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Abstract. Transport and mixing processes in fluid flows are crucially influenced by coherent structures and the characterization

of these Lagrangian objects is a topic of intense current research. While established mathematical approaches such as varia-

tional or transfer operator based schemes require full knowledge of the flow field or at least high resolution trajectory data, this

information may not be available in applications. Recently, different computational methods have been proposed to identify

coherent behavior in flows directly from Lagrangian trajectory data
:
,
:::
that

:::
is,

:::::::::
numerical

::
or

::::::::
measured

:::::
times

::::::
series

::
of

:::::::
particle5

:::::::
positions

::
in
::

a
::::
fluid

::::
flow. In this context, spatio-temporal clustering algorithms have been proven to be very effective for the

extraction of coherent sets from sparse and possibly incomplete trajectory data. Inspired by these recent approaches, we con-

sider an unweighted, undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established

between two nodes if the respective trajectories come close to each other at least once in the course of time. Classical graph

concepts are then employed to analyze the resulting network. In particular, local network measures such as the node degree
:
,10

::
the

:::::::
average

::::::
degree

::
of

::::::::::
neighboring

::::::
nodes,

::::
and

:::
the

::::::::
clustering

:::::::::
coefficient

:
serve as indicators of highly mixing regions, whereas

spectral graph partitioning schemes allow us to extract coherent sets. The proposed methodology is very fast to run and we

demonstrate its applicability in two geophysical flows - the Bickley jet as well as the antarctic stratospheric polar vortex.

1 Introduction

The notion of coherence in time-dependent dynamical systems is used to describe mobile sets that do not freely mix with the15

surrounding regions in phase space. In particular, coherent behavior has a crucial impact on transport and mixing processes in

fluid flows. The mathematical definition and numerical study of coherent flow structures has received considerable scientific

interest for the last two decades. The proposed methods roughly fall into two different classes, geometric and probabilistic

approaches, see Allshouse and Peacock (2015) for a discussion and comparison of different methods. Geometric concepts aim

at defining the boundaries between coherent sets, i.e. codimension-1 material surfaces in the flow that can be characterized by20

variational criteria (see Haller (2015) for a recent review). Central to these constructions is the Cauchy-Green strain tensor,

which is derived from the derivative of the flow map. Thus, full knowledge of the flow field or at least high resolution trajectory

data is required for these methods to work successfully. This applies also to other geometric concepts such as shape coherence

(Ma and Bollt (2014)). Probabilistic methods aim at defining sets that are minimally dispersive while moving with the flow.

The main theoretical tools are transfer operators, i.e. linear Markov operators that describe the motion of probability densities25

under the action of the nonlinear, time-dependent flow. The different constructions in this family of approaches are reviewed
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in Froyland and Padberg-Gehle (2014), also highlighting the crucial role of diffusion in this setting. Recently, a dynamic

Laplacian framework has been introduced by Froyland (2015), where explicit diffusion is no longer required in the analytical

and computational framework. While for this approach fast and accurate algorithms have been developed in Froyland and

Junge (2015), the classical transfer operator setting requires the integration of many particle trajectories for the numerical

approximation of the infinite dimensional operator. Here again, full knowledge of the underlying dynamical system is needed,5

which may not be available in applications. Moreover, all discussed approaches assume that the nonautonomous dynamics is

represented by a flow map, which, by construction, only considers the starting and end points of each particle trajectory, but

neglects the dynamics between the initial and final points in time.

To overcome these problems, different computational methods have been proposed to identify coherent behavior in flows

directly from Lagrangian trajectory data, such as obtained from particle tracking algorithms. One of the earliest attempts is the10

braiding approach proposed by Allshouse and Thiffeault (2012), where trajectories are classified according to their intertwining

pattern in space-time. This method is mathematically sound, but computationally demanding and currently restricted to two-

dimensional flows. Trajectory-based approaches have also been introduced by Mancho et al. (2013) and Budišić and Mezić

(2012). They use time-integrated quantities along trajectories, which again requires knowledge of the underlying dynamical

system. Finally, Williams et al. (2015) attempt to reconstruct the transfer operator from limited amount of trajectory data.15

Very recently, spatio-temporal clustering algorithms have been proven to be very effective for the extraction of coherent sets

from sparse and possibly incomplete trajectory data (see e.g. Froyland and Padberg-Gehle (2015); Hadjighasem et al. (2016);

Banisch and Koltai (2017); Schlueter-Kuck and Dabiri (2017)). Here, distance measures between trajectories are used to define

groups of trajectories that remain close and/or behave similarly in the time span under investigation. All these methods can deal

with sparse and incomplete trajectory data and do respect the dynamics of the entire trajectories, not just the end points. While20

c-means clustering as used by Froyland and Padberg-Gehle (2015) is computationally inexpensive and works well in example

systems (see also Allshouse and Peacock (2015)), spectral clustering approaches as in Hadjighasem et al. (2016); Banisch and

Koltai (2017); Schlueter-Kuck and Dabiri (2017), appear to be more robust, but require considerable computational effort.

Inspired by these recent approaches, our aim is to design a reliable but computationally inexpensive method for studying

coherent behavior as well as mixing processes directly from Lagrangian trajectory data. For this, we consider an unweighted,25

undirected network, where Lagrangian particle trajectories serve as network nodes. A link is established between two nodes if

the respective trajectories come close to each other at least once in the course of time. This construction is similar in spirit to the

concept of recurrence networks (see e.g. Donner et al. (2010a)), but here in a spatio-temporal setting.
:::::::
Whereas

::
in

:::::::::
recurrence

::::::::
networks,

:::
two

::::::
points

::
on

::
a
::::::::
trajectory

::
or

:::::
more

::::::::
generally

::
of

:
a
::::
time

:::::
series

:::
are

::::::
linked

:::::
when

::::
they

:::
are

:::::
close,

::
in

:::
the

::::::
present

:::::
work

:::
we

:::::::
consider

:
a
:::::
whole

::::::::
trajectory

:::
as

:
a
:::::
single

:::::
entity.

:
We note that also the discretized transfer operator has been viewed and treated as a30

network, see e.g. Dellnitz and Preis (2003); Dellnitz et al. (2005); Padberg et al. (2009); ?); Ser-Giacomi et al. (2015).
:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Dellnitz and Preis (2003); Dellnitz et al. (2005); Padberg et al. (2009); Lindner and Donner (2017); Ser-Giacomi et al. (2015).

:::
The

:::::
latter

::::
used

:::
the

:::::::
directed,

::::::::
weighted

:::::::
network

::
to

:::::::
analyse

:::::
model

::::
data

::
of

:::
the

::::::::::::
Mediterranean

::::
Sea

::::
with

:::
the

::::
main

:::::
focus

:::
on

::
in-

::::
and

::::::::::
out-degrees.

::
A

:::::::
different

::::::::
approach

::
is
:::::
taken

::
in
::::::::::::::::::
Donges et al. (2009).

