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3

Abstract4

Two dimensional, steady state, stratified, isothermal, atmospheric flow over topography5

is governed by Long’s equation. Numerical solutions of this equation were derived and used6

by several authors. In particular these solutions were applied extensively to analyze the7

experimental observations of gravity waves. In the first part of this paper we derive an8

extension of this equation to non-isothermal flows. Then we devise a transformation that9

simplifies this equation. We show that this simplified equation admits solitonic type solutions10

in addition to regular gravity waves. These new analytical solutions provide new insights11

about the propagation and amplitude of gravity waves over topography.12
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1 Introduction14

Two dimensional steady state flow of isothermal, incompressible stratified fluid over topography15

is modeled by Long’s equation [Long 1953, Long 1954, Long 1955, Long 1959]. A generalization16

of this equation to three dimensions flows appeared in the literature (Akilas and Davis 2001).17

However in the following we restrict our discussion to two dimensions.18

Numerical solutions of long’s equation for base flow without shear over simple terrain, which19

consists of one hill, were derived and analyzed in the literature by several authors.[Drazin 1961,20

Yih 1967, Drazin and Moore 1967, Lily and Klemp 1979, Smith 1980, Peltier and Clark 1983,21

Smith 1989, Durran 1992,Smith and Kruse 2017].22

In these studies it was usual to approximate the Brunt-Väisälä frequency by a constant or a step23

function. In addition two physical parameters which control the stratification and dispersive effects24

of the atmosphere were set to zero. Under these approximations, one of the leading second order25

derivatives in Long’s equation drop out. Moreover the equation become linear (the nonlinear terms26

disappear). In this singular limit Long’s equation reduces to that of a linear harmonic oscillator27

over the computational domain. The impact of these approximations on the validity of the solution28

was analyzed in depth in the literature [Smith 1980, Peltier and Clark 1983, Smith 1989]. These29

studies demonstrated that these approximations set limits on the physical applicability of these30

solutions.31

Solutions of Long’s equation were used also as a framework for the examination and study of32

experimental data on gravity waves. [Shutts et al 1988, Shutts et al 1994, Fritts and Alexander33

2003, Jumper et al 2004, Vernin et al 2007, Richter et al 2010, Geller et al 2013]. In all of these34

studies it was assumed that the base flow is shearless. However this assumption is incorrect, in35

general, and is not justified by the experimental data. (For a comprehensive list of references see36

[Yih 1980,Baines 1995,Nappo 2012]).37

A new method to derive analytic solutions of Long’s equation was initiated by the present38

author in [Humi 2004, Humi 2007, Humi 2009, Humi 2010 ,Humi 2015]. It was demonstrated that39
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Long’s equation can be simplified for shearless base flow with mild assumptions on the nonlinear40

terms. In this framework we were able to identify the ”slow variable” in Long’s equation. This41

variable controls the emergence of nonlinear oscillations in this equation. In addition we proved42

the existence of self similar solutions and derived a formula for the attenuation of the gravity43

waves amplitude with height. These results follow from the general properties of Long’s equation44

and the nonlinear terms present in this equation.45

We considered the effect that shear in the base flow has on the generation of gravity waves46

and their amplitude in [Humi 2006]. A new form of Long’s equation in which the stream function47

is replaced by by the atmospheric density was derived in [Humi 2007]. Finally a generalization of48

Long’s equation to time dependent flows appeared in [Humi 2015].49

It obvious however that atmospheric flows over topography are not isothermal in general (see50

[Miglietta and Rotunno 2014, Richter et al 2010, Smith and Kruse,2017] and their bibliography).51

With this motivation we derive, in the first part of this paper, an extension of this equation to52

include non-isothermal flows with free convection. This extension of Long’s equation is new.53

In the second part of the paper we devise a new transformation on Long’s equation (isothermal54

or not) that yields new analytic solutions for the perturbation from the base flow (under mild55

approximations). In particular we demonstrate that there exist ”solitonic type solutions” to this56

equation in addition regular gravity waves. We derive also an expression which relates the change57

of the amplitude of the gravity waves as a function of height.58

The NOVEL part of the current paper consists of a sequence of transformations which linearize59

