2 of Law et al. (2015) is cited for the derivation of divergence term in Appendix B. I

checked but found that there are only 5 chapters in Law et al. (2015).

It appears that you are referring to the preprint version of Law et al. (2015) in arXiv. Please refer

to the commercially published version, which has nine chapters.

8. The formulation on the line above (B7) appears to be for δµ0/δx or dµ0/dx [that is, the variation

of µ0 with respect to variation of x(t) for 0 ≤ t ≤ T ] rather than for the Wiener measure µ0 itself.

Similarly, µ should be δµ/δx or dµ/dx on the left-hand side of (B7) and (B8). Correct?

As the reviewer pointed out, the expression for the measure was inaccurate. I have changed µ0 to

µ0(dx) = · · · dx, and µ to µ(dx) = · · · dx. (Page 16 Lines 7–11)

9. As a reader, I would like to see the detailed step-by-step derivations (with adequate interpreta-

tions) of (B11)-(B14).

Thank you for the interest. I have appended detailed explanations to Appendix B2. (Page 16 Line

13 to Page 19 Line 6)
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Abstract. When taking the model error into account in data assimilation, one needs to evaluate the prior distribution repre-

sented by the Onsager–Machlup functional. Numerical experiments have clarified how one should put it into discrete form

in the maximum a posteriori estimates and in the assignment of probability to each path. In the maximum a posteriori

estimates, the
✿

it
✿✿✿✿✿✿

should
✿✿✿

be
✿✿✿✿✿✿✿✿✿✿✿

incorporated
✿✿✿✿

into
✿✿✿✿

cost
✿✿✿✿✿✿✿✿

functions
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿

discrete-time
✿✿✿✿✿✿✿✿✿

estimation
✿✿✿✿✿✿✿✿✿

problems.
✿✿✿

The
✿

divergence of the

drift term is essential , but for the path probability assignments in combination
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿

weak-constraint
✿✿✿✿✿✿✿

4D-Var
✿✿✿✿✿✿✿✿✿

(w4D-Var),
✿✿✿✿

but5

✿

it
✿✿

is
✿✿✿

not
✿✿✿✿✿✿✿✿✿

necessary
✿✿

in
✿✿✿✿✿✿✿

Markov
✿✿✿✿✿

chain
✿✿✿✿✿✿

Monte
✿✿✿✿✿

Carlo
✿

with the Euler time-discretization scheme, it is not necessary. The latter

property will help simplify the implementation of nonlinear data assimilation for large systemswith sampling methods such as

the Metropolis-adjusted Langevin algorithm
✿✿✿✿✿✿✿

scheme.
✿✿✿✿✿✿✿✿

Although
✿✿✿

the
✿✿✿✿✿✿

former
✿✿✿✿✿✿✿

property
✿✿✿✿

may
✿✿✿✿✿

cause
✿✿✿✿✿✿✿✿✿

difficulties
✿✿✿✿✿

when
✿✿✿✿✿✿✿✿✿✿✿✿

implementing

✿✿✿✿✿✿✿

w4D-Var
✿✿

in
✿✿✿✿✿

large
✿✿✿✿✿✿✿

systems,
✿✿

a
✿✿✿

new
✿✿✿✿✿✿✿✿✿

technique
✿

is
✿✿✿✿✿✿✿✿

proposed
✿✿✿

for
✿✿✿✿✿✿✿✿✿

estimating
✿✿✿

the
✿✿✿✿✿✿✿✿✿

divergence
✿✿✿✿

term
✿✿✿✿

and
✿✿

its
✿✿✿✿✿✿✿✿

derivative.

1 Introduction10

In traditional weak-constraint 4D-Var setting (e.g., Zupanski, 1997; Trémolet, 2006)
✿✿✿✿✿✿

settings
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Zupanski, 1997; Trémolet, 2006),

a quadratic cost function is defined as the negative logarithm of the probability for each Brownian
✿✿✿✿✿✿

sample path, which is suit-

able for path sampling (e.g., Zinn-Justin, 2002). The optimization
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Zinn-Justin, 2002).
✿✿✿

The
✿✿✿✿✿✿✿✿✿✿✿

optimisation problem is naively

described as finding the most probable path by minimizing
✿✿✿✿✿✿✿✿✿

minimising the quadratic cost function. However, the term "‘the

most probable path"
✿

’
✿

does not make sense in this context, since
✿✿✿✿✿✿

because
✿

the paths are not countable. One should notice that the15

concern is not about ranking the individual path probabilities, but about seeking the route with the densest path population. To

define the optimization
✿✿✿✿✿✿✿✿✿✿

optimisation problem properly, one should introduce a macroscopic variable φ
✿✿✿✿✿✿✿

φ= φ(t) that represents

a smooth curve, and introduce a measure µ that accounts how dense the paths that lie
✿✿✿

that
✿✿✿✿✿✿✿✿

accounts
✿✿

for
✿✿✿✿

how
✿✿✿✿✿✿✿

densely
✿✿✿

the
✿✿✿✿✿

paths

✿✿

are
✿✿✿✿✿✿✿✿✿

populated in the ǫ-neighbor centered
✿✿✿✿✿✿✿✿✿✿✿✿✿

-neighbourhood
✿✿✿✿✿✿✿

centred at φare, which can be termed as "the tube." Then , the density

of paths is formulated as p(tube) = µ(paths in the tube)p(curve). For a stochastic differential equation (SDE) with drift term f20

and additive noise, the second term of the rhs takes a quadratic form C1 exp(− 1
2

∫
|φ̇(t)− f(φ(t))|2dt), while the first term µ

is in the form of C2 exp
(
− 1

2

∫
divf(φ(t))dt

)
, which accounts for how densely the paths are populated in the tube.

✿✿✿✿

‘the
✿✿✿✿✿

tube’.

✿✿✿✿

Then
✿✿✿

the
✿✿✿✿✿✿✿

problem
✿✿

is
✿✿✿✿✿✿✿

defined
✿✿

as
✿✿✿✿✿✿

finding
✿✿✿

the
✿✿✿✿

most
✿✿✿✿✿✿✿✿

probable
✿✿✿✿

tube
✿✿

φ,
✿✿✿✿✿

which
✿✿✿✿✿✿✿✿✿

represents
✿✿✿

the
✿✿✿✿✿✿✿✿✿

maximum
✿

a
✿✿✿✿✿✿✿✿

posteriori
✿✿✿✿✿✿✿

(MAP)
✿✿✿✿✿✿✿

estimate

✿✿

of
✿✿✿

the
✿✿✿✿

path
✿✿✿✿✿✿✿✿✿✿

distribution. Mathematicians pioneering the theory of SDE (e.g., Ikeda and Watanabe, 1981; Zeitouni, 1989) were

already
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Ikeda and Watanabe, 1981; Zeitouni, 1989) have
✿✿✿✿✿

been aware of this subtle point since the 1980s, and established25
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the proper form of
✿✿✿

the cost function as the Onsager–Machlup (OM) functional (Onsager and Machlup, 1953) for the most

probable tube.
✿✿✿✿

tube.

The aim of this work is to organize the
✿✿✿✿✿✿✿

organise existing knowledge about the OM functional in
✿✿✿

into
✿

a form that can be

applicable to model error representations
✿✿✿✿

used
✿✿

to
✿✿✿✿✿✿✿✿

represent
✿✿✿✿✿✿

model
✿✿✿✿✿

errors
✿

in data assimilation, i.e. , numerical evaluation of

nonlinear smoothing problems.5

Throughout this article, we consider nonlinear smoothing problems of the form

dxt = f(xt)dt+σdwt, (1)

x0 ∼N (xb,σ
2
b I), (2)

(∀m ∈M) ym|xm ∼N (xm,σ
2
oI), (3)

where t is time, x is a D-dimensional stochastic process, w is a D-dimensional Wiener process, xb ∈ R
D is the background10

value of the initial condition, σb > 0 is the standard deviation of the background value, ym ∈ R
D is observational data at time

tm, xm = xtm , tm =mδt, M is the set of observation times, σo > 0 is the standard deviation of the observational data, and

σ > 0 is the noise intensity.

✿✿✿✿✿

Before
✿✿✿✿✿✿✿

moving
✿✿✿

on
✿✿

to
✿✿

its
✿✿✿✿✿✿✿✿✿✿✿

applications,
✿✿✿✿

here
✿✿✿

we
✿✿✿✿✿✿

review
✿✿✿

the
✿✿✿✿✿✿✿

concept
✿✿

of
✿✿✿

the
✿✿✿✿

OM
✿✿✿✿✿✿✿✿✿

functional.
✿✿✿

To
✿✿✿✿✿

make
✿✿✿✿✿✿✿✿✿✿

presentation
✿✿✿✿✿✿✿

simple,
✿✿✿

we

✿✿✿✿✿✿

assume
✿✿✿

that
✿✿✿✿✿✿

D = 1
✿✿✿✿

and
✿✿✿✿✿

σ = 1,
✿✿✿✿

and
✿✿✿✿✿✿✿✿✿✿

concentrate
✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

formulation
✿✿

of
✿✿✿

the
✿✿✿✿✿

prior
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿

subsequent
✿✿✿✿

two
✿✿✿✿✿✿✿✿✿✿

sections 1.115

✿✿✿

and
✿✿✿

1.2.
✿

1.1
✿✿✿

OM
✿✿✿✿✿✿✿✿✿

functional
✿✿✿

for
✿✿✿✿✿

path
✿✿✿✿✿✿✿✿

sampling

✿✿✿

The
✿✿✿✿✿✿

model
✿✿✿✿✿✿✿

equation
✿✿✿

(1)
✿✿

is
✿✿✿✿✿✿✿✿✿

discretised
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿

Euler
✿✿✿✿✿✿

scheme
✿✿✿✿✿

(with
✿✿✿

the
✿✿✿✿

drift
✿✿✿✿

term
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿

previous
✿✿✿✿✿

time)
✿✿

as

xn = xn−1 + f(xn−1)δt + ξn−1, 1≤ n≤N, (4)

✿✿✿✿✿

where
✿✿

δt
✿✿✿

is
✿✿✿

the
✿✿✿✿

time
✿✿✿✿✿✿✿✿✿✿

increment,
✿✿✿

and
✿✿✿✿✿

each
✿✿✿✿✿

ξn−1
✿✿✿✿✿

obeys
✿✿✿✿✿✿✿✿

N (0, δt).
✿✿✿✿✿✿✿✿✿✿✿

Equation (4)
✿✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿✿

considered
✿✿✿

as
✿

a
✿✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿✿✿✿✿

mapping20

✿✿✿✿✿✿✿✿✿

F1 : ξ 7→ x,
✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿

noise
✿✿✿✿✿

vector
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ξ = (ξ0, ξ1, · · · , ξN−1)
T

✿✿

to
✿✿✿

the
✿✿✿✿

state
✿✿✿✿✿

vector
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

x= (x1,x2, · · · ,xN )T .
✿✿✿

The
✿✿✿✿✿✿

inverse
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿

mapping

✿

is
✿✿✿✿✿✿✿✿✿

linearised
✿✿

as




δξ0

δξ1
...

