
Response to comments from referee #5 (Bokhove, Onno) 

 

Title: Laboratory and numerical experiments on stem waves due to monochromatic waves along a 

vertical wall 

MS No.: npg-2017-35 

 

We appreciate the referee's interest and criticisms on our manuscript entitled “Laboratory and numerical 

experiments on stem waves due to monochromatic waves along a vertical wall”. We hope that the revision we 

made could have well reflected the referee's comments. 

 

Referee's comment: 

(1) The text throughout requires some grammatical corrections pertaining to (better) understanding of statements. 

I have supplied a pdf with all my comments in confidence (not meant for online publication). 

 

<Response from authors> 

The authors corrected as the referee suggested. 

 

(2) It is still unclear to me how lambda_s is determined at x=6L and 15L; is alpha determined and then knowing 

x, lambda_s or is lambda_s visually determined as in the appendix figures seems possible and is indicated? It 

is the chicken-and-the-egg question. 

 

<Response from authors> 

The measured 𝛼 is determined as: 

First, 𝜆6 and 𝜆15 are determined for given 𝜃0 based on the figures in Appendix (e.g., Figs. A5 and A6). Then, 

𝜆6 and 𝜆15 are substituted into Eq. (11) to determine the measured stem angle 𝛼. This measured 𝛼’s are 

presented by symbols in Fig. 11. 

 

The calculated 𝛼 and 𝜆𝑠 are determined as: 

First, 𝜆30 and 𝜆50 are determined for given 𝜃0 based on the numerical simulation using extended domain. 

Then, 𝜆30 and 𝜆50 are substituted into Eq. (12) to determine the stem angle 𝛼. This 𝛼 is presented by solid 

curves in Fig. 11. Finally, the stem width 𝜆𝑠 is calculated by substituting this 𝛼 into Eq. (13) for given x, i.e. 

x=30L and 50L. This 𝜆𝑠 is presented in the figures in Appendix. 

 

(3) The question on the relevance to real-world cases should be answered in the paper, by combining the two 

figures in the response (figure 4 and the one before that). 

 

<Response from authors> 

Following the referee’s suggestion, some statement explaining the relevance to real-world cases is added as: 

 



Lines 30-32 of page 6 and lines 1-7 of page 7  

In the real world, we can assume the situation where the swell is incident on a breakwater. Swell waves are the 

regular longer period waves created by storms far away from the beach. Swell waves tend to have longer periods 

than wind waves. The wave period of swell lies between 10 s to 15 s. Breakwaters are generally constructed at a 

depth of about 10 m to 20 m. If the wave height is 1 m to 3m, the swell wave conditions can be within the range 

of Stokes wave as shown in Fig. 4. In the figure the empty blue circles represent the swell wave conditions and 

the red triangles represent the incident waves tested in this study. It can be seen that the incident waves tested in 

this study belong to the Stokes range. The dispersion effect of the Stokes waves is much stronger than that of the 

solitary waves. Thus, the characteristics of stem waves in this study should be much different from those of the 

solitary waves. In Fig. 4, the x-axis represents the relative water depth (ratio of water depth to deep water wave 

length, i.e., the measure of wave dispersion). On the other hand, the y-axis represents the wave steepness (ratio of 

wave height to deep water wave length, i.e., the measure of wave nonlinearity).  

 

 
Figure 4. The present experiment and wave conditions of the real-world cases (after Le Méhauté, 1976). The 

solid red triangles represent the incident waves tested in this study and empty blue circles represent the swell 

wave conditions. The x-axis represents the relative water depth (ratio of water depth to deep water wave length, 

i.e., the measure of wave dispersion). The y-axis represents the wave steepness (ratio of wave height to deep 

water wave length, i.e., the measure of wave nonlinearity). 

 

(4) How is K calculated from Eq. (8) for the measurements and clarify how it is used to find the results in Figs. 

11 and 12 a bit better. 



 

<Response from authors> 

In the experiment, the nonlinear parameter, 𝐾, is determined by Eq. (8) using the wave characteristics, k, 𝐶, and 

𝐶𝑔 based on the linear wave theory using the measured ℎ, 𝑇, 𝑎0 and 𝜃0. This statement is not included in the 

revision because it is well established in the coastal community. 

 

(5) What is H(x,y,t) as follows from the simulations in terms of the amplitude A calculated from (1)? 

<Response from authors> 

The authors provide the relationship between 𝐹, 𝐴, and 𝐻 and revised the manuscript as: 

 

Lines 17 - 26 of page 5 

The analytical solution is given in a polar coordinate as shown in Fig. 1 as 

 

 Φ(𝑟, 𝜃∗, 𝑧, 𝑡) = −
𝑖𝑔𝑎0

ω

cosh{𝑘(𝑧 + ℎ)}

cosh 𝑘ℎ
𝐹(𝑟, 𝜃∗)𝑒𝑖𝜔𝑡, (9) 

 

where Φ(𝑟, 𝜃∗, 𝑧, 𝑡) is the velocity potential, and 𝐹(𝑟, 𝜃∗) is a diffraction factor (i.e., 𝐴/𝑎0) given as: 

 

 𝐹(𝑟, 𝜃∗) =
2

𝜈
[𝐽0(𝑘𝑟) + 2 ∑ 𝑒𝑖𝑛𝜋/2𝜈𝐽𝑛/𝜈(𝑘𝑟) cos

𝑛𝛼∗

𝜈
cos

𝑛𝜃∗

𝜈

∞

𝑛=1

], (10) 

 

where 𝜃∗ = 𝜃 − 2𝜃0, 𝛼∗ = π − 𝜃0, ν = 2(π − 𝜃0)/π, and 𝜃0 is the angle of incidence. 𝐽0(𝑘𝑟) is the Bessel 

function of the first kind of order 0. The absolute value of the diffraction factor |𝐹(𝑟, 𝜃∗)| represents the 

normalized wave amplitude |𝐴|/𝑎0, or the normalized wave height 𝐻/𝐻0 where 𝐻0 (= 2𝑎0)  is the wave 

height of the incident wave. 

 

(6) I still don't quite understand the zero crossing method. Please clarify what "next crossing" signifies? 

 

<Response from authors> 

 

The zero-upcrossing method is widely accepted method to get wave characteristics such as the wave height H and 

the wave period T from the measured time history of the free surface displacement at a given point of wave gauge. 

As shown in the following figure each wave is separated from a train of waves, using the zero-upcrossing points 

denoted by a red solid circle. This statement is not included in the revision. 

 



 
 

(7) Figure 5 4: define axes and state what they indicate; add the real-world swell symbols used in the response as 

well and say in text and caption that the results seem thus relevant to the real world. 

 

<Response from authors> 

The definition and the physical meaning of axes are presented in the text and the caption of Fig. 4. The relevance 

to the real world is also included as in the response to the referee’s major comment (3).  

 

(8) What is a node line (define please)? 

 

<Response from authors> 

 

When the periodic waves are incident obliquely to the vertical wall, the normal component of incident wave is 

reflected. The superposition of incident and reflected waves foam the standing wave in the normal direction. The 

node point represents the location where the wave amplitude vanishes. When the amplitude of reflected wave is 

smaller than that of incident wave, the amplitude of node point is not zero but smaller than the neighbor points. 

The node line is a line which connects these node points. This statement is not included in the revision because 

this is widely accepted in the coastal community. However, the node points nearest to the vertical wall used to 

determine 𝜆6 and 𝜆15 are presented in the figures in the Appendix. 

 

 

 

 

 

 

 

 



< Minor points > 

 

Comments and Suggestions 

 

Response 

Page 

Reference 

(original) 

Page 

Referred 

(revised) 

A lot of grammatical glitches have been 

indicated in the pdf-file. 

The authors corrected as the referee 

suggested. 

  

Formula (8): How is k determined in 

experiment? Are C and Cg then calculated 

using linear wave theory to find the K's used 

in figs 9 and 10? If so, say so. h is measured 

and known, A0 measured and theta0 as well 

so that K follows. 

The details of how to determine K in 

the experiment are presented in the 

response to the referee’s major 

comment (4). 