Long’s equation and lead to analytic form of the solution WITHOUT scarifying any of the physical60

contents of this equation. In particular we demonstrate that there exist ”solitonic type solutions”61

to this equation in addition regular gravity waves. These type of solution never appeared which62

never appeared in the literature before. The solutions presented also show how the amplitude of63

the gravity waves depend on the height. The presentations in subs-sections 2.1 and 2.3 are needed64

in order to put the new novel aspects of this paper in context and give the reader a sense of their65

importance. The rest of the paper which comprise of subsection 2.2 and sections 3, 466
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presents completely NEW results which NEVER appeared in the litrature before.67

The plan of the paper is as follows: In the first part of Sec. 2 we presents an overview of68

the derivation of the isothermal Long’s equation. In the second part we derive the corresponding69

Long’s equation for flows with free convection. In Sec. 3 we introduce a transformation which70

(essentially) linearizes the equation for the perturbation from the base flow. Sec 4 discusses the71

application of this transformation to a flow with shear. We end with some conclusions in Section72

5.73

2 Derivation of Long’s Equation74

In the first part of this section we provide a short overview of the (classical) isothermal Long’s75

equation and in the second part we generalize this equation to include free convection.76

2.1 Isothermal Long’s Equation77

In two dimensions (x, z) the flow of a steady isothermal, inviscid and incompressible stratified

fluid is modeled by the following equations:

ux + wz = 0 (2.1)

uρx + wρz = 0 (2.2)

ρ(uux + wuz) = −px (2.3)

ρ(uwx + wwz) = −pz − ρg. (2.4)

In these equations subscripts denote differentiation with respect to the subscripted variable,78

u = (u, w) is the fluid velocity, p denotes the pressure, ρ denotes the density and g is the acceler-79

ation of gravity,80

4



To non-dimensionalize (2.1)-(2.4) we introduce the following scaled variables,

x̄ =
x

L
, z̄ =

N0

U0

z, ū =
u

U0

, w̄ =
LN0

U2
0

w

ρ̄ =
ρ

ρ̄0
, p̄ =

N0

gU0ρ̄0
p, (2.5)

In these equations L represents a characteristic length, and U0 is the free stream velocity, and ρ̄0

is the averaged base density which is considered to be a constant. N2
0 represents an averaged value

of the Brunt-Väisälä frequency which is defined as

N2 = − g

ρ0

dρ0

dz
(2.6)

where ρ0(z) is the base density.81

Using these new variables (2.1)-(2.4) take the following form (the bars were dropped for brevity)

ux + wz = 0 (2.7)

uρx + wρz = 0 (2.8)

βρ(uux + wuz) = −px (2.9)

βρ(uwx + wwz) = −µ−2(pz + ρ). (2.10)

Where,

µ =
U0

N0L
. (2.11)

β =
N0U0

g
, (2.12)

In these equations µ is the long wave parameter which controls dispersive effects or equivalently82

the deviation from the hydrostatic approximation. When µ = 0 the hydrostatic approximation is83

fully satisfied [Smith 1980,Smith 1989]. The coefficient β is the ”Boussinesq parameter” [Baines84

1995,Nappo 2012], which controls stratification effects (assuming U0 6= 0)85

Equation (2.7) implies that it is possible to introduce a stream function ψ so that

u = ψz, w = −ψx . (2.13)

5



Using this definition of ψ it is possible to rewrite (2.8) as

J{ρ, ψ} = 0. (2.14)

The symbol J(f, g) is defined for any two smooth functions f, g as

J{f, g} =
∂f

∂x

∂g

∂z
− ∂f

∂z

∂g

∂x
(2.15)

It is easy to show that when J(f, g) = 0 it is possible to express each of these functions in terms86

of the other [Yih 1980]. It follows then from (2.14) that the functions ρ, ψ are dependent on each87

other. This means that one can express ρ as ρ(ψ) or ψ as ψ(ρ).88

Using (2.13 one can rewrite the momentum equations (2.9), (2.10) in terms of ψ.

βρ(ψzψzx − ψxψzz) = −px (2.16)

βρ(−ψzψxx + ψxψxz) = −µ−2(pz + ρ) (2.17)

To eliminate p from (2.16), (2.17) we multiply (2.17) by µ2 and then differentiate (2.16), (2.17)

with respect to z, x respectively and subtract. We obtain,

ρz(ψzψzx − ψxψzz) + ρ(ψzψzx − ψxψzz)z − (2.18)

βµ2ρx(−ψzψxx + ψxψxz) −
βµ2ρ(−ψzψxx + ψxψxz)x = ρx (2.19)

Using (2.14) and the fact that

ρx = ρψψx, ρz = ρψψz, (2.20)

we can eliminate ρ from eq. (2.18) and obtain after some algebra

J{ψzz + µ2ψxx, ψ} − (2.21)

N2(ψ)J{β
2

(ψ2
z + µ2ψ2

x), ψ} = N2J{z, ψ}
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where

N2(ψ) = −ρψ
βρ

(2.22)

is the nondimensional Brunt-Väisälä frequency which is (by definition) a function of ψ.89

As a result we obtain the following equation for ψ [Baines 1995,Nappo 2012].