δξN−1



=




1 0 · · · 0 0

−1− δtf
′(x1) 1 0 0

...
...

0 0 · · · −1− δtf
′(xN−1) 1







δx1

δx2
...

δxN



, (5)

✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿

Jacobian
✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

DF−1
1 = |dξ/dx|= 1.

✿

✿

It
✿✿

is
✿✿✿✿

also
✿✿✿✿✿✿✿✿✿

discretised
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿✿

trapezoidal
✿✿✿✿✿✿✿

scheme
✿✿✿✿

(with
✿✿✿

the
✿✿✿✿

drift
✿✿✿✿

term
✿✿

at
✿✿✿

the
✿✿✿✿✿✿✿✿✿

midpoint)
✿✿

as25

xn = xn−1 +
f(xn)+ f(xn−1)

2
δt + ξn−1, 1≤ n≤N, (6)
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✿✿✿✿✿

which
✿✿✿✿✿✿

defines
✿

a
✿✿✿✿✿✿✿✿

mapping
✿✿✿✿✿✿✿✿✿✿

F2 : ξ 7→ x.
✿✿✿

The
✿✿✿✿✿✿

inverse
✿✿✿

of
✿✿

the
✿✿✿✿✿✿✿✿

mapping
✿✿

is
✿✿✿✿✿✿✿✿

linearised
✿✿

as
✿




δξ0

δξ1
...

δξN−1



=




1− δt
2 f

′(x1) 0 · · · 0 0

−1− δt
2 f

′(x1) 1− δt
2 f

′(x2) 0 0
...

...

0 0 · · · −1− δt
2 f

′(xN−1) 1− δt
2 f

′(xN )







δx1

δx2
...

δxN



, (7)

✿✿✿✿✿

whose
✿✿✿✿✿✿✿✿

Jacobian
✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

DF−1
2 = |dξ/dx|=∏N

n=1 [1− (δt/2)f
′(xn)]; exp

[
−(δt/2)

∑N
n=1 f

′(xn)
]
.

✿✿✿✿✿✿✿✿

Generally,
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿

assign
✿

a
✿✿✿✿✿✿✿✿

measure
✿✿

µ0
✿✿

to
✿✿

a
✿✿✿✿✿✿✿

cylinder
✿✿✿

set
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ω̂≡ Ω̂0 × Ω̂1 × ·· · × Ω̂N−1
✿✿

in
✿✿✿

the
✿✿✿✿

noise
✿✿✿✿✿

space
✿✿✿✿✿

using
✿✿

a
✿✿✿✿✿✿

density
✿✿

g
✿✿

as

✿✿✿✿✿✿

follows.
✿

5

µ0(Ω̂) =

∫

Ω̂0

dξ0

∫

Ω̂1

dξ1 · · ·
∫

Ω̂N−1

dξN−1g(ξ0, ξ1, · · · , ξN−1) =

∫

Ω̂

g(ξ)λ(dξ) =

∫

Ω̂

µ0(dξ), (8)

✿✿✿✿✿

where
✿✿

λ
✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

Lebesgue
✿✿✿✿✿✿✿

measure
✿✿

on
✿✿✿✿

R
N .

✿✿

In
✿✿✿✿

our
✿✿✿✿

case,
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿

regard
✿✿✿

that
✿✿

a
✿✿✿✿

small
✿✿✿✿

area
✿✿✿

dξ
✿✿

in
✿✿✿

the
✿✿✿✿✿

noise
✿✿✿✿✿

space
✿

is
✿✿✿✿✿✿✿✿

equipped
✿✿✿✿

with
✿✿

a

✿✿✿✿✿✿✿

measure:
✿

µ0(dξ) = g(ξ)λ(dξ), g(ξ)≡ 1

(2πδt)N/2
e−

1

2δt

∑N
n=1

ξ2n−1 . (9)

✿✿✿✿✿✿✿

Suppose
✿✿✿

we
✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿

cylinder
✿✿

set
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ω≡ Ω1 ×Ω2 × ·· · ×ΩN
✿✿

in
✿✿✿

the
✿✿✿✿✿

state
✿✿✿✿✿

space,
✿✿✿✿✿✿

where
✿✿✿✿

each
✿✿✿✿✿✿✿✿

Ωn ⊂ R
1
✿✿

is
✿✿

on
✿✿✿✿

time
✿✿✿✿✿

slice
✿✿✿✿✿✿✿

t= nδt.10

✿✿✿✿

Now,
✿✿✿

the
✿✿✿✿✿✿✿✿

mapping
✿✿✿

F1
✿✿

(or
✿✿✿✿

F2)
✿✿✿✿✿✿✿

induces
✿

a
✿✿✿✿✿✿✿

measure
✿✿✿✿✿✿✿

through
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

change-of-variables
✿✿✿✿✿

from
✿

ξ
✿✿✿

to
✿

x
✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿

measure
✿✿✿

µ0

✿✿

as

µi(Ω) =

∫

Ω1

dx1

∫

Ω2

dx2 · · ·
∫

ΩN

dxN (g ◦F−1
i )(x1,x2, · · · ,xN )DF−1

i =

∫

Ω

µi(dx), i= 1,2. (10)

✿✿

In
✿✿✿

our
✿✿✿✿

case,
✿✿✿✿

each
✿✿✿✿✿✿✿✿

mapping
✿✿✿✿✿✿

assigns
✿✿✿

the
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿✿

measure
✿✿

to
✿

a
✿✿✿✿✿

small
✿✿✿✿

area
✿✿

dx
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

corresponding
✿✿✿✿

state
✿✿✿✿✿✿

space:

µ1(dx)≡ g(F−1
1 (x))DF−1

1 λ(dx) =
1

(2πδt)N/2
e
−

δt
2

∑N
n=1

(

xn−xn−1

δt
−f(xn−1)

)

2

λ(dx), (11)15

µ2(dx)≡ g(F−1
2 (x))DF−1

2 λ(dx) =
1

(2πδt)N/2
e
−

δt
2

∑N
n=1

[

(

xn−xn−1

δt
−f(xn−1/2)

)

2

+f ′(xn)

]

λ(dx), (12)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

f(xn−1/2) =
f(xn)+f(xn−1)

2 .

✿✿✿✿✿

These
✿✿✿✿✿✿✿✿

measures
✿✿

µ1
✿✿✿✿

and
✿✿

µ2
✿✿✿✿✿✿✿✿

represent
✿✿✿

the
✿✿✿✿✿✿✿✿✿

occurrence
✿✿✿✿✿✿✿✿✿✿

probability
✿✿

of
✿✿✿

the
✿✿✿✿✿

noise
✿✿✿✿

seen
✿✿✿✿

from
✿✿✿

the
✿✿✿✿

state
✿✿✿✿✿✿

space,
✿✿✿

and
✿✿✿✿

thus
✿✿✿

can
✿✿✿

be
✿✿✿✿

used

✿✿

for
✿✿✿✿

path
✿✿✿✿✿✿✿✿✿

sampling.

1.2
✿✿✿

OM
✿✿✿✿✿✿✿✿✿

functional
✿✿✿

for
✿✿✿✿✿

mode
✿✿✿✿✿✿✿✿

estimate20

✿

If
✿✿✿

we
✿✿✿✿✿✿✿

perform
✿✿✿✿

path
✿✿✿✿✿✿✿✿

sampling
✿✿✿✿

with
✿✿✿✿✿✿✿✿

sufficient
✿✿✿✿✿✿✿

number,
✿✿

in
✿✿✿✿✿✿

theory
✿✿

we
✿✿✿✿

can
✿✿✿

find
✿✿✿

the
✿✿✿✿✿

mean
✿✿

of
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

via
✿✿✿✿✿✿✿✿

averaging
✿✿✿

the
✿✿✿✿✿✿✿✿

samples,

✿✿

or
✿✿✿

the
✿✿✿✿✿

mode
✿✿

of
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

via
✿✿✿✿✿✿✿✿✿

organising
✿✿✿✿✿

them
✿✿✿✿

into
✿

a
✿✿✿✿✿✿✿✿✿

histogram.
✿✿✿✿

Still,
✿✿

in
✿✿✿✿✿

some
✿✿✿✿✿✿✿✿

practical
✿✿✿✿✿✿✿✿✿✿

applications,
✿✿✿

we
✿✿✿✿✿

must
✿✿✿✿✿✿✿✿

efficiently
✿✿✿✿

find

✿✿

the
✿✿✿✿✿

mode
✿✿✿

of
✿✿✿✿✿✿✿✿✿

distribution
✿✿✿

via
✿✿✿✿✿✿✿✿✿

variational
✿✿✿✿✿✿✿✿

methods;
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

computationally,
✿✿✿

this
✿✿✿✿✿✿✿✿

approach
✿✿

is
✿✿✿✿✿

much
✿✿✿✿✿✿✿

cheaper
✿✿✿✿

than
✿✿✿✿

path
✿✿✿✿✿✿✿✿

sampling.
✿✿✿

For
✿✿✿✿

that

3



✿✿✿✿✿✿✿

purpose,
✿✿✿

we
✿✿✿

are
✿✿✿✿✿✿✿

tempted
✿✿

to
✿✿✿

use
✿✿

a
✿✿✿✿✿✿✿✿

quadratic
✿✿✿✿

cost
✿✿✿✿✿✿✿

function
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿

minimisation.
✿✿✿✿✿✿✿✿

However,
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿✿✿

illustrate
✿

a
✿✿✿✿✿✿

simple
✿✿✿✿✿✿✿✿

example

✿✿✿✿✿✿

against
✿✿✿✿✿✿✿✿✿

minimising
✿✿✿

the
✿✿✿✿✿

path
✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿

(11)
✿✿

to
✿✿✿✿✿✿

obtain
✿✿✿

the
✿✿✿✿✿

mode
✿✿✿

of
✿✿✿✿✿✿✿✿✿✿

distribution.
✿✿✿✿✿✿✿

Suppose
✿✿✿

we
✿✿✿✿✿

have
✿

a
✿✿✿✿✿✿✿✿✿✿✿

discrete-time
✿✿✿✿✿✿✿✿✿

stochastic

✿✿✿✿✿✿

system
✿✿

in
✿✿✿

R
1,

✿✿✿✿✿✿

starting
✿✿✿✿✿

from
✿✿✿✿✿✿

x0 = 0,
✿✿✿✿

and
✿✿✿

we
✿✿✿✿

move
✿✿✿✿✿✿✿

forward
✿✿✿✿

two
✿✿✿✿

time
✿✿✿✿✿

steps:

x1 = x0 +x20δt + ξ0 = ξ0, x2 = x1 +x21δt + ξ1 = ξ0 + ξ20δt + ξ1, (13)