::::
The

::::::
authors

::::::::
compute

:::
the

::::::
mutual

::::::::::
information

::::::
matrix

::::
M

ij

::
of

:
a
:::::::
climate

::::
data

::
set

:::
as

::::::::
adjacency

::::::
matrix

::::
A

ij ::
of

::
an

:::::::::
undirected

::::
and

::::::::::
unweighted

::::::::
network.

::::
This

::::
way

::::
they

:::
use

:::
the

:::::::::::
betweenness

::::::::
centrality

::
to

::::::
identify

:::::::
regions

::
of

:::::
major

::::::::::
importance

::
for

::::::
energy

::::::::
transport.

:
35
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We use classical graph concepts and algorithms to analyze our trajectory-based
::::::::
undirected

::::
and

::::::::::
unweighted

:
flow network.

Local network measures such as node degree or clustering coefficient
::::::
degrees

:::
or

::::::::
clustering

::::::::::
coefficients

:
highlight regions of

strong mixing
:
or

:::::
weak

:::::::
mixing.

:::::
These

::::
and

::::
other

:::::::::
quantities

::::
have

::::
been

::::::::::
considered

::
in

:::::::
previous

:::::
work

::
on

:::::::::
recurrence

::::::::
networks

:::
by

::::::::::::::::::::
Donner et al. (2010a, b),

:::::
where

:::
the

::::::
authors

:::::
could

::::
link

:::::::
network

::::::::
measures

::
to

:::::::::
properties

::
of

:::
the

:::::::::
underlying

:::::::::
dynamical

:::::::
system.

::
In

:
a
::::::
similar

:::::::
fashion,

:::::::::::::::::::::::::
Lindner and Donner (2017) as

::::
well

:::
as

::::::::::::::::::::::::::::::
Ser-Giacomi et al. (2015) considered

:::
the

:::
in-

:
and thus capture very5

similar information as described by the
:::::::::
out-degrees

::
of

::
a
:::::::::
weighted,

:::::::
directed

:::::::
network

::::::::
obtained

:::::
from

:
a
::::::::::

discretized
:::::::
transfer

:::::::
operator

:::
and

:::::
found

:::::
these

::
to

::::::::
highlight

:::::::::
hyperbolic

::::::
regions

::
in
:::
the

:::::
flow.

:::
We

::::
note

:::
that

:::
the

:::::
node

::::::
degree

::
in

:::
our

::::::::::
construction

:::::::
exactly

::::::::::
corresponds

::
to

:::
the trajectory encounter number very recently introduced by Rypina and Pratt (2017). In particular, ,

::
a

:::::::
quantity

:::
that

::::::::
measures

::::
fluid

::::::::
exchange

:::
and

::::
thus

:::::::
mixing.

:::::
Local

::::::::
clustering

::::::::::
coefficients

:::
can

:::
be

:::::
related

:::
to

::::::
regular

:::::::
behavior,

:::
as

:::
has

:::
also

:::::
been

:::::::
observed

:::
by

::::::::::::::::::::::::::::
Rodríguez-Méndez et al. (2017) in

:::
the

::::::
context

::
of

::::::::::::::
transfer-operator

:::::
based

:::::::::
networks.10

::
In

:::::::
addition

::
to

::::::::::
considering

::::
local

::::::::
network

::::::::
measures,

:::
we

::::
will

:::::
apply spectral graph partitioning schemes for the solution of a

balanced cut problem (Shi and Malik (2000))allow
:
.
::::
This

::::::
allows us to efficiently extract coherent sets of the underlying flow

:
,

::::::
similar

::
in

::::
spirit

::
to

:::
the

:::::::::
approaches

::::::::
proposed

::
in

::::::::::::::::::::::::::::::::::::::::::::
Hadjighasem et al. (2016); Banisch and Koltai (2017),

::::
who

:::::::::
considered

::::::::
weighted

::::::::
networks,

:::::
which

:::
are

::::::::::
constructed

:::::
based

::
on

:::::
using

::::::::
different

::::::
metrics

:::
for

::::::::::
determining

:::
the

:::::::
distance

:::::::
between

::::
two

:::::::::
trajectories.

The paper is organized as follows. In section 2 we describe our network construction. This is followed by a discussion of15

network analysis tools in section 3, where we review several, simple local network measures as well as the spectral graph

partitioning approach by Shi and Malik (2000). In section 4 we apply the methodology to two different example systems, a

Bickley jet as well as the stratospheric polar vortex. We close the paper with a discussion and an outlook on future work.

2 Networks of Lagrangian flow trajectories

In the following, we assume that we have n 2 N Lagrangian particle trajectories from a flow simulation or from a particle track-20

ing experiment in physical space Rd, d= 2 or 3. In practice, the particle positions may be given at discrete times {0,1, . . . ,T}.

We denote the trajectories by x

i

, i= 1, . . . ,n, and its position
::
the

::::::::
particles

::::::::
positions at a certain time instance t= 0, . . . ,T by

x

i,t

2 Rd. We now set up a network of these Lagrangian
::
in

:::::
which

:::
the

:
trajectories x1, . . . ,xn

and
::::
serve

:::
as

:::::
nodes.

::::
We link two

trajectories if they come ✏-close to each other at least once in the course of time. Such an undirected, unweighted network is

uniquely described by a symmetric adjacency matrix A 2 {0,1}n,n. In practice, we construct this from the given Lagrangian25

flow trajectories by setting

A

ij

=

8
><

>:

max

0tT

�

B✏(xi,t)(xj,t

), i 6= j

0, i= j

, (1)

where �

B

denotes the indicator function of a set B ⇢ Rd. So A

ij

= 1, that is, a link is established between trajectories x
i

and

x

j

, if and only if at one or more time instances t, x
j,t

can be found in an ✏-ball B
✏

(x

i,t

) centered at x
i,t

and thus the trajectories

x

i

and x

j

have come ✏-close.30
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By an appropriate choice of ✏ one ensures that the network defined by (1) is connected
:::
and

::
in

:::
this

:::::
paper

:::
we

::::
will

::::
only

:::::::
consider

::::::::
connected

::::::::
networks. For instance, if the trajectories are initialized on a regular grid, then a natural lower bound to ✏ would be

the mesh size. In the case that particles are randomly distributed, ✏ has to be chosen accordingly. We will study different choices

of ✏ in section 4.

Alternatively, the network might be set up by linking the k-nearest neighboring trajectories at each time instance for some5

k 2 N. While this allows us to get rid of the problem of a suitable choice of ✏ it means that we have to choose a reasonable

k. In two-dimensional systems a natural choice would be k = 4 mimicking the five point stencil, similarly
::::
k = 6

:
in three-

dimensional systemsk = 6. If trajectories are initialized on a regular grid this choice again ensures that the resulting network is

connected. Our own preliminary studies have indicated that this procedure gives very similar results to the ✏-based definition in

(1) but requires slightly longer computational run times. Therefore,
:::::::
However,

::
as

:::
the

:::::::::::
construction

::
is

:::
not

:::::::::
symmetric

::
in

:::::::
general,10

we will not pursue this construction in the present work.