ψzz + µ2ψxx −N2(ψ)

[

z +
β

2
(ψ2

z + µ2ψ2
x)

]

= G(ψ) (2.23)

Equation (2.23) is referred to in the literature as ”Long’s equation” but it was derived first by90

Dubril-Jacotin (Dubreil-Jacotin 1935)91

In (2.23), G(ψ) is a function that has to be determined from the base flow. To do so we consider92

(2.23) at x = −∞ and assume that the base flow is a function of z only. Then express the left93

hand side of (2.23) in terms of ψ only to determine G(ψ). (Here we assumed following [Yih 1967,94

Yih 1980, Baines 1995] that the disturbances from the base flow do not propagate upstream).95

For example if we consider a shearless base flow with u(−∞, z) = 1 then

ψ(−∞, z) = z (2.24)

and

G(ψ) = −N2(ψ)(
β

2
+ ψ). (2.25)

Equation (2.23) becomes:

ψzz + µ2ψxx − (2.26)

N2(ψ)

[

z − ψ +
β

2

(

ψ2
z + µ2ψ2

x − 1
)

]

= 0.

It follows from this example that different base flows at x = −∞ will yield different functional96

forms of G(ψ).97

We consider now a perturbation η from a shearless base flow u(−∞, z) = 1 viz.

η = ψ − z. (2.27)
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Substituting this expression in (2.23) leads to

ηzz + µ2ηxx −
N2β

2
(η2
z + µ2η2

x + 2ηz) +N2η = 0. (2.28)

2.2 Long’s Equation with Free Convection98

When the flow is not isothermal (2.4) has to be modified as follows

ρ(uwx + wwz) = −pz − γTρg (2.29)

where T is the temperature and γ is the thermal expansion coefficient of the fluid. Moreover an

equation for the temperature has to be added

u · ∇T = χ∇2T, (2.30)

where χ is its thermometric conductivity. These equations hold under the assumption that

gh

c2
≪ γT0

where h is the fluid column height, c is the velocity of sound in the fluid and T0 is the characteristic99

temperature difference.100

We can non-dimensionalize these equations using (2.5) with the addition

T̄ =
T

T0

(as in the previous subsection we drop the bars). Eqs. (2.29), (2.30) become

βρ(uwx + wwz) = −µ−2(pz + γTρ) (2.31)

u · ∇T =
1

Pe
∇2T (2.32)

where Pe = U0L
χ

is the Peclet number.101
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Using (2.7) to introduce a stream function ψ, the momentum equations (2.9), (2.31) become

βρ(ψzψzx − ψxψzz) = −px (2.33)

βρ(−ψzψxx + ψxψxz) = −µ−2(pz + γTρ) (2.34)

Using the same strategy as in the previous subsection to eliminate p from these equations leads to

ρz(ψzψzx − ψxψzz) + ρ(ψzψzx − ψxψzz)z − (2.35)

µ2ρx(−ψzψxx + ψxψxz) −
µ2ρ(−ψzψxx + ψxψxz)x =

γ

β
(Tρ)x.

If the diffusion processes in (2.32) can be ignored i.e | 1
Pe
∇2T | ≪ 1 then this equation can approx-

imated by

J{T, ψ} = 0, (2.36)

i.e. T = T (ψ). Furthermore since ρ = ρ(ψ) it follows that

(Tρ)x = −J{z, Tρ} = −∂(Tρ)
∂ψ

J{z, ψ}, (2.37)

Using 2.14), (2.36) and (2.20) we can eliminate ρ from eq. (2.35) and obtain after some algebra

that

J{ψzz + µ2ψxx, ψ} − (2.38)

N2(ψ)J{β
2

(ψ2
z + µ2ψ2

x), ψ} = M2J{z, ψ}

where

M2 = − γ

βρ
(Tρ)ψ. (2.39)