✿✿✿✿✿

where
✿✿

ξ0
✿✿✿✿

and
✿✿

ξ1
✿✿✿✿

obey
✿✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿

normal
✿✿✿✿✿✿✿✿✿✿

distributions
✿✿✿✿✿✿✿✿

N (0, δt).
✿✿

It
✿✿✿✿

may
✿✿

be
✿✿✿✿

seen
✿✿✿

as
✿

a
✿✿✿✿✿✿✿

discrete
✿✿✿✿✿✿

version
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

dxt = x2tdt+ dwt.
✿✿

It5

✿

is
✿✿✿✿

easy
✿✿

to
✿✿✿✿✿✿

notice
✿✿✿

that
✿✿✿

the
✿✿✿✿✿

mode
✿✿

of
✿✿✿✿✿✿✿✿✿✿

distribution
✿✿✿✿✿✿✿

(x1,x2)
✿✿

is
✿✿✿

not
✿✿✿✿

(0,0)
✿✿✿✿✿✿

owing
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿

nonlinear
✿✿✿✿

term
✿✿✿✿

ξ20δt.✿✿✿✿✿✿✿✿

However,
✿✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the

✿✿✿

path
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

probability (11):

µ1(dx1dx2)∝ exp

[
−δt

2

((
x1 −x0
δt

−x20

)2

+

(
x2 −x1
δt

−x21

)2
)]

λ(dx1dx2),

✿✿

the
✿✿✿✿

best
✿✿✿✿✿✿✿✿✿

trajectory
✿✿

is
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(x1,x2) = (0,0),
✿✿✿✿✿

which
✿✿✿✿

has
✿✿

no
✿✿✿✿✿

noise
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(ξ0, ξ1) = (0,0).
✿✿✿

We
✿✿✿✿✿✿

expect
✿✿

a
✿✿✿✿

path
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿

highest
✿✿✿✿✿✿✿✿✿✿

probability
✿✿

at

✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(x1,x2) = (0,0),
✿✿✿

but
✿

it
✿✿

is
✿✿✿

not
✿✿✿

the
✿✿✿✿✿

route
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿

paths
✿✿✿

are
✿✿✿✿

most
✿✿✿✿✿✿✿✿✿✿✿

concentrated.
✿
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✿✿✿✿✿✿✿✿

Motivated
✿✿✿

by
✿✿✿

this
✿✿✿✿✿✿✿✿

example,
✿✿✿

we
✿✿✿✿

shall
✿✿✿✿✿✿✿✿✿✿

investigate
✿

a
✿✿✿✿✿✿

proper
✿✿✿✿✿✿✿

strategy
✿✿

to
✿✿✿✿

find
✿✿✿

the
✿✿✿✿✿

route
✿✿✿

that
✿✿✿✿✿✿✿✿✿

maximises
✿✿✿

the
✿✿✿✿✿✿✿

density
✿✿

of
✿✿✿✿✿

paths.
✿✿✿

In

✿✿✿

this
✿✿✿✿✿✿

regard,
✿✿✿

we
✿✿✿

ask
✿✿✿✿

how
✿✿✿✿✿✿

densely
✿✿✿

the
✿✿✿✿✿

paths
✿✿✿✿✿✿✿✿

populate
✿✿

in
✿✿✿

the
✿✿✿✿

small
✿✿✿✿✿✿✿✿✿✿✿✿✿

neighbourhood
✿✿

of
✿✿

a
✿✿✿✿

curve
✿✿✿✿✿✿✿✿

φ= φ(t)
✿✿

in
✿✿✿✿

state
✿✿✿✿✿✿

space.

✿✿✿✿✿✿✿✿

Assuming
✿✿✿✿

that
✿✿

f
✿✿✿

and
✿✿

φ
✿✿✿✿

are
✿✿✿✿✿

twice
✿✿✿✿✿✿✿✿✿✿✿

continuously
✿✿✿✿✿✿✿✿✿✿✿✿

differentiable,
✿✿✿

we
✿✿✿✿✿✿✿

evaluate
✿✿✿

the
✿✿✿✿✿✿✿

density
✿✿

of
✿✿✿✿✿

paths
✿✿

in
✿✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ǫ-neighbourhoods

✿✿✿✿✿✿

around
✿

a
✿✿✿✿✿

curve
✿✿

φ
✿✿✿✿✿✿✿✿✿

connecting
✿✿✿✿✿

points
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

{φn, n= 1,2, · · ·N}
✿✿✿✿

with
✿✿✿

the
✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿

integral:

Iǫ,δt(φ) =

φ1+ǫ∫

φ1−ǫ

dx1

φ2+ǫ∫

φ2−ǫ

dx2 · · ·
φN+ǫ∫

φN−ǫ

dxN
1

(2πδt)N/2
exp

{
−δt

2

N∑

n=1

(
xn −xn−1

δt
− f(xn−1)

)2
}

(14)15

=

ǫ∫

−ǫ

dy1

ǫ∫

−ǫ

dy2 · · ·
ǫ∫

−ǫ

dyN
1

(2πδt)N/2
exp

{
−δt

2

N∑

n=1

(
yn − yn−1

δt
+
φn −φn−1

δt
− f(yn−1 +φn−1)

)2
}

(15)

=

ǫ∫

−ǫ

dy1

ǫ∫

−ǫ

dy2 · · ·
ǫ∫

−ǫ

dyN
1

(2πδt)N/2
exp

{
−δt

2

N∑

n=1

(
yn − yn−1

δt

)2
}

× exp

{
−δt

2

N∑

n=1

[(
φn −φn−1

δt
− f(yn−1 +φn−1)

)2

+2

(
φn −φn−1

δt
− f(yn−1 +φn−1)

)(
yn − yn−1

δt

)]}
.

(16)

✿✿

By
✿✿✿✿✿✿✿✿✿

regarding
✿✿

yn
✿✿

in
✿✿✿✿✿✿✿

Eq. (16)
✿✿

as
✿✿✿✿✿

being
✿✿✿✿✿✿✿✿✿

generated
✿✿✿✿✿✿✿✿

according
✿✿

to
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

1
(2πδt)N/2 e

−
δt
2

∑N
n=1

(

yn−yn−1

δt

)

2

,
✿✿✿

we
✿✿✿

can
✿✿✿✿✿✿✿✿

interpret

✿✿

the
✿✿✿✿✿✿✿✿✿✿

integration
✿✿

as
✿

a
✿✿✿✿✿✿✿✿

weighted
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

averaging
✿✿

of
✿✿

a
✿✿✿✿✿✿

random
✿✿✿✿✿✿✿

function
✿✿✿

up
✿✿

to
✿

a
✿✿✿✿✿✿✿✿✿

numerical
✿✿✿✿✿✿✿

constant.
✿✿✿✿

The
✿✿✿✿✿✿✿✿

sequence
✿✿

yn
✿✿✿✿

can
✿✿

be
✿✿✿

set20

✿✿

as
✿

a
✿✿✿✿✿✿✿

random
✿✿✿✿

walk
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

y0 = 0, yn =
∑n

k=1 ξk,
✿✿✿✿✿

where
✿✿✿

ξk
✿✿✿

are
✿✿✿✿✿✿✿✿✿✿

independent
✿✿✿✿✿✿

normal
✿✿✿✿✿✿

random
✿✿✿✿✿✿✿✿

variables
✿✿✿✿✿✿✿

obeying
✿✿✿✿✿✿✿✿

N (0, δt).
✿✿✿

For
✿✿✿✿✿✿✿✿✿

simplicity,

✿✿

we
✿✿✿✿✿✿

rather
✿✿✿✿✿✿

assume
✿✿✿

that
✿✿✿

ξk
✿✿✿✿

takes
✿✿✿✿✿✿

values
✿✿✿✿✿

±
√
δt
✿✿✿✿✿

with
✿✿✿

0.5
✿✿✿✿✿✿✿✿✿

probability
✿✿✿

for
✿✿✿✿✿

either
✿✿✿✿

one,
✿✿✿✿✿✿✿

because
✿✿✿✿✿✿✿✿

Donsker’s
✿✿✿✿✿✿✿

theorem
✿✿✿✿✿✿✿

ensures
✿✿

it
✿✿✿

has
✿✿✿

the

✿✿✿✿

same
✿✿✿✿✿✿✿✿✿

probability
✿✿✿✿

law
✿✿

as
✿✿✿

the
✿✿✿✿✿✿

former
✿✿✿

for
✿

a
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿

ensemble.
✿✿✿

We
✿✿✿✿✿✿✿

suppose
✿✿✿✿✿✿✿

√
δt < ǫ

✿✿

so
✿✿✿✿

that
✿✿

no
✿✿✿✿

step
✿✿

of
✿✿✿

the
✿✿✿✿✿✿

random
✿✿✿✿✿

walk
✿✿✿✿✿✿

escapes
✿✿✿✿✿

from

✿✿

the
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ǫ-neighbourhood.
✿✿✿✿✿✿✿✿✿✿✿

Accordingly,
✿✿✿

the
✿✿✿✿✿✿

integral
✿✿

is
✿✿✿✿✿✿✿✿✿

expressed
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

average
✿✿✿✿

with
✿✿✿✿✿✿✿

respect
✿✿

to
✿✿✿✿✿✿

random
✿✿✿✿✿

walks
✿✿✿✿✿✿✿✿

confined
✿✿

in

4



✿✿

the
✿✿✿✿

tube
✿✿✿✿✿✿✿

[−ǫ,ǫ]:

Iǫ,δt(φ)∝ Ey

[
e−J(φ,y)

∣∣∣(∀n) |yn|< ǫ
]
, (17)

J(φ,y)≡−δt
2

N∑

n=1

[(
φn −φn−1

δt
− f(yn−1 +φn−1)