  

Line 14 on page 4 above section 2.2: What 

are h(x,y,t) and \phi(x,y,t) in terms of A? 

That would be useful as h (and perhaps phi) 

are used later on. 

The relationship between 𝐹 , 𝐴 , and 

𝐻 are provided as the response to the 

referee’s major comment (5). 

  

Line 7 page 7: I still don't understand it: 

what is meant by "next crossing point"? 

Please clarify. 

The zero crossing method is provided 

as the response to the referee’s major 

comment (6). 

  

Lines 11-16: I don't think this addition is 

needed. 

An anonymous referee suggested to 

include it in the text. 

  

Lines 19: phrase "with a sufficiently long 

time" not understood 

The authors added some statement as 

follows. 

“The first part of data with a 

sufficiently long time is discarded in 

evaluating the wave height to avoid the 

start-up transients, and the wave height 

and period are obtained using the zero-

upcrossing method.” 

Page 7, 

line 19-20 

Page 7, 

line 26-28 

Line 31 page 7: All? I meant to choose a 

selective subset of figures for the main text 

and maybe relegate the rest to the appendix, 

provided they are useful. But the current 

setting does work although the subfigures 

with the stem waves indicated could be part 

of the main text. Either way would work. 

Thank you for your comment.   



Page 8 line 7: That is not a fair comment as it 

is much easier in the case of a solitary wave 

to find the Mach stem. 

The authors are trying to understand 

that comment. However, it is not clear 

what it really means. Please be kind to 

give more details. 

  

Formula (13): I am confused here: the 

figures in appendix indicate that lambda_s is 

determined by inspection and drawing (as 

the more flattened region), as now indicated 

in the appropriate cases, which is fine, and 

subsequently (13) is used, given x, to find 

alpha. But somewhere in captions it says 

lambda_s is determined using (13), in which 

case my question is how alpha has been 

measured from the data? Please clarify. 

The descriptions of 𝛼  and 𝜆𝑠 are 

provided as in the response to the 

referee’s major comment (2). 

  

Page 9 line 31: I am lost here: given x, is 

lambda_s measured and then alpha 

calculated or the other way around: alpha is 

measured in which case please clarify how 

alpha is measured please clarify issue? 

The authors revised the statements as 

follows to clarify as suggested by the 

referee. 

“The red lines shown in the figures 

represent the stem waves. For the stem 

width 𝜆𝑠 , the stem angle 𝛼  is first 

determined by Eq. (12) using the 

numerical simulation result with the 

using extended domain. The stem 

width 𝜆𝑠 is then calculated using Eq. 

(13) for given x.” 

Page 9 

line 31 

Page 10, 

line 5-7 

Page 11 line 29: slightly? Can you indicate 

where this conclusion (that REF/DIF 

simulation angles are slightly different than 

experimental ones) comes from as the 

figures in the appendix indicate to me that 

experiments and REF/DIF are in agreement 

and any differences are within measurement 

error? 

The authors express their sincere 

apology to the referee for confusing. 

This part should have been deleted 

from the previous manuscript. The 

authors eliminated the sentence 

including “The widths of stem waves 

in the REF/DIF model are shown to be 

slightly broader than those of the 

results from laboratory experiments. 

This may be due to the fact that the 

REF/DIF model overestimates the 

nonlinearity of the waves.” because the 

definition of stem angle and stem 

width are revised.  

  



Line 9 on page 12: provide the link between 

A and H as said/asked earlier. 

The relationship between 𝐴 and 𝐻 is 

provided as the response to the 

referee’s major comment (5). 

  

Line 16 page 12: part of K (namely finding C 

and Cg) seems to be based on linear theory? 

Is that fair? 

The small angle version of the 

parabolic approximation equation, Eq. 

(1), was derived for the Stokes waves 

using the perturbation expansions 

based on the wave slope, ϵ = 𝑘𝐴 ≪

𝑂(1). The wave quantities of k, 𝐶 and 

𝐶𝑔  are obtained from 𝑂(𝑘𝐴) . Thus, 

they are determined from linear 

dispersion relationships. The 

evaluation equation, Eq. (1), is 

obtained at 𝑂(𝑘𝐴)3. Thus, there is no 

problem. 

  



Lines 20-21, formulas (17) and (18): I am 

lost here? Please clarify the comparison. 

E.g., is gamma supposed to be gamma=tan 

theta_0/(sqrt(3)*cos theta0)? If so then say 

so. How was gamma determined? 

For the solitary waves 𝜅∗ = 1 

represents the border between two 

regions of stem development. When 

𝜅∗ < 1, Mach stem is developed along 

the wall, while 𝜅∗ > 1, no stem wave 

is present. 

For the periodic Stokes waves, as 

shown in Fig. 9, the border lies at 𝐾 =

0.47  for 𝜃0 = 10° , and 𝐾 = 0.42 

for 𝜃0 = 20°. To set the borders of 

stem region at a same point, i.e., 𝐾∗ =

1 , the scale adjustments are made 

using 𝛾 as : 

 

(𝐾∗)𝜃0=10° = (𝐾∗)𝜃0=20° = 1 

 

(
𝛾

𝐾1/4
)

𝜃0=10°
= (

𝛾

𝐾1/4
)

𝜃0=20°
= 1 

 

𝛾𝜃0=10° = (𝐾𝜃0=10°)
1/4

= (0.47)1/4  

= 0.828 

𝛾𝜃0=20° = (𝐾𝜃0=20°)
1/4

= (0.42)1/4

= 0.805 

 

This statement is not included in the 

revision. 
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Abstract. In this study, both laboratory and numerical experiments are conducted to investigate stem waves propagating 

along a vertical wall developed by the incidence of monochromatic waves. The results show the following features: For 

small amplitude waves, the wave heights along the wall show a slowly varying undulation. Normalized wave heights 

perpendicular to the wall show a standing wave pattern. The overall wave pattern in the case of small amplitude waves 

shows a typical diffraction pattern around a semi-infinite thin breakwater. As the amplitude of incident waves increases both 15 

the undulation intensity and the asymptotic normalized wave height decrease along the wall. For larger amplitude waves 

with smaller angle of incidence, the measured data show clearly stem waves. Numerical simulation results are in good 

agreement with the results of laboratory experiments. The results of present experiments support favorably the existence and 

the properties of stem waves found by other researchers using numerical simulations. The characteristics of the stem waves 

generated by the incidence of monochromatic Stokes waves are compared with those of the Mach stem of solitary waves. 20 

1 Introduction 

Coastal structures have been increasingly constructed in deep water regions as the size of ships becomes larger. In such deep 

water regions, a vertical-type structure is preferred to save construction costs. In the case of a vertical structure, stem waves 

occur when waves propagate obliquely against the structure. Thus, there is a need for careful consideration to secure 

appropriate free board and stability of caisson blocks. 25 

Based on laboratory experiments of the reflection of a solitary wave propagating obliquely against a vertical wall, Perroud 

(1957) reported the existence of three types of waves when the angle between incident wave ray and a vertical wall is below 

45°: incident, reflected, and stem waves. On the one hand, Berger and Kohlhase (1976) conducted laboratory experiments 

and found that stem waves appeared also in the case of sinusoidal waves, and that the properties of stem waves developed by 

sinusoidal waves showed similarities to those of solitary waves. On the other hand, according to laboratory experiments by 30 

Melville (1980) with solitary waves, the width and height of stem waves were found to be wider and larger, respectively, as 
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waves propagated along the wall. However, the wave height did not exceed double the height of incident waves. Yue and 

Mei (1980) analysed stem waves at a constant water depth using parabolic approximation equations for second-order Stokes 

waves. They found that the influence of reflected waves was removed when the incident angle between the structure and the 

waves was below 20° and that only incident waves and stem waves appeared. Liu and Yoon (1986) showed that stem waves 

occurred also in an area along the line of a depth discontinuity, as in the case of a vertical wall. In addition, Yoon and Liu 5 

(1989) introduced a parabolic approximation equation based on the Boussinesq equation and analysed stem waves for the 

case of cnoidal incident waves. Yoon and Liu (1989) showed the importance of the incident wave nonlinearity. Most 

previous studies on stem waves focused on the properties of stem waves depending on the incident angle and wave 

nonlinearity of monochromatic waves.  