Using these definitions it follows that

ψzz + µ2ψxx −N2(ψ)
β

2
(ψ2

z + µ2ψ2
x) −M2(ψ)z = G(ψ) (2.40)
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Eq. (2.40) can be considered as a ”Generalized form of Long’s equation”. which include the effects102

of free convection. It contains two parameters N2, M2. The additional parameter M2 controls103

the change of the temperature profile in the flow.104

The function G(ψ) in (2.40) can be determined using the same strategy as before. Thus if

ψ(−∞, z) is given by (2.24) then

G(ψ) = −N2(ψ)
β

2
−M2(ψ)ψ (2.41)

and eq. (2.40) becomes:

ψzz + µ2ψxx −N2(ψ)
β

2
(ψ2

z + µ2ψ2
x − 1) −M(ψ)2(z − ψ) = 0 . (2.42)

For a perturbation η = ψ − z, from a base flow u(−∞, z) = 1 we obtain from (2.40)

ηzz + µ2ηxx −
N2β

2
(η2
z + µ2η2

x + 2ηz) +M2η = 0 (2.43)

2.3 Boundary Conditions and Approximations105

We consider here numerical solutions of Long’s equation over unbounded domain with a general

base flow. The topography of the domain is represented by by a function h(x) whose maximum

height is H . The boundary conditions that are imposed on the stream function ψ are

ψ(−∞, z) = ψ0(z) (2.44)

ψ(x, τh(x)) = constant, τ =
HN0

U0

(2.45)

The constant in (2.45) which represents the value of the stream line over the topography h(x) is106

(usually) set to zero.107

To determine the proper boundary condition on ψ(∞, z) we note that Long’s equation has no108

dissipation terms. Therefore radiation boundary conditions have to be imposed on ψ in this limit.109

Similarly it is appropriate to impose radiation boundary conditions on ψ(x,∞) [Durran 1992].110
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When |τ | ≪ 1 the boundary condition (2.45) can be approximated (using (2.27) by

η(x, 0) = −τh(x). (2.46)

When N, M are set to a constant, (2.28), (2.43) become invariant with respect to translations111

in x, z. This implies that these equations admit self-similar solutions in the form η = f(mx+ nz)112

[Humi 2004]. These solutions represent gravity waves that are generated by the flow over the113

topography.114

To compute numerical solutions for the perturbation η over topography it has been common115

in the literature to consider (2.28) in the limit µ = 0 and β = 0 [Durran 1992, Lily and Klemp116

1979]. In addition N is set to a constant or a step function over the computational domain.117

In these limits (2.28) becomes a linear equation

ηzz +N2η = 0 . (2.47)

The limit β = 0 can be obtained either by letting N0 → 0 or U0 → 0. For the stratification to118

persists one has to assume that the limit β = 0 is obtained as U0 → 0.119

Eq. (2.47) is a singular limit of (2.28). This is due to the fact that one of the leading second120

order derivatives drops when µ = 0. Moreover the nonlinear terms in this equation drop out when121

β = 0. The approximate solutions that are derived from (2.47) and their physical limitations were122

considered extensively in the literature [Drazin and Moore 1967, Durran 1992, Humi 2004a, Humi123

2006]. It was found that strong restrictions have to be imposed on the validity of these solutions124

even under the assumption that the base flow is shearless. However these approximations and125

the solutions that are derived from (2.47) are used routinely in the analysis of experimental126

atmospheric data [Shutts et al 1988, Baines 1995, Jumper et al 2004, Vernin et al 2007].127

The general solution of eq. (2.47) is of the form

η(x, z) = q(x) cos(Nz) + p(x) sin(Nz). (2.48)

The functions p(x), q(x) have to satisfy the boundary conditions derived from (2.45) and the128

radiation boundary conditions. To satisfy the radiation boundary conditions p(x) and q(x) have129
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to satisfy [Baines 1995, Nappo 2012] that p(x) = H [q(x)], where H [q(x)] is the Hilbert transform130

of q(x).131

To satisfy the boundary condition on the terrain one has to solve the following integral equation

[Drazin 1961, Lily and Klemp 1979, Durran 1992]

q(x) cos(τNf(x)) +H [q(x)] sin(τNf(x)) = −τh(x) . (2.49)

3 Reductions and Transformations.132

To begin with we observe that in (2.23), (2.40), (2.28), and (2.43) one can suppress the appearance133

of the parameter µ2 (µ 6= 0) by applying the transformation x = µx̄. Performing this transfor-134

mation and assuming that N, M are constants, these equations become invariant with respect to135

translations in x, z. As a result they have solutions of the form η = f(kx̄ + mz) [Humi 2004].136