)2

+2

(
φn −φn−1

δt
− f(yn−1 +φn−1)

)(
yn − yn−1

δt

)]
(18)

✿✿✿✿✿

where
✿✿✿

Ey
✿✿✿✿✿✿

denotes
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿✿✿

averaging
✿✿✿

of
✿✿✿

the
✿✿✿✿✿✿

random
✿✿✿✿✿

walks
✿✿✿✿✿✿✿

denoted
✿✿

by
✿✿✿

y,
✿✿✿✿

each
✿✿

of
✿✿✿✿✿

which
✿✿✿✿✿✿✿

follows
✿✿

the
✿✿✿✿✿

route
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(y0,y1, · · · ,yN ),

✿✿✿

and
✿✿✿✿✿✿✿

satisfies
✿✿✿✿✿✿✿

|yn|< ǫ
✿✿

for
✿✿✿

all
✿✿

n.
✿

5

✿✿✿✿✿✿✿

Because
✿✿✿✿

yn−1
✿✿

is
✿✿✿✿✿

small,
✿✿✿

we
✿✿✿✿

can
✿✿✿✿✿

apply
✿✿

the
✿✿✿✿✿✿✿✿✿✿

expansion:

f(yn−1 +φn−1) = f(φn−1)+ f ′(φn−1)yn−1 +O(y2), (19)

✿✿✿✿✿

where
✿✿

f ′
✿✿

is
✿✿✿

the
✿✿✿✿✿✿✿✿✿

derivative
✿✿

of
✿✿

f .
✿✿✿✿

Let
✿✿

us
✿✿✿✿✿✿

accept
✿✿✿

that
✿✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿✿✿✿✿

average
✿✿✿✿✿✿✿✿✿

containing
✿✿✿

the
✿✿✿✿✿✿

higher
✿✿✿✿

order
✿✿✿✿✿

terms
✿✿✿✿✿✿

O(y2)
✿✿✿✿✿✿✿✿✿

converges

✿✿✿

(see
✿✿✿✿✿✿✿✿✿✿

Eq. (B20)).

Ey

[
e
∑N

n=1
O(y2)(yn−yn−1)

∣∣∣(∀n) |yn|< ǫ
]

ǫ→0−−−→ 1. (20)10

✿✿

As
✿✿✿✿✿✿

shown
✿✿

in
✿✿✿✿✿✿✿✿

Appendix
✿✿✿

B,
✿✿✿

the
✿✿✿✿✿✿✿✿

remaining
✿✿✿✿✿

terms
✿✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

exponent
✿✿✿✿✿✿✿✿

−J(φ,y)
✿✿✿

are
✿✿✿

less
✿✿✿✿

than
✿✿✿✿✿

O(ǫ)
✿✿✿✿✿

except
✿✿✿

the
✿✿✿✿✿✿✿✿✿

following
✿✿✿

one.
✿

N∑

n=1

f ′(φn−1)yn−1 (yn − yn−1) =

N∑

n=1

f ′(φn−1)

[
1

2
(yn−1 − yn)+

1

2
(yn−1 + yn)

]
(yn − yn−1) (21)

=
N∑

n=1

f ′(φn−1)
1

2
(yn−1 − yn)(yn − yn−1)+

N∑

n=1

f ′(φn−1)
1

2
(y2n − y2n−1) (22)

=−1

2

N∑

n=1

f ′(φn−1)ξ
2
n +

1

2

N−1∑

n=1

[f ′(φ(tn−1))− f ′(φ(tn−1 + δt))]y
2
n +

1

2
f ′(φN−1)y

2
N (23)

=−δt
2

N∑

n=1

f ′(φn−1)+O(ǫ2). ∵ ξn =±
√
δt, f ′(φ(tn−1))− f ′(φ(tn−1 + δt)) =O(δt), y2n < ǫ2. (24)15

✿✿✿✿✿✿✿✿✿✿✿

Consequently,
✿✿✿

we
✿✿✿✿✿✿

obtain
✿✿✿

the
✿✿✿✿✿✿✿✿✿

asymptotic
✿✿✿✿✿✿✿✿✿

expression
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿

ensemble
✿✿✿✿✿✿

average
✿✿✿✿✿

when
✿✿

ǫ
✿

is
✿✿✿✿✿

small
✿✿✿✿

and
✿✿✿✿✿✿

δt < ǫ2:
✿

Iǫ,δt(φ)∝ Ey

[
e
−

δt
2

∑N
n=1

[

(

φn−φn−1

δt
−f(φn−1)

)

2

+f ′(φn−1)

]

+O(ǫ)+
∑N

n=1
O(y2)(yn−yn−1)

∣∣∣∣∣(∀n) |yn|< ǫ

]
(25)

→ e
− 1

2

∫ T
0

[

(φ̇(t)−f(φ(t)))
2
+f ′(φ(t))

]

dt
. (26)

✿✿✿✿✿✿✿✿✿✿✿

Appendix B2
✿✿✿✿✿

shows
✿✿✿✿

that
✿

a
✿✿✿✿✿✿

similar
✿✿✿✿✿

form
✿✿

is
✿✿✿✿✿✿✿

available
✿✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

multi-dimensional
✿✿✿✿✿✿✿✿✿

processes,
✿✿✿✿✿✿

except
✿✿✿

the
✿✿✿✿

term
✿✿✿✿✿✿✿

f ′(φ(t))
✿✿

is
✿✿✿✿✿✿✿✿✿

promoted
✿✿

to

✿✿✿✿✿✿✿✿✿✿

divf(φ(t)).20

✿✿✿✿✿✿✿✿✿✿

Importantly,
✿✿✿

the
✿✿✿✿✿✿

control
✿✿✿✿✿✿✿

variable
✿✿✿

for
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿

optimisation
✿✿✿

has
✿✿✿✿✿✿✿

changed
✿✿✿✿✿

from
✿

x
✿✿✿

to
✿✿

φ.

1.3
✿✿✿✿✿✿✿✿✿✿

Probabilistic
✿✿✿✿✿✿✿✿✿✿

description
✿✿✿

of
✿✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation
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✿✿✿✿✿

Using
✿✿✿

the
✿✿✿✿

OM
✿✿✿✿✿✿✿✿

functional
✿✿✿✿✿✿✿

derived
✿✿

in
✿✿✿✿✿✿✿✿✿✿

sections 1.1
✿✿✿

and
✿✿✿✿

1.2
✿✿

as
✿✿✿✿✿

model
✿✿✿✿✿

error
✿✿✿✿✿

term,
✿✿✿

we
✿✿✿✿

shall
✿✿✿✿✿✿✿

develop
✿

a
✿✿✿✿✿✿✿✿✿✿✿

probabilistic
✿✿✿✿✿✿✿✿✿

description
✿✿✿

of

✿✿✿

data
✿✿✿✿✿✿✿✿✿✿✿

assimilation.

Following the derivation in Section
✿✿✿✿✿

section
✿

2.3 of Law et al. (2015), we can assign each path a posterior probability

P (x|y)∝ P (x)P (y|x) = P (x|x0)P (x0)P (y|x) =
N∏

n=1

P (xn|xn−1)P (x0)
∏

m∈M

P (ym|xm). (27)

According to Eq. (2), the prior probability for the initial condition is given as5

P (x0)∝ exp

(
−|x0 −xb|2

2σ2
b

)
, (28)

where |x0−xb|2 represents the squared Euclidean norm
∑D

i=1(x
i
0−xib)2. According to Eq. (3), the likelihood of the state xm,

given observation ym, is

P (ym|xm)∝ exp

(
−|ym −xm|2

2σ2
o

)
. (29)

Now, we move on to approximation with a discrete time step. The change-of-measure argument (Appendix10

✿✿✿✿✿

Based
✿✿✿

on
✿✿✿

the
✿✿✿✿✿✿✿✿

argument
✿✿

in
✿✿✿✿✿✿✿

section B1) or the path integral argument (e.g., Zinn-Justin, 2002) on a path of this stochastic

process shows that
✿✿✿

1.1,
✿

Eq. (1
✿

4) has the transition probability at discrete time steps

P (xn|xn−1)∝ exp

(
− δt
2σ2

∣∣∣∣
xn −xn−1

δt
− f(xn−1)

∣∣∣∣
2
)
, (30)

called the Euler scheme, which uses the drift f(xn−1) at the previous time step. This
✿✿✿✿✿✿✿✿✿

Section 1.1
✿✿✿

also
✿✿✿✿✿✿

shows
✿✿✿

that
✿✿✿✿

this transition

probability has another expression(see the derivation of Eq. (B8) in Appendix B1 or Zinn-Justin (2002)):
✿

:15

P (xn|xn−1)∝ exp

(
− δt
2σ2

∣∣∣∣
xn −xn−1

δt
− f(xn− 1

2

)

∣∣∣∣
2

− δt
2
divf(xn)

)
, (31)

f(xn− 1

2

)≡ f(xn)+ f(xn−1)

2
, divf(x)≡

D∑

i=1

∂f i

∂xi
(x), (32)

which can be called the trapezoidal scheme because the integral is evaluated with the drift terms at both ends of each interval.