While the stem waves generated by the sinusoidal waves have drawn less attention in recent years, the Mach stem induced 10 

by the interaction between the line solitons in the shallow-waters has continuously attracted the attention of the researchers. 

Since the pioneering work of Miles (1977a, b) on the obliquely interacting solitary waves, the soliton interactions have been 

extensively studied. Miles (1977b) developed an analytical solution to predict the amplification of the stem wave along the 

wall as a function of the interaction parameter, 𝑘∗ = 𝜃0 √3𝐻0/ℎ⁄ , where 𝐻0, h and 𝜃0 are the wave height, the water depth 

and the incident angle of solitary wave, respectively. When 𝑘∗ = 1, the amplification of a solitary wave can reach four times 15 

of the incident wave. Soomere (2004) investigated the soliton interactions based on the KP equation (Kadomtsev and 

Petviashvili, 1970). Kodama et al. (2009) and Kodama (2010) proposed the modified interaction parameter, 𝜅∗ =

tan  𝜃0 (√3𝐻0/ℎ⁄  cos  𝜃0), and developed an exact solution for the KP equation. Li et al. (2011) conducted a precision 

laboratory experiment to capture the detailed features of Mach reflection using the LIF (laser-induced fluorescent) technique. 

The laboratory data of Li et al. (2011) support strongly the theory of Miles (1977b) except the cases where 𝜅∗ value lies in 20 

the neighbourhood of the fourfold amplification. Funakoshi (1980), Tanaka (1993), Li et al. (2011), and Gidel et al. (2017) 

performed numerical experiments to verify the Miles’ fourfold amplification. As summarized by Li et al. (2011) and Gidel et 

al. (2017) most of the models underestimated the fourfold amplification due to the limitations of the computational resources. 

The amplification ratio of 3.6 obtained by Gidel et al. (2017) is so far the maximum among the numerical results showing 

the full development stage of stem wave. 25 

Even though the existence and the properties of stem waves for sinusoidal waves are well known theoretically via numerical 

simulations (e.g., Yue and Mei, 1980; Yoon and Liu, 1989), they are not yet fully supported by physical experiments. Berger 

and Kohlhase (1976) conducted hydraulic experiments to show the existence of stem waves for the cases of sinusoidal waves. 

Their experimental data, however, failed to produce clear stem waves, possibly due to partial reflection from the beach, 

diffraction from the ends of vertical wall, or insufficient space in the wave basin. Lee et al. (2003), Lee and Yoon (2006) and 30 

Lee and Kim (2007) performed laboratory experiments to investigate stem waves for sinusoidal waves, and compared the 

measured waves with the numerical results obtained using a nonlinear parabolic approximation equation model. Their 

hydraulic experiments demonstrated stem waves for some cases with a relatively large incident wave. However, the stem 
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waves were not clearly developed because of both the narrowness of the wave basin and the reflected waves from the beach. 

Only four cases of incident wave conditions were tested in their experiment. Thus, the experimental data were not sufficient 

to investigate the properties of stem waves. Moreover, the numerical results for the cases of large angle of incidence were 

not highly accurate because of the small-angle parabolic model employed for their numerical simulations. Thus, there is still 

need to perform a precisely controlled experiment to investigate the existence and the properties of stem waves.  5 

 

In this study, precisely-controlled laboratory experiments are conducted to investigate the characteristics of stem waves 

developed by the incidence of monochromatic waves. The measured data are compared with numerical simulations and 

analytical solutions. In the following section, the numerical simulation method and the analytical solution employed in this 

study are summarized. In section 3, the experimental setup and procedure are briefly presented. In section 4, the measured 10 

wave heights are compared with numerically simulated results and analytical solutions. In section 5, the characteristics of the 

stem waves generated by the incidence of monochromatic Stokes waves are compared with those of the Mach stem of 

solitary waves. In the final section, the major findings from this study are summarized. 

2 Numerical simulation and analytical solution 

In this study, the stem waves that have developed along a vertical wall over a constant water depth are investigated for the 15 

cases of monochromatic waves. Fig. 1 shows the definition sketch of the wave field around a vertical wedge. The 

monochromatic waves are symmetrically incident towards the tip of the wedge. The x-axis of the coordinate system is 

aligned with a side wall of the wedge. The angle of incidence 𝜃0 is defined as the angle between the x-axis and the incident 

wave ray. The computational domain lies in the region of  0 ≤ 𝑥  and  𝑦 ≤ 0.  

2.1 Numerical simulation method 20 

To compare with our experiments, the latest version of REF/DIF, a wide-angle nonlinear parabolic approximation equation 

model developed by Kirby et al (2002), is employed to simulate stem waves. The REF/DIF model can deal with the 

refraction-diffraction of Stokes waves of third order nonlinearity over a slowly varying depth and current. Due to the use of 

parabolic formulation the reflection in the main direction of propagation is forbidden, but not in the transverse direction. In 

this study, the water depth is uniform, and no ambient current is present. With no current and energy dissipation on a 25 

constant water depth and by selecting a (1, 1) Padé approximant in the model, the governing equation of the REF/DIF model 

is simplified as 

 

 2𝑖𝑘
𝜕𝐴

𝜕𝑥
+

𝜕2𝐴

𝜕𝑦2
+

𝑖

2𝑘

𝜕3𝐴

𝜕𝑥𝜕𝑦2
−

𝜔𝑘3

𝐶𝑔

𝐷|𝐴|2𝐴 = 0, (1) 
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where h is the water depth, 𝑖 = √−1, 𝐶𝑔 is the wave group velocity, A is the complex wave amplitude, 𝑘 and 𝜔 are the wave 

number and the angular frequency, respectively, and satisfy the following linear dispersion relationship: 

 

 𝜔2 = 𝑔𝑘 tanh 𝑘ℎ, (2) 

 

where 𝑔 is the gravitational acceleration, and D is given as 5 

 

 𝐷 =
cosh 4𝑘ℎ + 8 − 2 tanh2 𝑘ℎ

8 sinh4 𝑘ℎ
. (3) 

 

The third term of Eq. (1) is the correction term obtained by selecting (1, 1) Padé approximant for the wide angle parabolic 

approximation. According to Fig. 2 of Kirby (1986) the accuracy of the waves propagating obliquely to the main direction of 

propagation, i.e., x-direction, can be maintained up to ±45°. In this study the range of the incidence angles of both incident 10 

and reflected waves lies from ±10° to ±40°. Thus, the considerable accuracy of the numerical solution is expected. 

The conventional parabolic approximation equation, i.e., the nonlinear Schrödinger equation of Yue and Mei (1980) is 

obtained if this term is neglected. The last term in Eq. (1) represents the nonlinear effect of waves. Fig. 2 shows the 

coordinate system for the present numerical simulation in comparison with that of Yue and Mei (1980). In the present 

simulation the incident waves are prescribed obliquely along the y-axis as 15 

 

 𝐴 =  𝑎0𝑒𝑖𝑘𝑛 𝑦 sin 𝜃0 , (4) 

 

where 𝑎0 is the amplitude of the incident wave, and 𝑘𝑛 is the nonlinear wave number given as 

 

 𝑘𝑛 = 𝑘 (1 −
𝐶

2𝐶𝑔

𝐷(𝑘|𝐴|)2), (5) 

 20 

where 𝐶(= ω/𝑘) is the phase speed of wave. No-flux boundary condition is prescribed along the vertical wall (y = 0) given 

as 

 

 
∂𝐴

∂𝑦
= 0. (6) 
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If the side boundary opposite to the vertical wall is located far from the wall, no flux boundary condition, Eq. (6), can also be 

used. However, to save the computational resources the obliquely-incident plane wave condition is prescribed along the side 

boundary at 𝑦 = −𝑦max as 

 

 𝐴 = 𝑎0𝑒𝑖(𝑘𝑛 𝑥 cos 𝜃0 − 𝑘𝑛 𝑦max sin 𝜃0). (7) 

 5 

Along the down-wave side no boundary condition is necessary, because Eq. (1) is a parabolic type differential equation. The 

grid size, ∆𝑥 and ∆𝑦, is L/80 where L is the wave length of an incident wave. The size of computational domain is 50L in the 

x-direction, and 400L in the y-direction. 