These are gravity waves that are generated by the atmospheric flow over the terrain.137

Eq. (2.28) becomes

ηzz + ηxx − α2(η2
z + η2

x + 2ηz) +N2η = 0. (3.50)

where

α2 =
N2β

2

Similarly (2.43) becomes

ηzz + ηxx − α2(η2
z + η2

x + 2ηz) +M2η = 0 (3.51)

To these equations we apply the transformation

φ = e−α
2η − 1. (3.52)

Remark: The mathematical ”inspiration” for this transformation comes from somewhat similar138

transformations which linearize the Ricatti and Burger’s equations. From a physical point of view139
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the motivation comes from the desire to replace the nonlinearities due to the derivatives of η140

in (3.51) by expressions that correspond to η itself. This replacement will enable us to make141

approximations which are based on physical insights.142

Eqs. (3.50), (3.51) respectively become

∇2φ− 2α2∂φ

∂z
+N2(1 + φ) ln(1 + φ) = 0 (3.53)

∇2φ− 2α2∂φ

∂z
+M2(1 + φ) ln(1 + φ) = 0 (3.54)

Since |α2η| ≪ 1 it follows that |φ| ≪ 1 and we can make the approximation ln(1 + φ) ≈ φ.

Equations (3.53) and (3.54) become

∇2φ− 2α2∂φ

∂z
+N2(1 + φ)φ = 0 (3.55)

∇2φ− 2α2∂φ

∂z
+M2(1 + φ)φ = 0 (3.56)

To simplify (3.55) and (3.56) we introduce the transformation

φ = eα
2zy. (3.57)

Equation (3.55) becomes

∇2y + (N2 − α4)y +N2eα
2zy2 = 0. (3.58)

If |α2z| ≪ 1 (in domain of interest) we can approximate this equation by

∇2y + (N2 − α4)y +N2y2 = 0. (3.59)

This equation has analytic closed form solution

y =
3(N2 − α4)

n2

[

tanh2(C1 + C2x− iνz) − 1
]

(3.60)

where

ν2 = N2 − α4 + 4C2
2
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and C1, C2 are integration constants.143

Equation (3.60) represents solutions to a nonlinear equation for y (and hence η). Since there144

is no superposition principle for these solutions, (3.60) represents therefore new ”soliton type145

solution” for η (in 3.50). Using the approximation eα
2z = 1+α2z this solution for φ (using (3.57))146

satisfies (3.53) up to terms of order α2.147

If α2z is not small one can approximate eα
2z by 1 + α2z and use a perturbation expansion148

y = y0 + α2y1 to compute y1 (numerically).149

Similar treatment can be applied to (3.56).150

3.1 Linearized Equations and Solutions151

To obtain a real solution for φ we neglect the φ2 term in (3.55) and (3.56) as being of second order.

These approximations linearize (3.53) and (3.54) and yield (respectively)

∇2φ− 2α2∂φ

∂z
+N2φ = 0 (3.61)

∇2φ− 2α2∂φ

∂z
+M2φ = 0 (3.62)

These equations can be solved using separation of variables. Due to the similarity between (3.61)152

and (3.62) we discuss henceforth the solution procedure for (3.61) only.153

If we substitute φ = f(x)g(z) in (3.61) and perform separation of variables we obtain the

following equations for f, g
d2f

dx2
+ ω2f = 0 (3.63)

d2g

dx2
− 2α2dg

dz
+ (N2 − ω2)g = 0 (3.64)

Hence

fω = A(ω)eiωx +B(ω)e−iωx (3.65)

gω = eα
2z

(

C1(ω)eiνz + C2(ω)e−iνz
)

(3.66)
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where C1, C2, are constants and ν =
√
N2 − α4 − ω2. Hence for a wave to exist (in the z-direction)154

we must have N2 ≥ α4 + ω2. In addition the wave amplitude increases with height by a factor of155

eα
2z.156

Similarly for (3.62) we obtain the same expression for f(x) and

gω = eα
2z(C3(ω)eiλz + C4(ω)e−iλz) (3.67)

where λ =
√
M2 − α4 − ω2.157

The general solution of (3.61) can be written as

φ = (3.68)

eα
2z

∫

[(D1(ω)ei(νz+ωx) +D2(ω)e−i(νz+ωx)]dω +

eα
2z

∫

[D3(ω)ei(νz−ωx) +D4(ω)e−i(νz−ωx)]dω

Since the exponents multiplying D1 and D2 are conjugates it follows that for φ to be real we must158

have D̄1 = D2 (where the bar stands for complex conjugation). Similarly we must have D̄3 = D4.159