3 Network analysis

Here, we briefly discuss standard analysis concepts for networks (see e.g. Newman (2003)) and relate them to features of the

underlying flow. In particular, we will describe how to extract coherent structures by solving a graph partitioning problem, the

balanced minimum cut problem as proposed by Shi and Malik (2000) (see also Hadjighasem et al. (2016)).15

3.1 Degree matrix and graph Laplacian

From the adjacency matrix A one can derive two other important matrices to describe the network. The degree matrix D is a

diagonal matrix with D

ii

= d

i

where d

i

is the degree of node x

i

, i.e. D
ii

=

P
n

j=1Aij

, that is the number of links attached to

node i. In our setting, d
i

2 N, i= 1, . . . ,n. By construction, for our network the degree of a node is non-zero, so there are no

isolated nodes.20

The non-normalized Laplacian is formed by L=D�A, where D is the degree matrix and A the adjacency matrix. By the

construction of A and D, L is symmetric and the entries of L are

L

ij

=

8
><

>:

�A

ij

i 6= j

D

ii

, i= j

. (2)

and thus L 2 Zn,n.

The normalized symmetric graph Laplacian L 2 Rn,n is defined as25

L= I

n

�D

� 1
2
AD

� 1
2
. (3)

L has non-negative real eigenvalues 0 = �1  �2  . . . �

n

. w1 =D

1
21 is eigenvector to eigenvalue �1 = 0. The other

eigenvalues and corresponding eigenvectors can be characterized variationally in terms of the Rayleigh quotient of L. We

come back to this in section 3.3.
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3.2 Local network measures

Node degree

The degree of a node encodes how many other nodes are connected to itand thus it measures the immediate importance of

that node. In our setting, it measures how many different trajectories come close to the trajectory represented by the respective

node. The node degree d is encoded in the diagonal elements d
i

=D

ii

of the diagonal degree matrix D, with5

d

i

=

X

j

A

ij

, i= 1, . . . ,n. (4)

:::
The

::::
node

::::::
degree

::
d

::::::::::
corresponds

::
to

:::
the

::::::::
trajectory

::::::::
encounter

:::::::
number

::
as

:::::::
recently

:::::::::
introduced

::
by

::::::::::::::::::::
Rypina and Pratt (2017),

::::
who

::::
also

::::::::
compared

:::
this

:::::::
quantity

::
to
:::::::::
finite-time

:::::::::
Lyapunov

::::::::
exponents

::::
and

:::::
found

::::
good

:::::::::
agreement

::
in

:::::::
example

::::::::
systems.

Average degree of neighboring nodes

Here one considers the average node degree of the neighbors of a node x

i

, defined as10

hdi
nn,i

=

P
j

A

ij

d

j

d

i

, i= 1, . . . ,n. (5)

Due to the averaging over all neighboring degrees, hdi
nn

appears
::::
tends to be smoother compared to the simple node degree d.

Both the node degree

::::
Both d and the average degree of neighboring nodes hdi

nn

are very related to the trajectory encounter number as recently

introduced by Rypina and Pratt (2017). Similar concepts of stretching measures are discussed in Padberg et al. (2009) and15

Froyland and Padberg-Gehle (2012)
:::
will

:::
be

:::::
large,

:::::
when

:::
the

::::::::::::
corresponding

:::::::::
trajectory

::::::
comes

::::::
✏-close

::
to

:::::
many

::::::::
different

:::::
other

:::::::::
trajectories.

:::
In

::::::::
particular

::
in

:::
the

::::::
context

:::
of

:::::::::::::::
volume-preserving

::::::
flows,

:::
this

::
is

::::
only

:::::::
possible

:::::
when

::::
fluid

::::::
parcels

:::
get

::::::::
stretched

::::
and

:::::
folded. Thus, both d and hdi

nn

are expected to be large in mixing regions .
:::
and

:::
can

:::
be

::
at

::::
least

::::::::::
qualitatively

::::::
related

::
to

:::::::::
finite-time

::::::::
Lyapunov

:::::::::
exponents,

:::
see

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Donner et al. (2010a); Padberg et al. (2009); Froyland and Padberg-Gehle (2012); Lindner and Donner (2017); Ser-Giacomi et al. (2015) for

:::::
related

:::::::
studies.

:::::::::
However,

:::::::
whereas

:::::::::
finite-time

:::::::::
Lyapunov

:::::::::
exponents

:::::::
measure

:::
the

:::::::
overall

::::::::
stretching

:::
at

:::
the

::::
final

:::::
time,

::
in

::::
our20

::::::::::
construction

::::
also

:::
all

:::::::::::
intermediate

:::::
times

:::
are

::::::::::
considered.

:::::::::::
Establishing

::
a

::::::
formal

:::::::::::
mathematical

::::
link

:::
to

:::::::::
finite-time

:::::::::
Lyapunov

::::::::
exponents

::
is

::::::::
therefore

::::::
subject

::
to

:::::
future

::::::::
research.

Local clustering coefficient

::::
Here

:::
one

::::::::
considers

:::
the

:::::::
induced

::::::::
subgraph

::::::
formed

:::
by

:::
the

:::::
vertex

::
x

i:::::
under

::::::::::::
consideration

:::
and

:::
the

:::::::
vertices

:::::::
incident

::
to

::
it. The local

clustering coefficient C indicates how strongly connected certain subgraphs are. It does so
::
this

::::::::
subgraph

::
is

:
by measuring what25

proportion of the neighbors of x
i

are neighbors themselves:

C

i

i=

# triangles connected to x

i

# triples centered around x

i

=

(A

3
)

ii

d

i

(d

i

� 1)

, i= 1, . . . ,n. (6)

In contrast to the quantities that measure the number of other trajectories that a particle encounters in the course of time
:::
the

::::::
context

::
of

::::::::::
recurrence

::::::::
networks,

:::::
large

:::::::::
clustering

::::::::::
coefficients

::::
have

:::::
been

:::::
found

:::
to

:::::::
indicate

::::::::
invariant

:::
sets

:::
of

:::
the

::::::::::
underlying

5



::::::::
dynamics

:::::::::::::::::::
(Donner et al. (2010a).)

:::
In

::::
flow

::::::::
networks

::::::::
obtained

::::
from

::
a
::::::::::::
discretization

::
of

:::
the

:::::::
transfer

:::::::
operator

:::::
large

:::::::::
clustering

:::::::::
coefficients

::::
have

:::::
been

::::::
related

::
to

:::::::
periodic

:::::::
behavior

::::::::::::::::::::::::::::
(Rodríguez-Méndez et al. (2017)).

::
In
:::

the
::::::::
aperiodic

:::::::::::::
time-dependent

:::::::
setting,

:::::::
invariant

::::
sets

::
no

::::::
longer

:::::
exist,

:::
but

::::::
instead

::::::
mobile

::::
sets,

::::
such

:::
as

:::::::
vortices,

::
in

::::::
which

:::
the

::::::::
dynamics

::
is

::::::
regular.