For the later use the nonlinear parameter, 𝐾, proposed by Yue and Mei (1980) is given as:  

 10 

 𝐾 =  (
𝑘𝑎0

tan 𝜃0

)
2 𝐶𝐷

𝐶𝑔

. (8) 

 

K is the single parameter representing both the nonlinearity of incident wave and the angle of incidence on the formation of 

stem waves along the vertical wall. This nonlinear parameter was obtained by Yue and Mei (1980) from the dimensionless 

form of the small angle version of Eq. (1). The details of the derivation of K can be found in Yue and Mei (1980). 

2.2 Analytical solution 15 

Chen (1987) developed an analytical solution for the Helmholtz equation in polar coordinates to solve the combined 

reflection and diffraction of monochromatic waves due to a vertical wedge. The analytical solution is given in a polar 

coordinate as shown in Fig. 1 as 

 

 Φ(𝑟, 𝜃∗, 𝑧, 𝑡) = −
𝑖𝑔𝑎0

ω

cosh{𝑘(𝑧 + ℎ)}

cosh 𝑘ℎ
𝐹(𝑟, 𝜃∗)𝑒𝑖𝜔𝑡 , (9) 

 20 

where Φ(𝑟, 𝜃∗, 𝑧, 𝑡) is the velocity potential, and 𝐹(𝑟, 𝜃∗) is a diffraction factor (i.e., 𝐴/𝑎0) given as: 

 

 𝐹(𝑟, 𝜃∗) =
2

𝜈
[𝐽0(𝑘𝑟) + 2 ∑ 𝑒𝑖𝑛𝜋/2𝜈𝐽𝑛/𝜈(𝑘𝑟) cos

𝑛𝛼∗

𝜈
cos

𝑛𝜃∗

𝜈

∞

𝑛=1

], (10) 

 

where 𝜃∗ = 𝜃 − 2𝜃0, 𝛼∗ = π − 𝜃0, ν = 2(π − 𝜃0)/π, and 𝜃0 is the angle of incidence. 𝐽0(𝑘𝑟) is the Bessel function of the 

first kind of order 0. The absolute value of the diffraction factor |𝐹(𝑟, 𝜃∗)| represents the normalized wave amplitude |𝐴|/𝑎0, 25 

or the normalized wave height 𝐻/𝐻0 where 𝐻0 (= 2𝑎0)  is the wave height of the incident wave. The analytical solution of 
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Chen (1987) is linear. Thus, this analytical solution does not allow the formation of stem waves. The details of the derivation 

of the analytical solution can be found in Chen (1987). 

3 Hydraulic experiments 

Hydraulic experiments are carried out in the multidirectional irregular wave generation basin of the Korea Institute of 

Construction Technology (see Photo 1). The basin used in the laboratory experiments is 42 m long, 36 m wide and 1.05 m 5 

high. A snake-type wave generator consisting of 60 wave boards, each with dimensions of 0.5 m in width and 1.1 m in 

height and driven by an electronic servo piston, is installed along the 36 m long bottom wall of the wave basin. Free surface 

displacements are measured using 0.6 m long capacitance-type wave gauges with a measuring range of ±0.3 m.  

Fig. 3 shows the configuration of the experimental setup and model installation. A 30 m long vertical wall is installed along 

the left lateral side of the basin in four different orientations. A dissipating gravel beach with a 1/20 slope is arranged on the 10 

opposite side of the wave generator to reduce the reflection of waves inside the basin. Another dissipating beach and wave 

absorber are also set along the lateral sides and at the back of the wave generator. Along the lateral side opposite to the 

vertical wall a 10 m long wave guide is installed to avoid diffraction from the side wall. Note that 𝜃0 is the angle between the 

vertical wall and the incident waves. The origin of the spatial coordinate system of the laboratory experiments (i.e., x0, y0) is 

set at the tip of the vertical wall which is located 3 m and 5 m away from the lateral side and the wave generator, respectively, 15 

as shown in Fig. 3. The width and height of the vertical wall were both 0.6 m. The experiments are carried out at a constant 

water depth of h = 0.25 m. The free board from a still water level to the top of the vertical wall is 0.35 m in order to prevent 

overtopping of waves. 

The incident wave conditions are summarized in Table 1. The title of each test case is composed of three alphabet characters 

and a numeric digit. The first alphabet M stands for ‘monochromatic’ waves. The second alphabet S or L represents ‘shorter’ 20 

or ‘longer’ waves in terms of period, respectively. The third alphabet S, M or L represents ‘small’, ‘medium’, or ‘large’ 

waves in terms of wave height, respectively. Finally, the numeric digit represents the size of the angle of incidence. 

The wave periods of T = 0.7 s and 1.1 s are tested. The wave heights are H0 = 0.009 m, 0.027 m, and 0.036 m for 0.7 s waves, 

and H0 = 0.018 m, 0.054 m, and 0.072 m for 1.1 s waves so that no wave breaking occurs during the experiments. The length 

of the vertical wall in the laboratory experiments is 40L for the case of T = 0.7 s and 20L for the case of T = 1.1 s, where L 25 

represents the wavelength of monochromatic waves corresponding to the given period T. The incident angles of 𝜃0=10°, 20°, 

30°, and 40° are obtained by adjusting the orientation of the vertical wall. Thus, the incident waves propagate normal to the 

line of the wave generator. The nonlinearity of the incident waves are presented in two dimensionless parameters, wave 

steepness 𝑘𝐻0 and the nonlinear parameter 𝐾 given by Eq. (8).  

In the real world, we can assume the situation where the swell is incident on a breakwater. Swell waves are the regular 30 

longer period waves created by storms far away from the beach. Swell waves tend to have longer periods than wind waves. 

The wave period of swell lies between 10 s to 15 s. Breakwaters are generally constructed at a depth of about 10 m to 20 m. 
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If the wave height is 1 m to 3m, the swell wave conditions can be within the range of Stokes wave as shown in Fig. 4. In the 

figure the empty blue circles represent the swell wave conditions and the red triangles represent the incident waves tested in 

this study. It can be seen that the incident waves tested in this study belong to the Stokes range. The dispersion effect of the 

Stokes waves is much stronger than that of the solitary waves. Thus, the characteristics of stem waves in this study should be 

much different from those of the solitary waves. In Fig. 4, the x-axis represents the relative water depth (ratio of water depth 5 

to deep water wave length, i.e., the measure of wave dispersion). On the other hand, the y-axis represents the wave steepness 

(ratio of wave height to deep water wave length, i.e., the measure of wave nonlinearity).  

In the experiments, wave heights are measured along both the vertical wall (x-direction) and normal to the vertical wall (y-

direction). Note that wave heights in the x-direction are measured 0.05 m away from the front side of the wall, while wave 

heights in the y-direction are measured along two lines of x = 6L and 15L. The intervals of the wave height measurement 10 

positions are ∆𝑥 = 0.2 m and 0.4 m for 𝑇 = 0.7 s and 1.1 s, respectively, along the wall, while ∆𝑦 = 0.1 m and 0.2 m 

for 𝑇 = 0.7 s and 1.1 s, respectively, normal to the wall. Table 2 gives a summary of the wave height measurement positions. 

The wave heights are extracted from the measured free surface displacements using the zero-upcrossing method. In this 

method a wave is defined when the surface elevation crosses the zero-line or the mean water level upward and continues 

until the next crossing point. This method is a widely accepted method for extracting representative statistics from raw wave 15 

data. Photo 2 shows the hexagonal or beehive wave pattern captured during the experiment in front of a vertical wall for the 

case of 𝜃0 = 30°. This is typical of the cross-sea generated by the oblique interaction of two or more traveling plane waves 

(see e.g., Le Mehauté, 1976; Mei, 1983; Nicholls, 2001). Postacchini et al. (2014) studied the dynamics of crossing wave 

trains on a plane slope in shallow waters. The stem waves can be developed at the intersection of two crest lines of the 

crossing waves. When the crossing waves propagating towards a shore, they experience shoaling and break. Postacchini et al. 20 

(2014) proposed an analytical theory based on ray convergence to identify the position and the crest length of the breaker. 