The transition probability leads to the prior probability P (x|x0) of a path x= {xn}0≤n≤N as follows (e.g., Zinn-Justin, 2002):

where “
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Zinn-Justin, 2002):20

P (x|x0)∝ exp

(
−δt

N∑

n=1

1

2σ2

∣∣∣∣
xn −xn−1

δt
− f(xn−1)

∣∣∣∣
2
)

(33)

⇌ exp

(
−δt

N∑

n=1

[
1

2σ2

∣∣∣∣
xn −xn−1

δt
− f(xn− 1

2

)

∣∣∣∣
2

+
1

2
divf(xn)

])
, (34)

✿✿✿✿✿

where
✿

‘⇌”
✿

’
✿

sign indicates that, if δt is sufficiently small, the equations on the both sides are compatible.
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On the other hand, based on the argument in Appendix
✿✿✿✿✿✿

section B2
✿✿

1.2, we can also define the probability P (Uφ|φ0) for a

smooth tube that represents its neighboring pathsUφ = {ω | (∀n)|φn −xn(ω)|< ǫ}:
✿✿✿✿✿✿✿✿✿✿✿

neighbouring
✿✿✿✿✿

paths
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Uφ = {ω|(∀n)|φn −xn(ω)|< ǫ}:

P (Uφ|φ0)∝ exp

(
−δt

N∑

n=1

[
1

2σ2

∣∣∣∣
φn −φn−1

δt
− f(φn−1)

∣∣∣∣
2

+
1

2
divf(φn−1)

])
. (35)

The scaling argument for a smooth curve in Appendix A allows us to use the drift term f(φn−1)
✿✿✿✿✿✿✿

f(φn− 1

2

)
✿

instead in Eq. (36):5

✿✿✿

35):
✿

P (Uφ|φ0)∝ exp

(
−δt

N∑

n=1

[
1

2σ2

∣∣∣∣
φn −φn−1

δt
− f(φn− 1

2

)

∣∣∣∣
2

+
1

2
divf(φn− 1

2

)

])
. (36)

The corresponding posterior probabilities are thus given as follows: for a Brownian path

Ppath(x|y)∝ exp(−Jpath(x|y)), (37)

Jpath(x|y)≡
1

2σ2
b

|x0 −xb|2 +
∑

m∈M

1

2σ2
o

|xm − ym|2 + δt

N∑

n=1

(
1

2σ2

∣∣∣∣
xn −xn−1

δt
− f(xn−1)

∣∣∣∣
2
)

(38)10

⇌
1

2σ2
b

|x0 −xb|2 +
∑

m∈M

1

2σ2
o

|xm − ym|2 + δt

N∑

n=1

(
1

2σ2

∣∣∣∣
xn −xn−1

δt
− f(xn− 1

2

)

∣∣∣∣
2

+
1

2
divf(xn)

)
(39)

✿✿

for
✿✿

a
✿✿✿✿✿✿

sample
✿✿✿✿

path,
✿

and

Ptube(Uφ|y)∝ P (Uφ|φ0)P (φ0)P (y|Uφ)∝ exp(−Jtube(φ|y)), (40)

Jtube(φ|y)≡
1

2σ2
b

|φ0 −xb|2 +
∑

m∈M

1

2σ2
o

|φm − ym|2 + δt

N∑

n=1

(
1

2σ2

∣∣∣∣
φn −φn−1

δt
− f(φn− 1

2

)

∣∣∣∣
2

+
1

2
divf(φn− 1

2

)

)
(41)

⇌
1

2σ2
b

|φ0 −xb|2 +
∑

m∈M

1

2σ2
o

|φm − ym|2 + δt

N∑

n=1

(
1

2σ2

∣∣∣∣
φn −φn−1

δt
− f(φn−1)

∣∣∣∣
2

+
1

2
divf(φn−1)

)
(42)15

for a smooth tube. Note that different pairs of time-discretization
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

time-discretisation schemes of the OM functional, 1
2σ2

(
dx
dt − f(x)

)2
+

1
2div(f), are nominated for paths and for tubes in Eqs. (38), (39), (41), and (42).

2 Method

2.1 Four schemes for OM

In the argument in Section
✿✿✿✿✿✿

sections 1
✿✿

1.1
✿✿✿✿

and
✿✿✿

1.2, the prior probability has a form P (x|x0)∝ exp
(
−δt

∑N
n=1 ÕM

)
, where20

ÕM is the OM functional(Onsager and Machlup, 1953).
✿✿✿

As
✿

a
✿✿✿✿✿✿✿✿✿✿✿✿✿✿

proof-of-concept
✿✿✿✿✿✿✿✿✿

described
✿✿

in
✿✿✿✿

these
✿✿✿✿✿✿✿✿

sections,
✿✿

we
✿✿✿✿

will
✿✿✿

test
✿✿✿

all
✿✿✿

the

✿✿✿✿

cases
✿✿✿✿

with
✿✿✿✿✿✿✿✿✿✿

conceivable
✿✿✿✿✿✿✿✿✿✿✿✿

combinations
✿✿

of
✿✿✿

the
✿✿✿✿✿

timing
✿✿✿

of
✿✿✿

the
✿✿✿✿

drift
✿✿✿✿

term
✿✿✿✿✿

f(xt)
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

presence
✿✿

or
✿✿✿✿✿✿✿

absence
✿✿

of
✿✿✿

the
✿✿✿✿✿✿✿✿✿

divergence
✿✿✿✿

term.

Including those shown in Eqs. (38), (39), (41), and (42),
✿✿

as
✿✿✿✿

well
✿✿

as
✿✿✿✿✿

those
✿✿✿✿

that
✿✿

are
✿✿✿✿✿✿✿✿✿✿

potentially
✿✿✿✿✿✿✿✿

incorrect, the possible candidates
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for the discretization
✿✿✿✿✿✿✿✿✿✿✿

discretisation
✿

schemes of the OM functional would be as follows:
✿✿

are
✿✿

as
✿✿✿✿✿✿✿✿

follows,
✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿

symbol
✿✿

ψ

✿✿✿✿✿✿✿✿

represents
✿✿✿✿✿

either
✿✿

φ
✿✿✿

for
✿

a
✿✿✿✿✿✿

smooth
✿✿✿✿✿

curve
✿✿✿

or
✿

x
✿✿✿

for
✿

a
✿✿✿✿✿✿✿

sample
✿✿✿✿

path.
✿

1. Euler scheme (E) (e.g., Zinn-Justin, 2002; Dutra et al., 2014):
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Zinn-Justin, 2002; Dutra et al., 2014):
✿

ÕME ≡ 1

2σ2

∣∣∣∣
ψn −ψn−1

δt
− f(ψn−1)

∣∣∣∣
2

; (43)

2. Euler scheme with divergence term (ED): where f(xn− 1

2

) = (f(xn)+ f(xn−1))/2;5

ÕMED ≡ 1

2σ2

∣∣∣∣
ψn −ψn−1

δt
− f(ψn−1)

∣∣∣∣
2

+
1

2
divf(ψn−1); (44)

3. Trapezoidal scheme (T):

ÕMT ≡ 1

2σ2

∣∣∣∣
ψn −ψn−1

δt
− f(ψn− 1

2

)

∣∣∣∣
2

; (45)

4. Trapezoidal scheme with divergence term (TD) (e.g., Ikeda and Watanabe, 1981; Apte et al., 2007; Dutra et al., 2014):

where f(xn− 1

2

) = (f(xn)+ f(xn−1))/2
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Ikeda and Watanabe, 1981; Apte et al., 2007; Dutra et al., 2014):10

ÕMTD ≡ 1

2σ2

∣∣∣∣
ψn −ψn−1

δt
− f(ψn− 1

2

)

∣∣∣∣
2

+
1

2
divf(ψn− 1

2

), (46)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

f(ψn− 1

2

) = (f(ψn)+ f(ψn−1))/2.

By using the cost function adopted in

2.2
✿✿✿✿

Data
✿✿✿✿✿✿✿✿✿✿

assimilation
✿✿✿✿✿✿✿✿✿✿

algorithms

✿✿

By
✿✿✿✿✿

using
✿

one of the above schemes
✿✿✿✿✿✿

adopted
✿

in the model error term
✿✿

in
✿✿✿

the
✿✿✿✿

cost
✿✿✿✿✿✿✿✿

function, we can apply a data assimila-15

tion algorithm, either Markov-chain Monte Carlo (MCMC) (e.g., Metropolis et al., 1953)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Metropolis et al., 1953) or four-

dimensional variational data assimilation (4D-Var) (e.g., Zupanski, 1997)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Zupanski, 1997). Among versions of MCMC,

we focus on the Metropolis-adjusted Langevin algorithm (MALA) (e.g., Roberts and Rosenthal, 1998; Cotter et al., 2013)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Roberts and Rosenthal

MALA samples the paths x(k) = {xn(ωk)}0≤n≤N according to the distribution Ppath by iterating(α > 0): :
✿

x(k+1) = x(k) −α∇Jpath +
√
2αξ, α > 0, ξ ∼N (0,1)D(N+1), ∇J =

(
∂J

∂x

)T

(47)20

with the Metropolis rejection step for adjustmentto get ,
✿✿✿

to
✿✿✿✿✿

obtain
✿

an ensemble of sample paths according to the posterior

probability, while 4D-Var seeks the center
✿✿✿✿✿

centre
✿

of the most probable tube φ= {φn}0≤n≤N by iterating(α > 0):
✿

:

φ(k+1) = φ(k) −α∇Jtube, α > 0. (48)
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✿✿✿✿

Note
✿✿✿

that
✿✿

if
✿✿✿

the
✿✿✿✿

OM
✿✿✿✿✿✿✿✿

functional
✿✿✿

of
✿✿✿

type
✿✿✿✿✿✿✿

ÕMED
✿✿

is
✿✿✿✿

used,
✿✿✿

the
✿✿✿✿✿✿✿

gradient
✿✿

is
✿✿

of
✿✿✿

the
✿✿✿✿✿

form:
✿

∇φn
Jtube =

1

σ2
b

(φ0 −xb)δ0,n +
∑

m∈M

1

σ2
o

(φm − ym)δm,n

+
1

σ2

(
φn −φn−1

δt
− f(φn−1)

)
(n > 0)

+
δt
σ2

(
− 1

δt
−
(
∂f

∂φn
(φn)

)T
)(

φn+1 −φn
δt

− f(φn)

)
+
δt
2

∂

∂φn
divf(φn) (n <N), (49)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿

(
∂f
∂φn

(φn)
)T

✿✿

is
✿✿✿

an
✿✿✿✿✿✿

adjoint
✿✿✿✿✿✿✿✿✿

integration
✿✿✿✿✿✿✿

starting
✿✿✿✿✿

from
✿✿✿

the
✿✿✿✿✿✿✿✿✿

subsequent
✿✿✿✿✿

term,
✿✿✿✿✿✿

which
✿✿

is
✿✿✿✿✿✿

typical
✿✿

in
✿✿✿✿✿✿✿

gradient
✿✿✿✿✿✿✿✿✿✿✿

calculations
✿✿

in5

✿✿✿✿✿✿

4D-Var.
✿✿

In
✿✿✿✿✿✿✿✿✿✿✿

comparison,
✿✿✿

the
✿✿✿✿

term
✿✿✿✿✿✿✿✿✿✿✿✿

∂
∂φn

divf(φn)
✿✿✿✿✿✿✿

requires
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿✿✿✿✿

derivative
✿✿✿

of
✿✿

f ,
✿✿✿✿✿

which
✿✿

is
✿✿✿

not
✿✿✿✿✿✿

typical
✿✿

in
✿✿✿✿✿✿✿

4D-Var,
✿✿✿✿

and
✿✿✿✿✿

could

✿✿

be
✿✿✿✿✿✿✿

difficult
✿✿

to
✿✿✿✿✿✿✿✿✿

implement
✿✿

in
✿✿✿✿

large
✿✿✿✿✿✿✿✿✿✿✿

dimensional
✿✿✿✿✿✿✿

systems.