:::
In

::::
these

:::::::
regions

:::
the

::::::::
dynamics

::
is

::::::
mainly

:::::::::::
characterized

:::
by

:::::::
rotation

:::
and

::::::::::
translation.

:::::::::
Therefore,

::
in

:::
the

::::::
course

:::
of

::::
time,

::::::::::
trajectories

::::
tend

::
to

::::::::
continue

:::::::::
interacting

::::
with

::::
their

:::::
initial

:::::::::
neighbors

:::
and

:::::::::
encounter

::::
only

::::::::
relatively

::::
few

:::::::
different

::::::::::
trajectories.

:::
So

:::
the

::::::
triples

:::
and

::::::::
triangles

::
in5

::
the

::::::::
network

:::
that

::::
are

:::
due

::
to
::::::

initial
::::::::::::
neighborhood

:::
(for

::::::::::
sufficiently

:::::
large

:::
✏),

:::::::
continue

::
to
:::::::::

positively
::::::::
influence

:::
the

:::::
value

:::
of

:::
the

::::::::
clustering

:::::::::
coefficient

::
in

::::::
regular

:::::::::
dynamics.

::
A

::::::::
trajectory

:::
in

:
a
::::::
mixing

::::::
region

::::
will

::
be

::::::
linked

::
to

:::::
many

:::::
other

::::::::::
trajectories,

:::
and

::::
due

::
to

:::
the

:::::::::
underlying

::::::::
stretching

::::
and

:::::::
folding,

:::
the

:::::::::
proportion

::
of

::::::::
triangles

::
is

:::::
small.

:::::::::
Therefore, the local clustering coefficient C is

expected to be large for trajectories in regular regions (i.e. for which d or hdi
nn

is small).

:::
The

::::::
simple

::::
local

:::::::
network

::::::::
measures

::::::::
reviewed

::::
here

::::::
depend

:::
on

::
the

:::::
local

::::::::
properties

::
of

:::
the

:::::::
network

::::
and

::::::::
therefore,

::
of

::::::
course,

:::
on10

::
the

::::::
choice

::
of
::
✏.
::::
We

:::
will

:::::
study

:::
the

::::::::::::
✏-dependence

::
in

:::
our

:::::::::
numerical

::::::
studies

::
in

::::::
section

::
4.
:::
In

:::
the

::::::
context

::
of

:::::::::
recurrence

:::::::::
networks,

::
the

::::::::
problem

::
of

:::
an

::::::::::
appropriate

::::::
choice

::
of

::
✏

:::
has

:::::
been

::::::::
discussed

:::
in

::::::::::::::::::
Donner et al. (2010b).

:::::
They

:::::::::
considered

::::
the

::::
edge

:::::::
density

:::::::::::::::
⇢(✏) =

2|E(✏)|
|V |(|V |�1) ,

:::::
where

:::
|V |

:::::::
denotes

:::
the

::::
fixed

:::::::
number

::
of

::::::
vertices

::::
and

:::::
|E(✏)|

:::
the

::::::::::
✏-dependent

:::::::
number

::
of

:::::
edges

::
of

:::
the

::::::::
network.

::
In

:::
the

::::::::
literature,

::::::
values

::
of

:
✏

::::
that

::::::::
maximize

:::

d⇢

d✏ :::
are

::::::::
proposed

::
as

::::::
optimal

:::::::
choices

::
of

::
✏.

::
In

:::
the

:::::
study

::
of

::::::::::::::::::::::
Donner et al. (2010b) (see

:::
also

::::
our

::::
own

::::::::
numerical

::::::::::::
investigations

::
in

::::::
section

:::
4)

::::::::
however,

:
it
::::
has

::::
been

::::::
shown,

::::
that

::::
such

::
a
::::::
choice

:::::::
typically

::::::
results

:::
in

::::
very15

:::::
dense

::::::::
networks,

:::::
which

:::
no

::::::
longer

::::::
encode

:::
the

:::::
local

::::::::
properties

::
of

:::
the

::::::::::
underlying

::::::::
dynamics.

:::::::
Instead,

::
a
::::
limit

::
of

::::::::::
⇢(✏) 0.05

::::
has

::::
been

::::::::
proposed

::
to

::::
give

:::::::::
reasonable

::::::
results.

3.3 Spectral graph partitioning

As outlined above, the normalized symmetric graph Laplacian L has non-negative real eigenvalues 0 = �1  �2  . . . �

n

.

The second smallest eigenvalue �2 � 0 is called algebraic connectivity or Fiedler eigenvalue of a graph (Fiedler (1973)). This20

eigenvalue is non-zero if and only if the network is connected. More generally, the number of connected components of the

network appears as the multiplicity of the eigenvalue zero of the Laplacian matrix. If �2 > 0 but very close to zero, then the

network is nearly decoupled and the sign structure of the corresponding eigenvector determines the two communities in the

network (Fiedler cut)
:
. If �

i

,. i= 2, . . . ,k for some k < n are close to zero and there is a spectral gap between �

k

and �

k+1,

then the network is nearly decoupled into k communities. The corresponding eigenvectors w2, . . . ,wk

carry information about25

the location of these communities. This
:
,
:::::
which

:
can be verified by considering the Rayleigh quotient of the normalized graph

Laplacian. Shi and Malik (2000)
:
,
::
as

:::::::
outlined

::
in

::::::::::::::::::
Shi and Malik (2000).

:::::
They used this concept to solve a balanced cut problem

for defining communities in the network that are characterized by minimum communication between different communities

and maximum communication within communities. Such nearly decoupled subgraphs correspond to bundles of trajectories

that are internally well connected but only loosely connected to other trajectories. This is indicative of coherent behavior (see30

also Hadjighasem et al. (2016)). Instead of considering the eigenvalue problem Lw = �w, Shi and Malik (2000) propose to

solve the equivalent generalized eigenvalue problem

Lv = �Dv. (7)
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As both L and D are symmetric and have integer entries, eigenvalue problem (7) turns out to be numerically more convenient

than the original one. It has the same eigenvalues 0 = �1  �2  . . . �

n

and the eigenvectors are related by w

i

=D

1
2
v

i

,

i= 1, . . . ,n. In particular, v1 = 1. The number of leading eigenvalues (i.e. eigenvalues close to zero) indicates the number of

nearly decoupled subgraphs. An application of a standard k-means clustering algorithm
::::::::::::
(Lloyd (1982)) can then be employed

to extract the sets of interest from the corresponding eigenvectors.5

4 Examples

4.1 Bickley jet

As our first example we consider the Bickley jet proposed by Rypina et al. (2007). It is defined by the streamfunction

 (x,y, t) =�U0Ltanh(y/L)+

3X

i=1

A

i

U0Lsech

2
(y/L)cos(k

i

x��

i

t). (8)

We
:::
and

::
it

:::::
serves

::
as

::
an

::::::::
idealized

::::::
model

::
of

:::
the

::::::::::
stratospheric

:::::
flow.