The stem waves in the present study are developed by the oblique nonlinear interaction between the incident and the 

reflected waves. Thus, the generation mechanism is similar to Postacchini et al's.  

Prior to the main experiments the performance of the wave generator is tested. For this test no vertical wall is placed in the 

wave basin. After the initiation of wave generation the time histories of free surface displacement are recorded at three 25 

incident-wave-measuring points as shown in Fig. 3. The first part of data with a sufficiently long time is discarded in 

evaluating the wave height to avoid the start-up transients, and the wave height and period are obtained using the zero-

upcrossing method. The tests show that the target waves are well generated, and also showed that the bottom friction is 

negligible within the test area of the wave basin. In particular, three wave gauges aligned in a wave propagation direction 

with a specified distance are placed at the incident-wave-measuring point located near the gravel beach with a 1/20 slope to 30 

estimate the wave reflection from the beach. The incident and reflected waves are separated using the three-point higher 

order separation technique. This higher order technique is developed for finite amplitude waves by adding the second and 

third harmonics to the linear separation scheme proposed by Suh et al. (2001). The reflection coefficient due to the gravel 

beach is less than maintained 3% for all the waves considered in the experiments. 
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4 Results and discussions 

In this study, experiments on the formation of stem waves around a vertical wall are conducted and the measured wave 

heights are compared with results calculated using both the wide-angle parabolic approximation equation numerical model, 

REF/DIF, and the analytical solution of Chen (1987). All the figures for the experimental and calculated data are presented 

in the Appendix to avoid a flourish of figures.  5 

Prior to presenting the experimental and numerical results, the definitions of the stem angle and the stem width are discussed. 

The definition of stem width is rather controversial. Yue and Mei (1980) defined the stem width as the distance from the wall 

to the edge of the uniform wave amplitude region. However, it is not an easy task to locate the edge of the flat region. Berger 

and Kohlhase (1976) defined the stem width for the periodic waves as the distance along the stem crest lines from the wall to 

the first node line of the standing wave pattern which is easier to identify from the measured data. On the other hand, 10 

Soomere (2004) obtained the analytical stem length using the KP equation for the obliquely interacting two solitary waves. 

As pointed out by Li et al. (2011) the crest lines of the stem wave, the incident and the reflected solitons measured in their 

experiment are not straight, and they do not meet at a point. In reality, the analytical solutions of the KP equation deviate 

slightly from the pattern observed in the experiment. Thus, Li et al. (2011) proposed the edge of the Mach stem as the 

intersection of the linear extensions of the stem and the incident-wave crest lines.  15 

For the periodic waves the wave pattern is more complicated because many wave components are superposed. Thus, the 

definitions of the stem boundary and the stem angle should be different from the case of solitary waves. As shown in Fig. 2(a) 

and Fig. 5, when the stem waves are fully developed, the stem boundary is nearly parallel to the first node line. Thus, as 

suggested by Berger and Kohlhase (1976), the experimental stem angle α is determined in this study as the angle of node line, 

𝛼𝑛. The node line is roughly determined using the node points from the wave height data measured along two lines of x = 6L 20 

and 15L. When the distances between the first node points and the wall are 𝜆6 and 𝜆15 for two sections of x = 6L and 15L, 

respectively (see Figs. A5 and A6), then the angle of the node line, 𝛼𝑛, can be determined as 

 

 𝛼 ≈ 𝛼𝑛 = tan−1 (
𝜆15 − 𝜆6

9𝐿
). (11) 

 

This 𝛼𝑛  decreases as the waves propagate along the wall. It reaches an asymptotic value after the waves propagate 25 

approximately 30 wave lengths. Thus, the experimental  𝛼𝑛 determined by Eq. (11) is slightly overestimated for 𝑥 ≤ 30𝐿.  

In this study the stem angle, α, is defined as the asymptotic angle of node line as shown in Fig. 5. To estimate the asymptotic 

𝛼𝑛 the numerical calculation is conducted using the domain extended up to 50L in the x-direction, and the instantaneous free 

surface displacements are calculated and plotted as shown in Fig. 5. Using two distances between the node points and the 

wall,  𝜆30 and 𝜆50 for two sections of x = 30L and 50L, respectively, the stem angle α is determined as 30 
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 𝛼 = 𝛼𝑛 = tan−1 (
𝜆50 − 𝜆30

20𝐿
). (12) 

 

The stem width 𝜆𝑠 can be determined using the stem angle 𝛼 as 

 

 𝜆𝑠 = 𝑥 tan 𝛼. (13) 

4.1 Shorter waves (T = 0.7 s) 

Fig. A1 shows the comparisons between the measured, numerically simulated, and analytically calculated wave heights, 5 

H/H0, along the vertical wall for the cases of H0 = 0.009 m with T = 0.7 s (i.e., MSS-series). The amplitude of the incident 

waves is small as the title of the test cases indicates. The solid circles represent the results of the laboratory experiments. The 

solid and dashed lines represent the numerical (using REF/DIF) and analytical solution results, respectively. Various incident 

angles of 𝜃0=10°, 20°, 30°, and 40° are presented. For the case of small angle of incidence (MSS1, 𝜃0=10°) the measured 

wave height along the vertical wall increases monotonically with the distance from the tip of the vertical wall. As the angle 10 

of incidence increases, the wave height shows a slowly varying undulation with the average value of 𝐻/𝐻0 = 2.0. The 

maximum value of undulation is approximately 𝐻/𝐻0 ≈ 2.3, and the location of maximum wave height decreases with 

increasing angle of incidence. In particular, the overall pattern of wave height distribution does not support the generation of 

stem waves, which are characterized by uniform wave heights smaller than those obtained from linear diffraction theory 

(Yue and Mei, 1980; Yoon and Liu, 1989). The wave heights calculated using the REF/DIF numerical model (Kirby and 15 

Dalrymple, 1994) and the analytical solution of Chen (1987) agree well with the measured wave heights. This supports the 

idea that the effects of nonlinearity of incident waves are too weak to develop stem waves. In the case of 𝜃0 = 10°, the 

maximum normalized wave heights does not reach 𝐻/𝐻0 ≈ 2.3 because the size of the experimental area is insufficient. If 

the vertical wall is sufficiently long, the same result could apparently be obtained for 𝜃0 = 10°. 

Figs. A2 and A3 show the comparisons of wave heights H/H0 along a line (x = 6L, 15L) perpendicular to the vertical wall. 20 

The distribution of wave height shows the typical pattern of standing waves formed by superposition of the reflected waves 

on the incident waves. Berger and Kohlhase (1976) called these standing waves stem waves as long as they propagated 

parallel to the wall. If stem waves, however, are defined as waves with a uniform wave height in the direction normal to the 

wall, then the wave height distributions for these small amplitude waves in MSS-series show no sign of stem waves. The 

wave amplitude for this MSS-series is too small to generate stem waves along the wall.  25 

Fig. A4 shows normalized wave heights along the vertical wall for the cases of MSM-series (i.e., H0 = 0.027 m, T = 0.7 s) 

with various angles of incidence. The amplitude of the incident waves is three times larger than the MSS-series waves. Figs. 

A5 and A6 show normalized wave heights perpendicular to the vertical wall at positions x = 6L and 15L, respectively. The 

results shown in Fig. A4 indicate that, when the angle of incidence is small (𝜃0 = 10°), the normalized wave height 
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approaches to a uniform value of 𝐻/𝐻0 ≈ 1.75 as waves propagated along the vertical wall. At larger incident angles, the 

maximum normalized wave heights reach up to 𝐻/𝐻0 ≈ 2.25, and showed a slowly varying undulation. 