To investigate the applicability of the four candidate schemes, we use them in these algorithms.

The results should be checked with “the right answer.”
✿✿✿

‘the
✿✿✿✿✿✿

correct
✿✿✿✿✿✿✿✿

answer’. The reference solution that approximates the

right
✿✿✿✿✿✿

correct
✿

answer is provided by a naive particle smoother (PS) (e.g., Doucet et al., 2000)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Doucet et al., 2000), which10

does not involve the explicit computation of prior probability. When we have observations only at the end of the assimilation

window, the PS algorithm is as follows:

1. Generate samples of initial and model errors, integrate M copies of the model, and use them to obtain a Monte-Carlo

approximation of the prior distribution:

P (x)≃ 1

M

M∑

m=1

N∏

n=0

δ(xn −χ(m)
n ), (50)15

where χ
(m)
n is the state of member m at time n.

2. Reweight it according to Bayes’ s theorem:

P (y|x)∝ exp

(
− 1

2σ2
o

|y−xN |2
)
, (51)

P (x|y) = P (x)P (y|x)∫
dxP (x)P (y|x) =

M∑

m=1

N∏

n=0

δ(xn −χ(m)
n )

w(m)

∑M
m=1w

(m)
, (52)

w(m) ≡ exp

(
− 1

2σ2
o

|y−χ
(m)
N |2

)
. (53)20

3 Results

3.1 Example A (hyperbolic model)

In our first example, we solve the nonlinear smoothing problem for the hyperbolic model (Daum, 1986), which is a simple

problem with one-dimensional state space, but which has a nonlinear drift term. We want to find the probability distribution of

9



the paths described by

dxt = tanh(xt)dt+ dwt, xt=0 ∼N (0,0.16), (54)

subject to an observation y:

y|xt=5 ∼N (xt=5,0.16), y = 1.5. (55)

The setting follows Daum (1986). In this case, divf(x) = 1/cosh2(x) imposes a penalty for small x.5

Figure 1 shows the probability densities of paths normalized
✿✿✿✿✿✿✿✿✿

normalised on each time slice, Pt=n(φ) =
∫
P (Uφ|y)dφt 6=n,

derived by MCMC and PS. PS is performed with 5.1×1010 particles. You can see
✿

It
✿✿

is
✿✿✿✿

clear
✿

that MCMC with E or TD provides

the proper distribution matched with that of PS; this is also clear from the expected paths yielded by these experiments,
✿✿

as

shown in Fig. 2. These schemes correspond to candidates in Eqs. (38) and (39). The expected path by ED bends toward
✿✿✿✿✿✿✿

towards

✿

a larger x, which should be caused by an extra penalty for
✿

a
✿

larger x. The expected path by T bends toward
✿✿✿✿✿✿

towards
✿

a
✿

smaller10

x, which should be caused by the lack of penalty for
✿

a
✿✿✿✿✿✿✿

penalty
✿✿

for
✿✿

a larger x.

The results of 4D-Var, which represents the maximum a posteriori (MAP ) estimatesof the tube
✿✿✿

the
✿✿✿✿✿

MAP
✿✿✿✿✿✿✿✿

estimates, are

shown in Fig. 3. ED and TD provide the proper MAP estimateof the tube. These schemes correspond to candidates in Eqs. (41)

and (42). The expected paths by E and T bend toward
✿✿✿✿✿✿

towards
✿✿

a smaller φ, which should be caused by the lack of penalty for
✿

a

✿✿✿✿✿✿

penalty
✿✿✿

for
✿

a
✿

larger φ.15

3.2 Example B (Rössler model)

In our second example, we solve the nonlinear smoothing problem for the stochastic Rössler model (Rössler, 1976). We want

to find the probability distribution of the paths described by




dx1 = (−x2 −x3)dt+σdw1,

dx2 = (x1 + ax2)dt+σdw2,

dx3 = (b+x1x3 − cx3)dt+σdw3,

(56)

20

xt=0 ∼N (xb,0.04I), (57)

subject to an observation y:

y|xt=0.4 ∼N (xt=0.4,0.04I), (58)

where (a,b,c) = (0.2,0.2,6), σ = 2, xb = (2.0659834,−0.2977757,2.0526298)T , and y = (2.5597086,0.5412736,0.6110939)T .

In this case, divf(x) = x1 + a− c imposes a penalty for large x1.25

The results by MCMC and 4D-Var for the Rössler model are shown in Figs. 4 and 5, respectively. The state variable x1 is cho-

sen for the vertical axes. PS is performed with 3×1012 particles. The curve for PS in Fig. 5 indicates φ̂= argmaxφP [φ|Y ]
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

φ̂= argmaxφP (φ|y
where U represents the tube centered

✿✿✿✿✿✿

centred
✿

at φ with radius 0.03.
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(b) MCMC with Scheme E or TD
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(c) MCMC with Scheme ED
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(d) MCMC with Scheme T

Figure 1. Probability density of paths derived by MCMC and PS for the hyperbolic model.

Figure 4 shows that, just as for the hyperbolic model, E and TD provide the proper expected path. Figure 5 shows that ED

and TD provide the proper MAP estimateof the tube.

3.3 Toward
✿✿✿✿✿✿✿

Towards application to large systems

When one computes the cost value J(x), the negative logarithm of the posterior probability, in data assimilation, the value f(x)

is explicitly computed via the numerical model, while divf(x) is not. If the dimension D of the state space is large, and f5

is complicated, the algebraic expression of divf(x) can be difficult to obtain. The gradient of the cost function ∇J(x) contains

the derivative of f(x), which can be implemented as the adjoint model via numerical differentiation (e.g., Giering and Kaminski, 1998)
✿✿✿✿✿

symbolic

✿✿✿✿✿✿✿✿✿✿✿

differentiation
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Giering and Kaminski, 1998). However, schemes with the divergence term require the calculation of the

second derivative of f(x), for which the algebraic expression can be even more difficult to obtain. Still, there may be a way

to circumvent this difficulty by utilizing
✿✿✿✿✿✿✿

utilising Hutchinson’s trace estimator (Hutchinson, 1990) (See Appendix C). It is also10
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Figure 2. Expected path derived by MCMC (hyperbolic model).
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Figure 3. Most probable tube derived by 4D-Var (hyperbolic model).
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Figure 4. Expected path derived by MCMC (Rössler model).
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Figure 5. Most probable tube derived by 4D-Var (Rössler model).
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Table 1. Applicable OM schemes

with div(f) without div(f)

Sampling by MCMC Euler scheme X

trapezoidal scheme X

MAP estimate by 4D-Var Euler scheme X

trapezoidal scheme X

clear that the Euler scheme without the divergence term is more convenient for implementation of
✿✿✿✿✿✿✿✿✿✿✿✿

implementing path sampling,

because it does not require cumbersome calculation of the divergence term.

4 Conclusions

We examined several discretization
✿✿✿✿✿✿✿✿✿✿

discretisation
✿

schemes of the OM functional, 1
2σ2

(
dx
dt − f(x)

)2
+ 1

2div(f), for the nonlin-

ear smoothing problem5

dxt = f(xt)dt+σdwt,

x0 ∼N (xb,σ
2
b I), (∀m ∈M) ym|xm ∼N (xm,σ

2
oI)

by matching the answers given by MCMC and 4D-Var with that given by PS, taking the hyperbolic model and the Rössler model

as examples. Table 1 shows which of the discretization schemes
✿✿✿✿

lists
✿✿✿

the
✿✿✿✿✿✿✿✿✿✿✿

discretisation
✿✿✿✿✿✿✿

schemes
✿✿✿✿✿✿

which were found to be appli-

cable
✿

,
✿✿✿

i.e.
✿✿✿✿

those
✿✿✿✿✿✿✿✿

expected
✿✿

to
✿✿✿✿✿✿✿

converge
✿✿

to
✿✿✿

the
✿✿✿✿✿

same
✿✿✿✿✿

result
✿✿

as
✿✿✿

the
✿✿✿✿✿✿✿✿

reference
✿✿✿✿✿✿

solution. These results are consistent with the literature10

(e.g., Apte et al., 2007; Malsom and Pinski, 2016; Dutra et al., 2014; Stuart et al., 2004)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(e.g. Apte et al., 2007; Malsom and Pinski, 2016; Dutra

This justifies, for instance, the use of the following cost function for the MAP estimate given by 4D-Var:

J =
|φ0 −xb|2

2σ2
b

+
∑

m∈M

|φm − ym|2
2σ2

o

+ δt

N∑

n=1

(
1

2σ2

∣∣∣∣
φn −φn−1

δt
− f(φn−1)

∣∣∣∣
2

+
1

2
divf(φn−1)

)
,

where n is the time index, δt is the time increment, xb is the background value, σb is the standard deviation of the background15

value, y is the observational data, σo is the standard deviation of the observational data, and σ is the noise intensity. However,

the divergence term above should be excluded for the assignment of path probability in MCMC.

For application in large systems, the Euler scheme without the divergence term is preferred for path sampling because it

does not require cumbersome calculation of the divergence term. In 4D-Var, the divergence term can be incorporated into the

cost function by utilizing
✿✿✿✿✿✿

utilising
✿

Hutchinson’s trace estimator.20
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Code availability. The codes for data assimilation are available at https://github.com/nozomi-sugiura/OnsagerMachlup/.

Appendix A: Scaling of the terms

Taylor expansion of the f(xn−1) term around xn− 1

2 ✿✿✿✿✿✿✿

f(ψn−1)
✿✿✿✿✿

term
✿✿✿✿✿✿

around
✿✿✿✿✿

ψn− 1

2

in scheme E gives

ÕM ≃
N∑

n=1

δt

{
σ−2

[
ψn −ψn−1

δt
− f(ψn− 1

2

)− (ψn −ψn−1)
∂f

∂x
(ψn− 1

2

)

]2
+div(f)

}

= δt
{
σ−2(noise+ shift)2 + divergence

}
.5

noise ≡ ψn −ψn−1

δt
− f(ψn− 1

2

),shift ≡ (ψn −ψn−1)
∂f

∂x
(ψn− 1

2

),divergence ≡ div(f),

where we assume order-one fluctuations: σ =O(1).
✿✿✿✿✿✿✿✿✿

σ =O(1),
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿

symbol
✿✿

ψ
✿✿✿✿✿✿✿✿

represents
✿✿✿✿✿

either
✿✿

φ
✿✿✿

for
✿

a
✿✿✿✿✿✿✿

smooth
✿✿✿✿✿

curve
✿✿

or
✿✿

x

✿✿

for
✿✿

a
✿✿✿✿✿✿

sample
✿✿✿✿

path.
✿

For a sample path of the stochastic process, the scaling xn −xn−1 =O(δ
1

2

t )✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ψn −ψn−1 =O(δ
1

2

t ),✿✿✿✿✿

which
✿

leads to

ÕM =
∑

δt




σ−2


noise2︸ ︷︷ ︸

δ−1

t

+noise× shift︸ ︷︷ ︸
1

+shift2︸ ︷︷ ︸
δt


+ divergence︸ ︷︷ ︸

1




. (A1)10

The shift term induces a Jacobian that coincides with the divergence term in TD (Zinn-Justin, 2002).