:::
For

:::::
better

::::::::::
comparison,

:::
we use same the parameter values as10

in Hadjighasem et al. (2016); Banisch and Koltai (2017)
:::::::::::::::::::::
Hadjighasem et al. (2016), i.e. U0 = 5.414, A1 = 0.0075, A2 = 0.15,

A3 = 0.3, L= 1.770, c1/U0 = 0.1446, c2/U0 = 0.205, c3/U0 = 0.461, k1 = 2/r

e

, k2 = 4/r

e

, k3 = 6/r

e

where r
e

= 6.371 as

well as �

i

= c

i

k

i

, i= 1,2,3. Here, we have dropped the physical units for brevity. The physical assumptions underlying the

model equations and the parameters are described in detail in Rypina et al. (2007).
::
For

::::
our

:::::
choice

:::
of

:::::::::
parameters

::::
and

:::::
when

:::::::::
considered

::
on

::
a

:::::::
cylinder,

:::
the

::::::
system

:::::::
exhibits

:
a
::::::::::
meandering

::::::
central

:::
jet

:::
and

::::
three

:::::::
regular

::::::
vortices

:::
on

::::
each

::::
side

::
of

:::
the

:::
jet.15

Initial conditions are chosen in the domain M = [0,20[⇥[�3,3] and are numerically integrated on the time interval [10,30]

using a 4th order adaptive Runge-Kutta scheme and periodic boundary conditions in x-direction. We output the particle posi-

tions at integer time steps. We
:::
also

:::::
tested

::::
finer

::::::::
temporal

:::::::::
resolutions

:::
and

::::::::
different

::::
time

::::::::
intervals,

:::
but

::::
these

:::
did

:::
not

:::::::::::
significantly

::::::
change

:::
our

::::::
results

::
for

::::
this

::::::
system.

::::
We consider two sets of initial conditions, which we will refer to as cases (i) and (ii) in the

following:20

(i) 12,200 points from a regular grid on M with grid
::::
mesh

:
size 0.1

(ii) 1,000 random points uniformly distributed on M .

For the first high-resolution setting (i) we choose ✏= 0.1,
:::::
study

:::::::
different

:
✏

:::::
from

:::
0.1

::
to

:::
0.5

:::
(in

:::::
steps

::
of

:::::
0.05),

::::
with

:::::::
✏= 0.1

corresponding to the distance between neighboring grid points, as well as ✏= 0.15 .
::::
The

:::::::
different

:::::::
choices

::
of

:
✏

:::::
result

::
in

::::::
values

::
for

:::
the

:::::
edge

::::::
density

::::
⇢(✏)

:::::::
between

:::::
0.002

:
and ✏= 0.2. For the

::::
0.04,

::::::
which

:::
are

::::
well

:::::
within

:::
the

::::::::
proposed

::::
limit

:::
of

::::::::::
⇢(✏) 0.05

::
as25

:::::::::
considered

::
in

::::::::::::::::::
Donner et al. (2010b).

:::
We

:::::
found

::
no

:::::
local

::::::::
maximum

::
of

:::

d⇢

d✏ ::
in

:::
this

::::::
range.

:::
For

::::::
✏= 0.5

:::
the

:::::::
resulting

:::::::
network

:::::::
already

:::
has

:::::
about

:
3
::::::
million

:::::
links,

:::
so

:
a
:::::::
possible

::::
peak

::
of

:::

d⇢

d✏::::::
would

::
lie

::::
well

::::::
outside

::
a

:::::::::::::
computationally

:::::::::
reasonable

:::::
range

::
of

::
✏.
:

:::
For

:::
the sparse setting (ii), we consider

:::
start

:::::
with ✏= 0.5

:
,
:::
for

:::::
which

::::::::::
⇢(✏) = 0.04. Significantly smaller values of ✏ did not

produce a connected network in this case. For comparison purposes, we also test ✏= 1 and ✏= 2 in this case.
::
A

:::::::::
maximum

::
of

::

d⇢

d✏::
is

:::::::
detected

::
at

:::::
about

:::::::
✏= 1.9,

:::::::
yielding

::::::::
⇢= 0.45.30
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In Figure 1 the local network measures for case (i) are plotted with respect to the initial conditions. The left column contains

the results for ✏= 0.1

:
,
:::
the

::::::
middle

:::::::
column

:::
for

::::::
✏= 0.2 and the right column for ✏= 0.2

::::::
✏= 0.5. The top row displays the node

degree d. As expected, d is high in mixing regions, i.e. where trajectories meet many other trajectories and low in the regular

regions, i.e. the six vortices and the jet core. Whereas the result for ✏= 0.1 appears a bit spurious, that
:::::
fuzzy,

:::::
those for ✏= 0.2

is
:::
and

::::::
✏= 0.5

:::
are

:
much sharper. The average node degree of neighboring nodes hdi

nn

(middle row) gives a very pronounced5

indication of regular and mixing flow behavior , even for ✏= 0.1

:::
for

:::::
small

:
✏,
:::
but

::
at

:::::::
✏= 0.5,

:::
the

::
jet

::::
core

::
is

:::
no

:::::
longer

::::::::::
highlighted

::
by

:::
low

::::::
values

::
of

:::::
hdi

nn::::
due

::
to

::
the

::::::::
increased

::::::::::::
neighborhood

::::
over

:::::
which

::::::::
averages

:::
are

::::
taken. The bottom row shows the clustering

coefficient C. It has the expected high values for regular regions only for ✏= 0.2 (and ✏= 0.15, not shown), but appears to

have some singularities
:::
For

:::::::
✏= 0.1,

:::
the

::::::
vortex

::::
cores

:::
are

::::::::::::
characterized

::
by

::
a

::::
zero

::::::::
clustering

::::::::::
coefficient.

::::
This

::
is

:::
due

::
to

:::
the

::::
fact

:::
that

::
in

::::
this

::::
case

:
✏

::
is
::::::
chosen

:::
as

:::
the

:::::::
distance

:::::::
between

:::::::::::
neighboring

:::
grid

::::::
points.

:::::::::
However,

::
in

:::
this

:::::
case,

::::
two

::::::::
neighbors

::
of

::
a
::::
grid10

::::
point

::::
have

:::::::
initially

::
a
:::::::
distance

::
of

::
at

:::::
least

::::
✏

p
2

:::
and

::::::::
therefore

:
in the vortex cores for ✏= 0.1. Overall, the average node degree

hdi
nn

appears to give the clearest and most robust indication of regular and mixing regions in the flow.
::::
core

::::::
region,

::::
with

:::
its

::::
very

::::::
regular

::::::::
dynamics,

:::
the

::::::::
network

::::
does

:::
not

::::::
possess

::::
any

::::::::
triangles.