In the results shown in Figs. A5 and A6 the stem waves of uniform wave height are found under the conditions of 𝜃0 = 10°, 

x = 6L and 15L, albeit the stem widths are small. However, in the cases of other incident angles, stem waves do not appear.  

The red lines shown in the figures represent the stem waves. For the stem width 𝜆𝑠, the stem angle 𝛼 is first determined by 5 

Eq. (12) using the numerical simulation result with the using extended domain. The stem width 𝜆𝑠 is then calculated using 

Eq. (13) for given x. 

The results from laboratory experiments are in good agreement with those of the results of REF/DIF model. However, the 

analytical solutions of Chen (1987) do not agree well with the measured data, probably because of nonlinear interactions 

between incident and reflected waves. The discrepancy between the analytical solution of Chen (1987) and the measured 10 

data decreases as the angle of incidence increases. This can be attributed to the decrease in the intensity of nonlinear 

interactions between incident and reflected waves as the angle of incidence increases. 

Figs. A7, A8, and A9 show the comparisons of the measured, numerically simulated, and analytically calculated results for 

the cases of MSL-series (H0 = 0.036 m, T = 0.7 s). The amplitude of the incident waves is the largest among the shorter wave 

test cases. For the case of small angle of incidence, 𝜃0 = 10°, the normalized wave height increases monotonically to reach a 15 

constant value of 𝐻/𝐻0 ≈ 1.5, with a strong  indication of stem wave development. In the cases of larger angle of incidence 

the wave heights show a slowly varying undulation. As shown in Figs. A8 and A9, which represent normalized wave heights 

in the direction normal to the vertical wall, stem waves appear clearly for 𝜃0 = 10° along x = 6L and 15L. It can also be seen 

that the width of stem waves increases in proportion to the distance from the tip of vertical wall. In the cases of larger 

incidence angles, the normalized wave heights tend to show a distribution pattern similar to that of standing waves normal to 20 

the wall.  

4.2 Longer waves (T = 1.1 s) 

Figs. A10, A11 and A12 show comparisons between the measured, numerically simulated, and analytically calculated wave 

heights H/H0 along the vertical wall (y=0) and normal to the wall (x = 6L and 15L) for the cases of H0 = 0.018 m with T = 1.1 

s (MLS-series). The solid circles represent the results of laboratory experiments. The solid and dashed lines represent the 25 

numerical and analytical solutions, respectively. The results from laboratory experiments are in good agreement with those 

from the analytical solution and numerical model. The amplitude of the MLS incident waves is chosen to provide the same 

steepness, 𝑘𝐻0 = 0.076, as the MSS waves. Hence, the wave patterns observed in the MSS-series (Fig. A1) are similar to 

the results of the MLS-series. 

Fig. A13 shows normalized wave heights along the vertical wall for the cases of MLM-series (H0 = 0.054 m, T = 1.1 s). The 30 

incident wave amplitude is twice that of the cases of MSM-series, but the MLM-series have the same wave steepness kH0 as 

MSM-series. For 𝜃0 = 10°, the maximum value of the normalized wave height reached the uniform value of 𝐻/𝐻0 ≈ 1.65, 

which shows an indication of the development of stem waves. Figs. A14 and A15 show normalized wave heights normal to 
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the vertical wall at positions along x = 6L and 15L for various incident angles. As shown in Figs. A14 and A15, stem waves 

appear for the cases of 𝜃0 = 10°. The stem widths increase proportionally with the distance from the tip of the vertical wall. 

The width of the stem waves is found to decrease as the incident angle increases. The linear analytical solutions for small 

incident angles show large deviations from the measured results, which is consistent with previous results for the cases of 

MSM-series. On the other hand, the simulation results using the REF/DIF model are generally in good agreement with the 5 

results from laboratory experiments. 

Figs. A16, A17, and A18 show comparisons of the measured, numerically simulated, and analytically calculated results of 

MLL-series (H0 = 0.072 m, T = 1.1 s). In the results from the laboratory experiment, stem waves appear clearly at positions 

along x = 6L and 15L for 𝜃0 = 10° and 20°. Such clearly identifiable stem waves for periodic waves in the physical 

experiments are observed for the first time in this study. Berger and Kohlhase (1976) also conducted laboratory experiments 10 

to produce stem waves with a vertical wall. The experiments of Berger and Kohlhase (1976) were conducted in a constant 

water depth of ℎ = 0.25 m for the wave length of L = 1.0 m with various incoming wave heights of 𝐻0 = 0.023 ~ 0.053 m, 

and incidence angles of 𝜃0 = 10°, 15°, 20°, and 25°. The experimental wave conditions of Berger and Kohlhase (1976) are 

similar to those of this study. The length of vertical wall (less than 9.8L) used in the experiments of Berger and Kohlhase 

(1976), however, is much shorter than that of this study (40L for the case of T = 0.7 s and 20L for the case of T = 1.1 s). 15 

Moreover, both ends of the vertical wall were open in the experiments of Berger and Kohlhase (1976), while a wave guide is 

installed from the wave generator to the tip of vertical wall in the present experiments, and the other end of the vertical wall 

is extended to the midst of 1/20 gravel beach. As a result, the wave heights along the wall measured by Berger and Kohlhase 

(1976) were contaminated by the parasitic waves diffracted by both ends of the wall. Thus, the stem waves developed along 

the wall were not clear in the results of Berger and Kohlhase (1976), while the stem waves observed in the present 20 

experiments are clearly noticeable.  

Figs. 6(a) and 6(b) show the comparison of the three-dimensional plots of normalized wave height for MLS1 and MLL1 

cases, respectively, based on the numerical results of REF/DIF. For the nonlinear case, the overall amplitudes are much 

smaller and the stem waves are developed along the wall as shown in Fig. 6(b). The stem wave height is nearly constant and 

the width of the stem waves tended to increase along the wall. Fig. 7(a) and Fig. 7(b) present the comparison of the three-25 

dimensional plots of normalized free surface displacements, ζ/𝑎0 = Re((𝐴/𝑎0 )𝑒𝑖𝑘𝑥),  for MLS1 and MLL1 cases, 

respectively. From Fig. 7(b) it can be seen that the stem waves propagate along the wall. Fig. 8 shows the contour plots of 

the instantaneous normalized free surface for MLS1 and MLL1 cases. The incident waves are reflected from the wall for the 

linear case. However, for the nonlinear cases, they seem to be both refracted and partially reflected at the edge of stem region 

as depicted also in Fig. 2. The rigorous interpretation of these refraction and partial reflection is that the resonant interaction 30 

between the incident and reflected waves generates the stem waves propagating along the wall, and also shift the phase of 

the reflected waves outward from the stem region. 

In conclusion, the results of the laboratory experiments are in good agreement with those of the numerical simulations. 

However, the analytical solution cannot reproduce the stem waves. In addition, given the same incident angle condition, the 
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stem waves in the cases of MLL-series show the largest stem width. Moreover, the widths of the stem waves tend to increase 

as the nonlinear property of the incident waves increases. This further demonstrates the effect of nonlinearity of incident 

waves on the development of stem waves as suggested by Yue and Mei (1980) and Yoon and Liu (1989). 

 

4.3 Effects of nonlinearity 5 

Yue and Mei (1980) proposed a single parameter, K given by Eq. (8), controlling the properties of stem waves developed 

along a vertical wedge based on the nonlinear Schrödinger equation. The K parameter represents both the nonlinearity of 

incident waves and the wedge slope. Yue and Mei (1980) proposed also a theoretical formula to estimate the amplitude 

squared of stem waves based on a simple shock model as 

 10 

 |𝐴∞/𝑎0|2 =
1

2𝐾
[2𝐾 + 1 + √8𝐾 + 1 ], (14) 

 

where 𝐴∞ is the amplitude of stem waves far from the tip of wedge along the vertical wall, 𝑎0 is the amplitude of incident 

waves. Thus, |𝐴∞/𝑎0| represents the amplification ratio of the stem waves. In Fig. 9 the normalized wave height, 𝐻∞/𝐻0, 

instead of 𝐴∞/𝑎0, along the vertical wall is calculated using Eq. (1), and is compared with both the measured value and the 

theoretical one given by Eq. (14). A black solid line denotes the theoretical prediction by Yue and Mei (1980), red and blue 15 

solid lines represent the present numerical values for 𝜃0 = 10° and 20°, respectively. The amplification curves obtained 

from the numerical calculations for 𝐾 ≤ 0.45 take a long distance to reach the asymptotic value of 2 as shown in Fig. 10. 