For a smooth tube, the scaling xn −xn−1 =O(δt)
✿

In
✿✿✿

the
✿✿✿✿✿

case
✿✿

of
✿✿

a
✿✿✿✿✿✿

smooth
✿✿✿✿✿✿

curve,
✿✿✿✿✿

there
✿✿

is
✿✿✿

no
✿✿✿✿✿✿✿✿

stochastic
✿✿✿✿✿

term,
✿✿✿✿

and
✿✿✿✿

thus

✿✿✿✿✿✿✿✿✿

ψn −ψn−1
✿✿

is
✿✿✿

the
✿✿✿✿✿✿

product
✿✿✿

of
✿

a
✿✿✿✿✿✿✿

bounded
✿✿✿✿✿✿✿✿

function
✿✿✿✿✿✿✿

f(ψn−1)
✿✿✿✿

and
✿✿

δt,
✿✿✿✿✿✿

which
✿✿✿✿✿

results
✿✿

in
✿✿

a
✿✿✿✿✿

value
✿✿✿✿

with
✿✿✿✿✿

O(δt).
✿✿✿✿

This
✿

leads to

ÕM =
∑

δt




σ−2


noise2︸ ︷︷ ︸

1

+noise× shift︸ ︷︷ ︸
δt

+shift2︸ ︷︷ ︸
δ2t


+ divergence︸ ︷︷ ︸

1




. (A2)

The shift term is negligible, but the divergence term is not.15

Appendix B: Divergence term

B1 Divergence term in
✿

a
✿

trapezoidal scheme

Consider two stochastic processes (cf., Section
✿✿✿✿✿✿

section 6.3.2 of Law et al. (2015)):

dxt = f(xt)dt+ dwt, x(0) = x0, (B1)

dxt = dwt, x(0) = x0, (B2)20

where (B1) has measure µ and (B2) has measure µ0 (Wiener measure). By the Girsanov theorem, the Radon–Nikodym deriva-

tive of µ with respect to µ0 is

dµ

dµ0
= exp


−

T∫

0

(
1

2
|f(x)|2dt− f(x) · dx

)
. (B3)

15

https://github.com/nozomi-sugiura/OnsagerMachlup/


If we define F (xT )−F (x0) =
∫ xT

x0

f(x) ◦ dx with the Stratonovich integral, then by Ito’s formula,

dF = f · dx+ 1

2
div(f)dt. (B4)

Eliminating f · dx in Eq. (B3) using Eq. (B4), we get
✿✿✿✿✿

obtain

dµ

dµ0
= exp


−

T∫

0

1

2
|f(x)|2dt+F (xT )−F (x0)−

1

2

T∫

0

div(f)dt


. (B5)

Substituting F (xT )−F (x0) =
∫ T

0
f ◦ dx

dt dt,5

dµ

dµ0
= exp


−

T∫

0

1

2
|f(x)|2dt+

T∫

0

f ◦ dx
dt
dt− 1

2

T∫

0

div(f)dt


. (B6)

If we write the Wiener measure formally as µ0 = exp
[
− 1

2

∫ T

0

∣∣dx
dt

∣∣2 dt
]
,

✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

µ0(dx) = exp
[
− 1

2

∫ T

0

∣∣dx
dt

∣∣2 dt
]
dx, we get from

Eq. (B3)

µ(dx) = exp


−

T∫

0

1

2

∣∣∣∣
dx

dt
− f(x)

∣∣∣∣
2

dt


dx (B7)

and from Eq. (B6)10

µ(dx) = exp


−

T∫

0

1

2

(∣∣∣∣
dx

dt
− f(x)

∣∣∣∣
2

+div(f)

)
dt


dx, (B8)

where the integrals should be interpreted in the Ito sense and in the Stratonovich sense, respectively.

B2 Divergence term for smooth tube

When you assign weight
✿✿✿✿✿✿

weight
✿✿

is
✿✿✿✿✿✿✿

assigned
✿

to smooth tubes, there should always be a divergence term, for the following

reason.15

Let x be a diffusion process that follows the stochastic differential equation

dxt = f(xt)dt+ dwt, (B9)

where w is a Wiener process. To investigate paths near a smooth curve φ, let us consider the following stochastic process

xt −φ(t) (Zeitouni, 1989)
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

(Ikeda and Watanabe, 1981; Zeitouni, 1989):

d(xt −φ(t)) = (f(xt −φ(t)+φ(t))− φ̇(t))dt+ dwt. (B10)20

Since the process xt −φ(t) is shifted from the
✿✿✿✿

This
✿✿✿✿✿

means
✿✿✿✿

that
✿

if
✿

a
✿✿✿✿

drift
✿✿

f
✿✿

is
✿✿✿✿✿✿

applied
✿✿

to
✿✿✿

the Wiener processwt
✿

,
✿✿✿

and
✿✿✿

the
✿✿✿✿✿✿✿✿

reference

✿✿✿✿✿

frame
✿✿

is
✿✿✿✿✿

shifted
✿

by
✿✿

φ,
✿✿✿

the
✿✿✿✿✿✿✿

process
✿✿✿✿✿✿✿✿

xt −φ(t)
✿✿✿✿✿

which
✿✿✿

has
✿

the drift f(·+φ)− φ̇ , we can apply
✿✿

is
✿✿✿✿✿✿✿✿

obtained.
✿✿✿

The
✿✿✿✿✿✿

weight
✿✿✿✿✿✿✿

relative
✿✿

to

16



✿✿

the
✿✿✿✿✿✿✿

Wiener
✿✿✿✿✿✿✿

measure
✿✿✿

can
✿✿✿

be
✿✿✿✿✿✿✿✿

calculated
✿✿✿

by Girsanov’s formula to get

where ‖w‖T ≡ sup0<t<T |wt|. Application of Ito’s lemma to
∫ ∑

i,jwj
∂fi
∂xj

dwi leads to where E [· · · | ‖w‖T < ǫ] converges to

1 as ǫ→ 0.

In particular, the exponentiated average of the cross term f · dw in
✿✿

as
✿✿✿✿✿✿✿

follows.
✿

Iǫ(φ)≡
P (‖x−φ‖T < ǫ)

P (‖w‖T < ǫ)
5

= E


exp




T∫

0

(
f(wt +φ(t))− φ̇(t)

)
· dwt −

1

2

T∫

0

∣∣∣f(wt +φ(t))− φ̇(t)
∣∣∣
2

dt



∣∣∣∣∣∣
‖w‖T < ǫ


 , (B11)

✿✿✿✿✿

where
✿✿✿

the
✿✿✿✿✿✿✿✿✿

expectation
✿✿

is
✿✿✿✿✿

taken
✿✿✿✿

with
✿✿✿✿✿✿

respect
✿✿

to
✿✿✿

the
✿✿✿✿✿✿

Wiener
✿✿✿✿✿✿

process
✿✿

w
✿✿✿✿✿✿✿✿✿✿

conditioned
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

‖w‖T ≡ sup0<t<T |wt|< ǫ.
✿✿✿

We
✿✿✿

are
✿✿✿✿✿

going
✿✿

to

✿✿✿✿✿✿✿

evaluate
✿✿

the
✿✿✿✿✿

terms
✿✿✿✿✿✿✿✿✿

containing
✿✿✿

wt
✿

in
✿✿✿

the
✿✿✿✿✿✿✿✿

exponent
✿✿

on
✿✿✿

the
✿✿✿✿

RHS
✿✿✿

of Eq. (B11)tends away from 1 as follows (Ikeda and Watanabe, 1981):

✿

.

1.
✿

If
✿✿✿

we
✿✿✿✿✿✿✿

assume
✿

φ
✿✿

is
✿✿

a
✿✿✿✿

twice
✿✿✿✿✿✿✿✿✿✿✿

continuously
✿✿✿✿✿✿✿✿✿✿✿✿

differentiable
✿✿✿✿✿✿✿

function,
✿✿✿✿

then
✿✿✿

by
✿✿✿✿✿✿✿

applying
✿✿✿✿

Ito’s
✿✿✿✿✿✿✿

product
✿✿✿✿

rule
✿✿

to
✿✿✿✿✿✿

φ̇(t)wt,
✿✿✿✿

and
✿✿✿✿✿

using10

✿✿✿✿✿✿✿✿✿✿✿

(∀t) |wt|< ǫ,
∣∣∣∣∣∣

T∫

0

φ̇(t)dwt

∣∣∣∣∣∣
=

∣∣∣∣∣∣
φ̇(T )wT −

T∫

0

wtφ̈(t)dt

∣∣∣∣∣∣
≤A1ǫ, (B12)

where w is the Wiener process and φ is a smooth curve. Roughly speaking, the weight of the tube should be modified

from the appearance frequency of the smooth path φ, exp
(
−
∫

1
2 |f − φ̇|2dt

)
, by taking into account the weight in

✿✿

A1
✿✿

is

✿

a
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿✿

independent
✿✿

of
✿✿

ǫ.
✿

15

2.
✿

If
✿✿✿

we
✿✿✿✿✿✿✿

assume
✿

f
✿✿

is
✿

a
✿✿✿✿✿

twice
✿✿✿✿✿✿✿✿✿✿✿

continuously
✿✿✿✿✿✿✿✿✿✿✿

differentiable
✿✿✿✿✿✿✿✿

function,
✿✿✿✿

then
✿✿

by
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿✿

(∀t) |wt|< ǫ,
∣∣∣∣∣∣

T∫

0

f(wt +φ(t))φ̇(t)dt−
T∫

0

f(φ(t))φ̇(t)dt

∣∣∣∣∣∣
≤A2ǫ, (B13)