:::
For

:::
all

::::
other

::::::
values

::
of

:
✏

:::::::
studied,

:::
the

:::::::::
clustering

:::::::::
coefficient

::::
gives

::
a

::::
very

::::
clear

::::::::
indication

:::
of

:::::::
different

:::::::::
dynamical

::::
flow

:::::::
regimes,

::::
with

::::
high

::::::
values

::
in

::::::
regular

::::::
regions

::
as
:::::::::
expected.
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Figure 1. Network measures for high resolution initial conditions (case (i)) in the Bickley jet for ✏= 0.1 (left)and
:
, ✏= 0.2 (right

:::::
middle)

:::
and

:::::
✏= 0.5. From top to bottom: node degrees d and hdinn and clustering coefficient C.

In Figure 2 we repeat the study for the low-resolution case (ii), using ✏= 0.5 (left column)and ✏= 1

:
,
::::::
✏= 1.5

:::::::
(middle)

::::
and15

::::::
✏= 1.9 (right column). The results are very much comparable to the high-resolution case (i), with the average node degree

hdi
nn

(middle row) giving again a good indication of the different flow regimes , especially for small ✏, where the node degree

d only produces spurious results. For both
::
At

:::::::
✏= 1.5,

::::
the

::::::
average

:::::
node

::::::
degree

:::::
hdi

nn:::::::
appears

::
to
:::

be
::::::::::
“switching”

::::
and

:::::
starts

::
to

::::
pick

::
up

::::::
regular

:::::::
regions

::::::
instead

::
of

:::::::
mixing

::::::
regions

::
as
:::

for
:::::::

smaller
::
✏.

::::
This

::
is

:::::
again

:::
due

:::
to

:::
the

:::::::
enlarged

::::::::::::
neighborhood,

::::::
where

:::::::
averages

:::
are

::::
now

:::::
taken

::::
over

::::::::
different

::::
flow

:::::::
regimes,

::::::::
blurring

:::
the

::::
local

:::::::::::
information.

:::
For

:::
all

:
choices of ✏ the local clustering20

8



coefficient C picks up the cores of the six vortices. We note that when increasing
:
,
:::::::
whereas

:::
the

::::
node

::::::
degree

:
d

::
is
:::::
small

::
in

:::::
these

::::::
regions

:::
and

:::::
large

:::::
along

:::
the

:::
jet,

:::
the

:::::
major

:::::::
transport

::::::
barrier

::
in

::::
this

::::
flow.

::::
This

::::
study

::::::::
supports

:::
that

:::
the

:::::
local

::::::::
networks

::::::::
measures

:::
are

::
of

::::::
course ✏further (not shown), both

:::::::::
-dependent,

:::
but

::
in
:::::::::

particular

the node degree and clustering coefficient will continue to highlight mixing and vortical regions respectively, whereas the
:::
the

::::::::
clustering

:::::::::
coefficient

:::
are

:::::
robust

::::::
within

:
a
:::::::::
reasonable

:::::
range

::
of

::::::::
✏-values,

::::
even

:::
for

::::::
✏= 1.9

::
in

:::
the

::::
low

::::::::
resolution

::::
case.

:::
As

::::::::
expected5

:::
and

::
as

:::::
found

::
in
::::::
related

::::::
work,

:::
the

::::::::
clustering

:::::::::
coefficient

::::::::
indicates

:::::::
vortices,

:::::::
whereas

:::
the

::::
node

::::::
degree

:::::::::
highlights

:::::
major

::::::::
transport

:::::::
barriers.

:::
The

:
average node degree will fail at some point as - due to

::::
hdi

nn:::::::
appears

::
to

::
be

::
a
:::::
good

:::::
choice

:::
for

:::::
small

::
✏,

:::
but

:::::
turns

:::
out

::
to

::
be

::::
less

:::::
robust

:::
for

:::::::::
increasing

::
✏,

::
as

::::
then

:::::
larger

::::
and

:::::
larger

::::
parts

:::
of

:::
the

:::::::
network

:::
are

:::::::::
considered

:::
for

:::
the

::::::::
averaging

::::
and

::::
thus

the enlarged neighborhood - it will average over different flow regimes and thus blur the local information
::::
local

:::::
nature

::
of

::::
this

:::::::
network

:::::::
measure

::::::::
decreases.10
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Figure 2. Network measures for 1,000 random initial conditions (case (ii)) in the Bickley jet for ✏= 0.5 (left
:::::
column),

::::::
✏= 1.5

:::::::
(middle) and

✏= 1
::::::
✏= 1.9 (right

:::::
column). From top to bottom: node degrees d and hdinn and clustering coefficient C.

In Figure 3 the four (non-trivial) leading eigenvectors v2, . . . ,v5 of the generalized eigenvalue problem (7) are shown for the

high-resolution initial conditions (case (i)) with ✏= 0.2. The eigenvectors highlight the two regions delineated by the jet as

well as the different vortices, comparable to the results in Banisch and Koltai (2017). We note that the corresponding figures for

✏= 0.1 and ✏= 0.15

:::
the

::::
other

:::::::
choices

::
of

:
✏

:
would look the same.

::::::::::
Surprisingly,

::
in

:::
the

:::::
study

::
by

::::::::::::::::::::::::::
Hadjighasem et al. (2016) only

::
the

:::
six

:::::::
vortices

::::
have

:::::
been

::::::::
identified

:::
but

:::
not

:::
the

:::::::
different

::::
flow

:::::::
regimes

::::::::
delineated

:::
by

:::
the

::
jet

:::::
core.15

In the low-resolution case (ii), the leading eigenvectors match those of the high-resolution data case, but in a slightly different

order (see Figure 4
::
for

:::
the

::::::
choice

::::::
✏= 0.5). This comes from the fact that the four eigenvalues �3, . . .�5 all have approximately

the same magnitude and are therefore sensitive to perturbations.
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Figure 3. Leading eigenvectors v2 � v5 (from top left to lower right) of the generalized graph Laplacian eigenvalue problem (7) for the

network constructed from high resolution initial data in the Bickley jet (case (i)) with ✏= 0.2.
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Figure 4. Leading eigenvectors v2 � v5 (from top left to lower right) of the generalized graph Laplacian eigenvalue problem (7) for the

network constructed from 1,000 random initial conditions in the Bickley jet (case (ii)) and ✏= 0.5.

The ten leading eigenvalues for case (i) and ✏= 0.2 are displayed in Figure 5 (left), the low resolution case (ii) with ✏= 0.5

in the middle. These spectra exhibit clear spectral gaps between the second and the third and between the eighth and the ninth

eigenvalues.

The first spectral gap is related to the coherent behavior of the upper and lower part of the cylinder, delineated by the jet

core. The second (and larger) spectral gap indicates the existence of altogether eight coherent sets. These can be extracted via5

a standard k-means clustering (with k = 8) of the first eight eigenvectors. The resulting partitions are shown in Figure 6. As

10



expected, the six vortices and the two distinct stream regions are picked up, both in the high resolution (i) and the sparse data

case (ii).
::::::::
However,

::
in

:::
the

::::::
sparse

::::
case

::
the

:::::::::
clustering

::::
finds

::
a

:::
few

::::
false

:::::
green

::::
and

::::
blue

:::::
points

:::::::
(Figure

:
6
:::::::
bottom,

::::
left).