Thus, this asymptotic value cannot be realized in the laboratory due to the limitation of experimental facility. However, for 

𝐾 > 0.45 the stem waves are generated and the amplification ratio increases monotonically to reach the asymptotic value in 

a relatively short distance. The theoretical prediction of Yue and Mei (1980) overestimates slightly the stem heights in 20 

comparison with the measured values. The results from the present numerical simulation show good agreement with the 

measured values. Moreover, the present numerical results show a dependence of stem heights on the angle of incidence. This 

implies that K is not a unique single parameter to control the property of stem waves. It is interesting to note that the 

maximum amplification of the stem wave is two times of the incident waves for Stokes waves, while that of solitary waves is 

fourfold. This indicates that the resonant interaction between the incident and the reflected waves is weaker for the case of 25 

the Stokes waves.  

It is well-known that the stem waves are generated by the nonlinear interactions between the incident and the reflected waves. 

When the angle between the incident and the reflected waves is small and the amplitude of two waves is small-but-finite, 

two waves attract each other and form a new wave with a single crest so-called the stem wave. The amplitude of the stem 

wave is larger than the incident wave, and that of reflected wave is smaller. Three waves meet at a point due to both the 30 

continuous growth of the crest length of stem wave and the phase-shift of reflected wave. All the mechanisms observed in 
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the formation of a Mach stem wave for the solitary waves apply also for the monochromatic Stokes waves, but the intensity 

of nonlinear interaction is weaker than that of solitary waves.  

Yue and Mei (1980) proposed the slope ratio 𝛽 of the edge line, i.e., stem boundary, of the stem region denoted by a black 

dashed line in Fig. 2(b) as a function of K as: 

 5 

 𝛽 =
1

4
[3 + √8𝐾 + 1]. (15) 

 

This slope ratio 𝛽 of Yue and Mei (1980) can be converted to the angle of stem wedge 𝛼 as: 

 

 𝛼 = tan−1(𝛽𝜖) − 𝜃0, (16) 

 

where 𝛽𝜖 is the slope of the stem boundary as shown in Fig. 2(b). Fig. 11 shows the comparison of the 𝛼-values evaluated 10 

using Eq. (16) of Yue and Mei (1980) and those determined from the numerical simulation using Eq. (12), along with the 

measured data determined using Eq. (11). The theoretical prediction of Yue and Mei (1980) overestimates generally the stem 

angle. In particular, the numerical simulations and experiments show no stem wave for the range of small K less than 0.46, 

while the prediction of Yue and Mei (1980) still gives a nonzero stem angle. The stem angles measured in the present 

experiment are slightly larger than those of numerical simulation, because the experimental values are obtained in the 15 

development stage. 

 

5 Comparison with solitary waves 

The characteristics of stem waves developed by monochromatic Stokes waves investigated in this study are compared with 

those of the solitary waves.  20 

For the comparison purposes the amplification ratio, 𝐻∞/𝐻0, predicted by Miles (1977) for solitary waves is calculated using 

the interaction parameter, 𝜅∗ = tan  𝜃0 (√3𝐻0/ℎ⁄  cos  𝜃0), modified by Kodama et al. (2009) as 

 

 
𝐻∞

𝐻0

= {

4

1 + √1 − 𝜅∗
−2

 ,          for   𝜅∗ ≥ 1,

 
(1 + 𝜅∗)2 ,                     for   𝜅∗ < 1.

 (17) 

 

The interaction parameter 𝜅∗  is inversely proportional to √𝐻0/ℎ, while the parameter K is proportional to (𝑘𝐻0)2 . To 25 

compare properly the nonlinear effects on the generation of stem waves a new parameter 𝐾∗  for Stokes waves is proposed as 
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 𝐾∗ =  𝛾𝐾−1/4 ~ 1/√𝑘𝐻0, (18) 

 

where 𝛾 is an arbitrary constant to adjust the scale of 𝐾∗. By taking 𝛾 = 0.828 for 𝜃0 = 10°, and 𝛾 = 0.805 for 𝜃0 = 20° the 

critical condition that divides the regular and Mach reflections locates at 𝐾∗ = 1.0 for Stokes waves. Fig. 12 shows the 

comparison between the amplification ratios for the present Stokes waves and the solitary waves. A black solid line denotes 

the amplification ratio calculated using Eq. (17) for solitary waves, while red and blue solid lines represents the amplification 5 

ratios obtained from numerical computations for the Stokes waves. The symbols denote the measured amplification ratios. 

As shown in the figure the amplification ratios for the Stokes waves are much smaller than those of solitary waves. And the 

maximum amplification ratio for the Stokes waves is 2, while that of solitary waves is 4. This indicates that the intensity of 

the resonant interaction between the incident and the reflected waves is much weaker than the case of the solitary waves due 

to strong frequency dispersion. 10 

6 Conclusions 

In this study, precisely controlled experiments are conducted to investigate the existence and the properties of stem waves 

developed along a vertical wedge for the cases of monochromatic Stokes waves. Numerical and analytical solutions are also 

obtained and compared with the measured data. The results obtained from this study are summarized as follows. 

1. For small amplitude waves, the wave height along the wall shows slowly varying undulations with the average value of 15 

𝐻/𝐻0=2.0. The maximum value of an undulation is approximately 𝐻/𝐻0 ≈2.3, and the distance from the tip to the location 

of maximum wave height decreases with increasing angle of incidence. Normalized wave heights perpendicular to the wall 

show a standing wave pattern. In particular, the wave height distributions for these small amplitude waves show no sign of 

stem wave. Both numerical and linear analytical solutions agree reasonably well with measured wave heights. 

2. As the amplitude of incident waves increases, the undulation intensity decrease along the wall. For larger amplitude waves 20 

with smaller angle of incidence, i.e., larger K values, the measured data show clear stem waves along the wall. Numerical 

simulation results are in good agreement with the results of laboratory experiments, while the analytical solution gives no 

stem wave, because it is linear. 

3. Stem waves can be developed when the nonlinear parameter K is greater than approximately 0.46. As the nonlinear 

parameter K increases, the normalized stem height decreases and the stem width increases. 25 

4. The resonant interactions between the incident and reflected waves predicted for solitary waves are not observed for the 

periodic Stokes waves. The amplification ratios along the wall do not exceed 2 for the case of Stokes waves, while those can 

reach fourfold for the solitary waves. 

5. The existence and the properties of stem waves for sinusoidal waves found theoretically via numerical simulations are 

favorably supported by the physical experiments conducted in this study. Experimental data obtained in this study can be 30 

used as a useful tool to verify nonlinear dispersive wave numerical models. 
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Table 1 Experimental wave conditions (h = 0.25 m). 

Test 

case 

Wave 

period 

T 

(s) 

Wave 

height 

H0 

(m) 

Incident 

angle 

𝜃0 

(deg.) 

Nonlinearity 

Wave 

steepness 

kH0 

Nonlinear 

parameter K 

MSS1 0.7 0.009 10 0.076 0.088 

MSS2 20 0.021 

MSS3 30 0.008 

MSS4 40 0.004 

MSM1 0.027 10 0.229 0.793 

MSM2 20 0.186 

MSM3 30 0.074 

MSM4 40 0.035 

MSL1 0.036 10 0.305 1.411 

MSL2 20 0.331 

MSL3 30 0.132 

MSL4 40 0.062 

MLS1 1.1 0.018 10 0.076 0.123 

MLS2 20 0.029 

MLS3 30 0.011 

MLS4 40 0.005 

MLM1 0.054 10 0.228 1.108 

MLM2 20 0.260 

MLM3 30 0.103 

MLM4 40 0.049 

MLL1 0.072 10 0.304 1.969 

MLL2 20 0.462 

MLL3 30 0.184 

MLL4 40 0.087 

 

 5 
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Table 2 Measuring points in hydraulic experiments. 