✿✿✿✿✿

where
✿✿✿

A2
✿✿

is
✿

a
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿✿

independent
✿✿

of
✿✿

ǫ.
✿

3.
✿✿

In
✿✿✿

the
✿✿✿✿✿✿

similar
✿✿✿✿✿✿

manner
✿✿

as
✿✿

in
✿✿

2,
✿

∣∣∣∣∣∣

T∫

0

|f(wt +φ(t))|2 dt−
T∫

0

|f(φ(t))|2 dt

∣∣∣∣∣∣
≤A3ǫ, (B14)20

✿✿✿✿✿

where
✿✿✿

A3
✿✿

is
✿

a
✿✿✿✿✿✿✿

positive
✿✿✿✿✿✿✿

constant
✿✿✿✿✿✿✿✿✿✿

independent
✿✿

of
✿✿

ǫ.
✿

4.
✿✿✿

The
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

of
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

∫ T

0
f(wt + φ̇(t))dwt

✿✿

is
✿✿

as
✿✿✿✿✿✿✿

follows.
✿

(a)
✿✿

By
✿✿✿✿✿✿✿✿

applying
✿✿✿✿✿✿✿

Taylor’s
✿✿✿✿✿✿✿✿

expansion
✿✿

to
✿✿✿✿✿✿✿✿✿✿✿✿

f(wt +φ(t)),
✿

T∫

0

f(wt +φ(t)) · dwt =

T∫

0

f(φ(t)) · dwt +

T∫

0

(wt · ∇)f(φ(t)) · dwt +

T∫

0

O(w2) · dwt. (B15)
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(b)
✿✿

By
✿✿✿✿✿✿✿✿

applying
✿✿✿✿

Ito’s
✿✿✿✿✿✿

product
✿✿✿✿

rule
✿✿

to
✿✿✿✿✿✿✿✿✿✿

wtf(φ(t)),
✿✿✿

and
✿✿✿✿✿

using
✿✿✿✿✿✿✿✿✿✿✿

(∀t) |wt|< ǫ,
✿

T∫

0

f(φ(t)) · dwt = wT f(φ(T ))−
T∫

0

∑

i,j

wi
t

∂fi
∂xj

(φ(t))φ̇j(t)dt=O(ǫ). (B16)

(c)
✿✿✿✿✿✿✿✿

Regarding
✿✿✿

the
✿✿✿✿✿✿

second
✿✿✿✿

term
✿✿✿

on
✿✿✿

the
✿✿✿✿

RHS
✿✿

of
✿

Eq. (B25).

For a rigorous derivation, see the proof of Theorem IV 9.1 of Ikeda and Watanabe (1981)or Section
✿✿✿✿

B15),
✿✿✿

we
✿✿✿

see

✿✿✿

that5

T∫

0

(wt · ∇)f(φ(t)) · dwt +
1

2

T∫

0

∇· f(φ(t))dt

=

T∫

0

∑

i,j

∂fi
∂xj

(φ(t))wj
tdw

i
t +

1

2

T∫

0

∑

i,j

δij
∂fi
∂xj

(φ(t))dt

=

T∫

0

∑

i,j

∂fi
∂xj

(φ(t))

(
wj

tdw
i
t +

1

2
δijdt

)
=

T∫

0

∑

i,j

∂fi
∂xj

(φ(t))dζjit , (B17)

✿✿✿✿✿

where
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

ζjit =
∫ t

0
wj

s ◦ dwi
s✿✿✿✿✿✿✿✿✿✿✿

(Stratonovich
✿✿✿✿✿✿✿✿

integral).

✿✿

By
✿✿✿✿✿✿✿✿

applying
✿✿✿✿✿✿✿✿✿✿

Evaluations
✿✿✿

1–4
✿✿

to
✿✿✿✿

Eq. 2 of Zeitouni (1989).
✿✿✿✿✿

(B11),
✿✿✿

we
✿✿✿✿✿

obtain
✿

10

Iǫ(φ) = exp




T∫

0

∣∣∣f(φ(t))− φ̇(t)
∣∣∣
2

dt− 1

2

T∫

0

∇· f(φ(t))dt




×E


exp


O(ǫ)+O(ǫ2)+

T∫

0

∑

i,j

∂fj
∂xi

(φ(t))dζjit +

T∫

0

O(|w|2) · dwt



∣∣∣∣∣∣
‖w‖T < ǫ


 , (B18)

✿✿

On
✿✿✿✿✿

pages
✿✿✿✿✿✿✿✿

450–451
✿✿

in
✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿✿

Ikeda and Watanabe (1981),
✿✿

it
✿

is
✿✿✿✿✿✿

shown
✿✿✿✿

that

E


exp


c

T∫

0

∑

i,j

∂fj
∂xi

(φ(t))dζjit



∣∣∣∣∣∣
‖w‖T < ǫ


 ǫ→0−−−→ 1 (∀c), (B19)

E


exp


c

T∫

0

O(|w|2) · dwt



∣∣∣∣∣∣
‖w‖T < ǫ


 ǫ→0−−−→ 1 (∀c), (B20)15

✿✿✿

and
✿✿

it
✿✿

is
✿✿✿✿✿✿✿

obvious
✿✿✿✿

that

E
[
exp

(
cO(ǫ)+ cO(ǫ2)

)∣∣‖w‖T < ǫ
] ǫ→0−−−→ 1 (∀c). (B21)

✿✿✿✿

They
✿✿✿✿

also
✿✿✿✿✿✿

showed
✿✿✿✿

that
✿✿

if

E [exp(caj)|‖w‖T < ǫ]
ǫ→0−−−→ 1 (∀c) (B22)
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✿✿

for
✿✿✿✿✿✿✿✿✿✿✿✿✿

j = 1,2, · · · ,J ,
✿✿✿✿

then

E


exp




J∑

j=1

aj



∣∣∣∣∣∣
‖w‖T < ǫ


 ǫ→0−−−→ 1. (B23)

✿✿

By
✿✿✿✿✿✿✿✿

applying
✿✿✿

this
✿✿

to
✿✿✿✿✿✿✿✿✿✿

Eqs. (B20),
✿✿✿✿✿

(B19),
✿✿✿✿

and
✿✿✿✿✿

(B21),
✿✿✿

we
✿✿✿✿✿✿

deduce
✿✿✿✿✿

from
✿✿✿✿✿✿✿✿

Eq. (B18)
✿✿✿✿

that

Iǫ(φ)
ǫ→0−−−→ exp




T∫

0

∣∣∣f(φ(t))− φ̇(t)
∣∣∣
2

dt− 1

2

T∫

0

∇· f(φ(t))dt


. (B24)

✿✿✿✿

From
✿✿✿✿✿✿✿✿✿

evaluation
✿✿

4,
✿✿✿

we
✿✿✿✿

also
✿✿✿✿

have
✿✿✿

that
✿

5

E


exp




T∫

0

f(wt +φ(t)) · dwt



∣∣∣∣∣∣
‖w‖T < ǫ


 ǫ→0−−−→ exp


−1

2

T∫

0

divf(φ(t))dt


. (B25)

Notice that Eq. (B25) serves as an evaluation formula for the divergence term along φ via ensemble calculation if we interpret

the expectation as
✿✿

an ensemble average:

lnE


exp




T∫

0

f(wt +φ(t)) · dwt



∣∣∣∣∣∣
‖w‖T < ǫ


 ǫ→0−−−→−1

2

T∫

0

divf(φ(t))dt. (B26)

The ensemble can be generated by using the
✿

a
✿

Wiener process limited to the small area ‖w‖T < ǫ. Taking
✿✿

the
✿

derivative of10

Eq. (B26) with respect to φi(t), we also get
✿✿✿✿✿

obtain
✿

the formula for evaluating the derivative of the divergence term along φ
✿

, as

follows.

E

[
∇f(φ+w) · dw exp

(∫ T

0
f(φ+w) · dw

)∣∣∣‖w‖T < ǫ
]

E

[
exp

(∫ T

0
f(φ+w) · dw

)∣∣∣‖w‖T < ǫ
] ǫ→0−−−→− 1

2
∇(divf)dt, (B27)

where (∇f(φ+w),dw) =∑j
∂fj(φ+w)

∂φi
dwj can be calculated using the adjoint model ∇f(φ+w). Although these evaluation

formulas (B26) and (B27) illustrate the meaning of the divergence term, they seem too expensive to be used in the 4D-Var15

iterations.

Appendix C: Estimator for the divergence term

Cost functions in Eqs. (42) and (41) utilize
✿✿✿✿✿

utilise
✿

the derivative of the drift term f(x), and thus the gradient of the term

contains the second derivative of f(x), whose algebraic form is difficult to obtain in high-dimensional systems. Here, we

propose an alternative form using Hutchinson’s trace estimator (Hutchinson, 1990), which approximates the trace of matrix20

E[ξTAξ] = tr(A) using a stochastic vector whose components are independent
✿

, identically distributed stochastic variables that

take value ±1 with probability 0.5.
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A realization
✿✿✿✿✿✿✿✿

realisation
✿

of the cost function is given as

Ĵtube(φ|y) =
1

2σ2
b

|φ0 −xb|2 +
∑

m∈M

1

2σ2
o

|φm − ym|2

+ δt

N∑

n=1

(
1

2σ2

∣∣∣∣
φn −φn−1

δt
− f(φn−1)

∣∣∣∣
2

+
1

2
ξTn−1b

−1 [f(φn−1 + bξn−1)− f(φn−1)]

)
, (C1)

where b is a small number. Notice
✿✿✿

that Ĵtube(φ|y) is a stochastic variable that satisfies

E

[
Ĵtube(φ|y)

]
= Jtube(φ|y). (C2)5

If the adjoint of f is at hand, the gradient of the stochastic cost function is given as

∇φn
Ĵtube(φ|y) =

1

σ2
b

(φ0 −xb)δ0,n +
∑

m∈M

1

σ2
o

(φm − ym)δm,n

+
1

σ2

(
φn −φn−1

δt
− f(φn−1)

)
(n > 0)

+
δt
σ2

(
− 1

δt
−
(
∂f

∂φn
(φn)

)T
)(

φn+1 −φn
δt

− f(φn)

)
(n <N)

+
δt
2

[(
∂f

∂φn
(φn + bξn)

)T

b−1ξn −
(
∂f

∂φn
(φn)

)T

b−1ξn

]
. (n <N) (C3)10

The iterations similar to Eq. (48), φ(k+1) = φ(k) −α∇Ĵtube, will work.
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