:
For the low

resolution case (ii) and a choice of ✏= 1 (or larger) the spectrum is no longer correctly recovered (see Figure 5 (right)
:::
for

:::
the

:::::
choice

:::::::
✏= 1.9).

Figure 5. Leading eigenvalues of the generalized graph Laplacian eigenvalue problem (7) for the Bickley jet. Left: high-resolution data (case

(i), ✏= 0.2); middle: sparse data case (ii), ✏= 0.5; right: case (ii), ✏= 1
:::::
✏= 1.9.
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Figure 6. Extraction of eight coherent sets based on a k-means clustering of the eight leading eigenvectors of the generalized eigenvalue

problem for the Bickley jet. Coherent sets at initial time (t= 10, left) and at final time (t= 30, right). Top: high-resolution case (i), ✏= 0.2;

bottom: 1,000 random initial conditions (case (ii)) with ✏= 0.5.

Finally, we note that the proposed approach is computationally inexpensive, with total run times of < 2s for the sparse data5

case (ii) and < 40s

:::::
⇡ 40s

:
for the high resolution case (i) using MATLAB (R2016a) on a single processor, see Table 1 for

details.
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Table 1. Computation times (in seconds)

trajectory integration computation of A eigenvalue problem

(i) 12,200 points (✏= 0.1) 13.4s 23.0
:::
25.9s 1.1

::
1.8s

(i) 1,000 points (✏= 0.5) 1.6s 0.15
::
0.3s 0.14

:::
0.1s

4.2 Stratospheric polar vortex

As a second example we study the transport and mixing dynamics in the stratospheric polar vortex over Antarctica. The

coherent behavior of the polar vortex has already been numerically studied using transfer operator methods (Froyland et al.

(2010)). For the computation of particle trajectories we use two-dimensional velocity data from the ECMWF Interim data set1.

The global ECMWF data is given at a temporal resolution of 6 hours and a spatial resolution of a 121⇥ 240 grid in longitude5

and latitude directions respectively. As in Froyland et al. (2010) we focus on the stratosphere over the southern hemisphere.

We consider the flow from September 1, 2002 to October 31, 2002 on a 600 K isentropic surface. For the integration of particle

trajectories, we seed initial data on a 64⇥ 64 grid centered at the South Pole (square of side lengths 12,000km), with a mesh

size of 187.5km. A 4th order Runge Kutta scheme with a constant step size of 45min and linear interpolation in space and

time are used and we output the particle positions every six hours. For the construction of the trajectory network we choose10

✏= 187.5

::::::
✏= 375km, i.e.

::::
twice

:
the grid spacing.

:::
For

:::
this

:::::::
choice,

:::
we

:::::
obtain

:::
an

::::
edge

:::::::
density

::
of

:::::::::::
⇢(✏) = 0.03,

:::::
which

::::
lies

::::
well

:::::
within

:::
the

:::::::::
reasonable

:::::
range

::::::::
proposed

::
by

:::::::::::::::::::
Donner et al. (2010b).

Figure 7. Average
::::
Node

:::::
degree

:
d
:::::
(left),

::::::
average node degree of neighboring nodes hdinn ::::::

(middle)
:::
and

:::::::
clustering

::::::::
coefficient

::
C
:
of a network

constructed from trajectories for the polar vortex flow between September 1 and October 31, 2002. Left: particles at September 1, 2002;

middle: September 26, 2002; right: October 31, 2002.

1http://data.ecmwf.int/data/index.html

12



In Figure 7 the
:::
we

::::
show

:::
the

::::
local

:::::::
network

::::::::
measures

:::::::
applied

::
to

:::
this

::::::::
network.

:::
The

::::
node

::::::
degree

::
d

:::
and

:::
the average node degree

of neighboring nodes hdi
nn

is shown. This network measure highlights a region of strong mixing that appears to
::::::::
highlight

::::
again

:::
the

:::::::
strongly

:::::::
mixing

::::::
regions

::::
that delineate the polar vortex. Similar observations have been made using other stretching

measures (see e.g. Joseph and Legras (2002); Froyland and Padberg-Gehle (2012)).
::::
The

::::
local

::::::::
clustering

:::::::::
coefficient

::
is
:::::
large

::
in

::::::::
particular

::
in

:::
the

::::
core

::
of

:::
the

::::::
vortex.

:::
As

:::
the

:::::::::
dynamics

:
is
:::::

very
:::::::
irregular,

::::
the

:::::
results

:::
are

::::
less

::::::::::
pronounced

::::
than

::
in

:::
the

:::::::
Bickley

:::
jet5

:::::::
example,

::::
also

:::
for

:::::
larger

:
✏

::::
(not

:::::::
shown).

In Figure 8
::::
(top

::::
row), the second eigenvector of the generalized graph Laplacian eigenvalue problem (7) is shown. It clearly

highlights the polar vortex as a coherent set, confirming the transfer operator based results obtained by Froyland et al. (2010)

for a different data set (September 1-14, 2008).

::::::::
However,

:::
the

:::::
result

::
of

:::
our

:::::::::::
computation

::::::
appears

::::::::
spurious,

::::
with

:::::::
isolated

::::::
yellow

:::::::
regions

::
in

:::
the

::::::::::
background

::::
flow.

::::
This

::
is
::::
due10

::
to

:
a
::::::::::
bifurcation

::
in

:::
the

::::
flow

::::::::
patterns:

:
Towards the end of September 2002, the polar vortex splits into two vortices. This is

also captured by our network analysis - both in the average node degree of neighboring nodes (Figure 7, middle) and the

eigenvector study (Figure 8, middle). The right panels in both figures indicate that one of the two vortices has become
::::
One

::
of

:::
the

:::
two

:::::::
vortices

::::::::
becomes unstable and disperses whereas the other vortex increases

::
has

::::::::
increased

:
again by the end of the

computation (October 31, 2002).
:
;
:::
see

:::::
Figure

::
8
::::
(top,

:::::::
right)).

:
It
::::::
would

::
be

::::
very

:::::::::
interesting

:::
to

::::::
identify

::
a
::::::::
precursor

::
of

:::
the

::::::
vortex15

:::::::
splitting

::::
from

:::
the

:::::::
network

:::::::::
properties,

:::
but

:::
this

::::
will

::
be

::::::
subject

:::
to

:::::
future

:::::
work.

:::
We

:::::
repeat

:::
the

:::::
study

:::
of

:::
the

::::::::
spectrum

::
by

:::::::::::
considering

:
a
::::
new

:::::::
network

::::::
where

:::
the

::::::::::
trajectories

:::
are

::::::::
restricted

::
to

:::
the

::::
time

:::::
span

:::::
before

:::
the

::::::::::
bifurcation

::::::::::
(September

:::::
1–26,

::::::
2002),

:::
see

::::::
Figure

:
8
:::::::
(bottom

:::::
row).