Wave 

period 

(T) 

x-dir. 

(along the wall) 

y-dir. 

(normal to the wall) 

at x/L = 6 at x/L = 15 

0.7 s 
x = 0.0 m~11.4 m 

(Δx = 0.2 m) 

y = 0.1 m~3.7 m 

(Δy = 0.1 m) 

1.1 s 
x = 0.0 m~22.8 m 

(Δx = 0.4 m) 

y = 0.2 m~7.3 m 

(Δy = 0.2 m) 

 5 
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Photo 1. Experimental facility and wave gauge array. 

 5 

 

 

Photo 2. Wave pattern in front of a vertical wall (𝜽𝟎 = 𝟑𝟎°). 
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Figure 1. Definition sketch of wave field around a vertical wedge. 
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Figure 2. Coordinate system for numerical simulations: (a) present, (b) Yue & Mei (1980). 
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Figure 3. Definition sketch of the experimental setup. 

 

 

 5 

 

 

 

 

 10 

 

  



22 

 

 
Figure 4. The present experiment and wave conditions of the real-world cases (after Le Méhauté, 1976). The solid red triangles 

represent the incident waves tested in this study and empty blue circles represent the swell wave conditions. The x-axis represents 

the relative water depth (ratio of water depth to deep water wave length, i.e., the measure of wave dispersion). The y-axis 

represents the wave steepness (ratio of wave height to deep water wave length, i.e., the measure of wave nonlinearity). 5 
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Figure 5. Definition sketch for the stem angle and the stem boundary. 

 

  

Figure 6. Three-dimensional plots of normalized wave height for (a) MLS1 and (b) MLL1 cases from simulation. 5 
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Figure 7. Three-dimensional plots of normalized free surface displacements (a) MLS1 and (b) MLL1 cases from simulation. 

 

   5 

Figure 8. Contour plots of the instantaneous normalized free surface for (a) MLS1 and (b) MLL1 cases from simulation. 
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Figure 9. Comparison of calculated and measured normalized wave heights along the wall as a function of nonlinear parameter K. 

Black solid curve represents the wave height predicted by shock theory of Yue and Mei (1980), red and blue solid curves denote 

the calculated wave heights for 𝜽𝟎 = 𝟏𝟎° and 𝟐𝟎°, respectively. Symbols are measured data. 

 5 

Figure 10. Comparison of calculated normalized wave heights along the wall for various nonlinear parameter values of K (𝜽𝟎 =
𝟏𝟎°) .  
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Figure 11. Comparison of calculated and measured stem angle 𝜶 as a function of nonlinear parameter K. Dashed curves represent 

the calculated values using Yue and Mei (1980), solid curves are the calculated values using Eq. (12), symbols are measured data. 

Red and blue colors are for 𝜽𝟎 = 𝟏𝟎° and 𝟐𝟎°, respectively. 

 5 

 

Figure 12. Comparison of amplification ratios, 𝑯∞/𝑯𝟎, as a function of nonlinear parameter 𝜿∗ for solitary waves and 𝑲∗ for 

Stokes waves. Black solid curve represents the Miles’ solution for solitary waves, red and blue solid curves denote the calculated 

values for Stokes waves for 𝜽𝟎 = 𝟏𝟎° and 𝟐𝟎°, respectively. Symbols are measured data for Stokes waves. 
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Appendix 

All the figures for the experimental and calculated data are presented in this Appendix.  

 

Figure A1. Normalized wave heights along the wall for the cases of MSS1 ~ MSS4. Solid circle: measured, solid line: present 

numerical, dashed line: analytical (Chen, 1987). 5 



28 

 

 

Figure A2. Normalized wave heights normal to the wall at x = 6L for the cases of MSS1 ~ MSS4. Solid circle: measured, solid line: 

present numerical, dashed line: analytical (Chen, 1987). 
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Figure A3. Normalized wave heights normal to the wall at x = 15L for the cases of MSS1 ~ MSS4. Solid circle: measured, solid line: 

present numerical, dashed line: analytical (Chen, 1987). 
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Figure A4. Normalized wave heights along the wall for the cases of MSM1 ~ MSM4. Solid circle: measured, solid line: present 

numerical, dashed line: analytical (Chen, 1987). 
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Figure A5. Normalized wave heights normal to the wall at x = 6L for the cases of MSM1 ~ MSM4. Solid circle: measured, solid line: 

present numerical, dashed line: analytical (Chen, 1987). The red line represents the stem waves. The stem width 𝝀𝒔 is determined 

using Eq. (13). 
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Figure A6. Normalized wave heights normal to the wall at x = 15L for the cases of MSM1 ~ MSM4. Solid circle: measured, solid 

line: present numerical, dashed line: analytical (Chen, 1987). The red line represents the stem waves. The stem width 𝝀𝒔  is 

determined using Eq. (13). 

 5 
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Figure A7. Normalized wave heights along the wall for the cases of MSL1 ~ MSL4. Solid circle: measured, solid line: present 

numerical, dashed line: analytical (Chen, 1987). 
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Figure A8. Normalized wave heights normal to the wall at x = 6L for the cases of MSL1 ~ MSL4. Solid circle: measured, solid line: 

present numerical, dashed line: analytical (Chen, 1987). The red line represents the stem waves. The stem width 𝝀𝒔 is determined 

using Eq. (13). 

 5 
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Figure A9. Normalized wave heights normal to the wall at x = 15L for the cases of MSL1 ~ MSL4. Solid circle: measured, solid line: 

present numerical, dashed line: analytical (Chen, 1987). The red line represents the stem waves. The stem width 𝝀𝒔 is determined 

using Eq. (13). 

 5 
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Figure A10. Normalized wave heights along the wall for the cases of MLS1 ~ MLS4. Solid circle: measured, solid line: present 

numerical, dashed line: analytical (Chen, 1987). 
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Figure A11. Normalized wave heights normal to the wall at x = 6L for the cases of MLS1 ~ MLS4. Solid circle: measured, solid line: 

present numerical, dashed line: analytical (Chen, 1987). 
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Figure A12. Normalized wave heights normal to the wall at x = 15L for the cases of MLS1 ~ MLS4. Solid circle: measured, solid 

line: present numerical, dashed line: analytical (Chen, 1987). 
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Figure A13. Normalized wave heights along the wall for the cases of MLM1 ~ MLM4. Solid circle: measured, solid line: present 

numerical, dashed line: analytical (Chen, 1987). 
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Figure A14. Normalized wave heights normal to the wall at x = 6L for the cases of MLM1 ~ MLM4. Solid circle: measured, solid 

line: present numerical, dashed line: analytical (Chen, 1987). The red line represents the stem waves. The stem width 𝝀𝒔  is 

determined using Eq. (13). 

 5 
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Figure A15. Normalized wave heights normal to the wall at x = 15L for the cases of MLM1 ~ MLM4. Solid circle: measured, solid 

line: present numerical, dashed line: analytical (Chen, 1987). The red line represents the stem waves. The stem width 𝝀𝒔  is 

determined using Eq. (13). 

 5 
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Figure A16. Normalized wave heights along the wall for the cases of MLL1 ~ MLL4. Solid circle: measured, solid line: present 

numerical, dashed line: analytical (Chen, 1987). 
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Figure A17. Normalized wave heights normal to the wall at x = 6L for the cases of MLL1 ~ MLL4. Solid symbol: measured, solid 

line: present numerical, dashed line: analytical (Chen, 1987). The red lines represent the stem waves. The stem width 𝝀𝒔  is 

determined using Eq. (13). 
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Figure A18. Normalized wave heights normal to the wall at x = 15L for the cases of MLL1 ~ MLL4. Solid circle (measured), solid 

line (present numerical), dashed line (analytical, Chen, 1987). The red lines represent the stem waves. The stem width 𝝀𝒔  is 

determined using Eq. (13). 
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