:::
On

::::
this

:::::::
interval,

:::
the

:::::
polar

::::::
vortex

:::
can

:::
be

::::::
clearly

::::::::
identified

::
by

:::
the

::::::
second

::::::::::
eigenvector

::
of

:::
the

::::::::::
generalized

:::::
graph

::::::::
Laplacian

:::::::::
eigenvalue

::::::::
problem.

5 Discussion and conclusion20

We have proposed a very simple and inexpensive approach for analyzing coherent behavior and thus transport and mixing

phenomena in flows. It is based on a network in which Lagrangian particle trajectories form the nodes. A link is established

between two nodes if the respective trajectories come close to each other at least once in the course of time. The resulting

network is unweighted and undirected and can be represented by a binary adjacency matrix. Classical local network measures

such as node degree and clustering coefficient highlight regions of strong mixing and regular motion, respectively. In particular,25

:::::
While

:::::
these

:::::::
network

::::::::
measures

:::
are

:::::::::::
✏-dependent,

::::
they

:::::
appear

:::
to

::
be

::::::
robust

:::::
within

::
a
:::::::::
reasonable

:::::
range

::
of

::::::::
✏-values.

:::
Too

:::::
large

:::
✏’s

:::
blur

:::
the

:::::
local

::::::::::
information

::
of

:::
the

:::::::::
underlying

:::::::::
dynamics

:::
and

:::
an

::::
edge

::::::
density

:::::::::
dependent

::::::
choice

::
of

::
✏

::
as

::::::::
discussed

::
in

:::
the

:::::::
context

::
of

:::::::::
recurrence

::::::::
networks

:::::::::::::::::::
(Donner et al. (2010b))

:::
has

::::::
turned

:::
out

::
to

::
be

::::::
useful

::
in

:::
our

::::::
setting

::
as

:::::
well.

::
In

::::::::
addition,

:::
we

::::
have

::::
used

:
a

generalized graph Laplacian eigenvalue problem can be used to efficiently and robustly extract coherent sets, even for the case

of sparse data .
::
as

:::::::::
illustrated

::
by

::::
case

:::
(ii)

::
in

:::
the

:::::::
Bickley

::
jet

::::::::::::
investigations.

:
30

While in this manuscript we have only demonstrated our approach in
:::::::
examples

::::
that

:::
are

::::::::::::::::
volume-preserving

::::
and

:
two-

dimensionalsystems, the extension
:
,
:::
the

:::::::::
extensions

:
to three-dimensional flows is

::
and

::::
also

::
to
::::::::::

dissipative
::::::
systems

:::
are

:
straight-

forward. In addition, although not illustrated here, our method can easily deal with incomplete trajectory data as only one-time
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Figure 8. Eigenvector v2 of generalized graph Laplacian eigenvalue problem for the polar vortex example
:::
from

:::::::::
trajectories

:::::::
computed

:::
on

:::
two

::::::
different

::::
time

:::::
spans

::::
(top:

::::::::
September

::
1

::
to

::::::
October

:::
31,

:::::
2002;

:::::
bottom

:::::::::
September

::::
1–26,

:::::
2002). Left

:::
Top

:::
row: particles at September 1,

2002
::::
(left); middle: September 26, 2002

::::::
(middle); right: October 31, 2002.

:::
2002

::::::
(right).

::::::
Bottom

:::
row:

:::::::
particles

::
at

::::::::
September

::
1,

::::
2002

:::::
(left);

::::::::
September

::
26,

::::
2002

::::::
(right).

encounters of trajectories are required for setting up the network.
:::
The

:::::::
approach

::
is
:::
not

::::::::
restricted

::
to

:::::::::
connected

::::::::
networks,

::::
and

::
in

::::::::
particular

::
in

:::
the

:::::::
presence

::
of

:::::::::
attracting

:::
sets

::
in

:::::::::::::::::::
non-volume-preserving

::::::::
systems,

::::
these

::::::
might

::
be

::::::::::
worthwhile

::
to

:::::::
consider

::
as

:::::
well.

:::
We

::::
have

::::::
studied

::::::::::
unweighted

::::::::
networks

:::::::::
throughout

:::
the

:::::
paper.

::::::::
Counting

:::
the

:::::::
number

::
of

:::::
times

:
a
::::::::
trajectory

::::::
comes

::::
close

::
to

:::::::
another

:
is
::::
one

::::::
option

::
for

::::::::
choosing

::::::::
weights.

:::
Our

::::
own

::::::::::
preliminary

::::::
studies

:::::::
indicate

::::
that

::
in

::::
this

::::
case

:::
the

::::
node

::::::
degree

:::
and

:::::::
average

:::::
node

:::::
degree

:::::::
become

::::
less

::::::::::
meaningful,

::
as

::::
these

::::::
cannot

::::::::::
distinguish

:::
any

:::::
more

:::::::
between

:::::::
repeated

:::::::::
encounters

:::
(as

::
in

::::::
regular

:::::::
regions)

::::
and5

::::
many

::::::::
different

:::::::::
encounters

:::
(as

::
in

::::::
mixing

:::::::
regions).

:::::::::
Clustering

:::::::::
coefficient

:::
and

:::::::::::
subdominant

:::::::::::
eigenvectors

::
of

:::
the

::::::::
Laplacian

::::::
appear

::
to

:::::::
continue

::
to

::::::::
highlight

:::::::
coherent

:::::::
regions.

There are some apparent
:::::
direct relations to other recently proposed methodologies such as the dynamic isoperimetry frame-

work introduced by Froyland (2015), where a dynamic Laplacian and its spectrum play a central role. The graph Lapla-

cian matrix studied in the present paper appears to be a very coarse but inexpensive and robust approximation of this op-10

erator and in a similar way it approximates the diffusion maps used
::::::
studied in Banisch and Koltai (2017). There is also

14



an obvious link of the node degree d of our network construction to the trajectory encounter number recently proposed by

Rypina and Pratt (2017)
::
In

::::
this

:::::::
context,

:
it
::::::

might
::
be

::::::::::
interesting

::
to

:::::::
analyze

:::
the

::::::::
networks

::::::::
resulting

::::
from

:::
the

::::::::
different

:::::::
choices

::
of

::::::
metrics

:::::
used

::
in

::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
Banisch and Koltai (2017); Schlueter-Kuck and Dabiri (2017); Hadjighasem et al. (2016). A mathematical

analysis of the commonalities and differences between these approaches and our novel network approach is subject to future

research.
::::::
Finally,

:::
the

:::::
node

:::::
degree

:::
of

:::
our

:::::::
network

:::::::::::
construction

::::::
exactly

:::::::::::
corresponds

::
to

:::
the

::::::::
trajectory

:::::::::
encounter

:::::::
number

::::
very5

::::::
recently

:::::::::
introduced

:::
by

::::::::::::::::::::
Rypina and Pratt (2017),

:::::
which

::::
has

:::
now

::::::::
obtained

:
a
:::::
wider

:::::::::::
interpretation

::
in

:::
the

::::::
context

:::
of

:::
flow

:::::::::
networks.
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