The radiation boundary condition at z → ∞ requires that the group velocity of the outgoing

wave is positive. For a hydrostatic flow the dispersion relation is given by

λ(ω) = ω − sgn(ν)Nω

ν

and the group velocity is

vg =
∂λ

∂ν
=
sgn(ν)Nω

ν2

Hence vg > 0 if νω > 0160

Since the integration in (3.68) is over positive ω it follow then that the last two terms in this161

equation must be zero (νω < 0).162

To satisfy the boundary condition (2.46) we observe (using (3.52)) that

η = − ln(1 + φ)

α2
. (3.69)
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Hence the boundary condition (2.46) becomes

φ(x, 0) = eα
2τh(x) − 1 ≈ α2τh(x) (3.70)

It follows then from (3.68) that
∫

2ReD1(ω) cos(ωx)dω (3.71)

−
∫

2ImD1(ω) sin(ωx)dω = α2τh(x)

This can be satisfied by standard Fourier integral expansion of h(x).163

The special case µ = 0 was treated in detail in [Humi 2004] .164

3.2 Application165

To examine the application of the formulas derived above we consider the flow over a ”witch of

Agnesi” hill where the height of the topography is given by

h(x) =
a2

(a2 + x2)
. (3.72)

The Fourier integral expansion of h(x) is

h(x) =

∫

∞

0

A(ω) cos(ωx)dω (3.73)

where

A(ω) = ae−aω.

Using(3.71) this implies that ImD1 = 0 and

D1(ω) =
α2τA(ω)

2
. (3.74)

Substituting this result in (3.68) yields

φ = eα
2z

{
∫

[D1(ω)ei(νz+ωx) +D2(ω)e−i(νz+ωx)]dω

}

. (3.75)
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Hence,

φ = α2τeα
2z

∫

e−aωcos(νz + ωx)dω (3.76)

From this expression we can compute η using (3.69). Fig. 1 displays the solution for η for166

isothermal flow with N = 1.5, β = 0.01, a = 1, and τ = 1. Fig. 2 displays the solution for167

η for non-isothermal flow with the same parameters as in Fig. 1 but with M = 2.These plots168

demonstrate the dependence of the gravity wave amplitude on the height and the impact that169

non-isothermal flow might have on the direction and amplitude of the wave170

4 Solutions with Shear171

We consider here a base flow with u = z i.e ψ(−∞, z) = z2. Using (2.23) to compute G(ψ) we

find that

G(ψ) = 2 −N2(ψ1/2 + 2βψ). (4.77)

Long’s equation (2.23) (with µ 6= 0) becomes

ψzz + µ2ψxx −N2(ψ)

[

z +
β

2
(ψ2

z + µ2ψ2
x)

]

= (4.78)

2 −N2(ψ1/2 + 2βψ)

Applying the transformation x̄ = x
µ

we obtain (after dropping the bars)

(ψzz − α2ψ2
z) + (ψxx − α2ψ2

x) −N2z = (4.79)

2 −N2(ψ1/2 + 2βψ).

For a perturbation η from the base flow i.e. ψ = z2 + η we obtain the following equation (where

the square root was linearized assuming |η| ≪ 1))

ηzz − 4α2zηz − α2(ηz)
2 + ηxx − (4.80)

α2(ηx)
2 +

(

4α2 +
N2

2z

)

η = 0.
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We introduce now the transformation

φ = e−α
2η − b (4.81)

where b 6= 0 is a parameter to be determined latter. Applying this transformation to (4.80) and

making the approximation ln(b+ φ) = ln(b) + φ
b

(assuming |φ| ≪ b) leads to the following

2bzφzz + 2bzφxx − 8bα2z2φz + (4.82)

(8α2z +N2)[φ2 + b(ln(b) + 1)φ+ b2 ln(b)] = 0.

Dropping the nonlinear term in φ2 and letting b = e−1 (to suppress the term containing φ) (4.82)

becomes

2zφzz + 2zφxx − 8α2z2φz − e−1(8α2z +N2) = 0 (4.83)

A particular solution φp of this (linear) equation is [Abramowitz and Stegun 1974]

φp = −1

4

∫

e2α
2z2−1[−4α

√
2π erf(

√
2αz) + (4.84)

N2Γ(0, 2α2z2)]dz

The homogeneous part of (4.83) can be solved by separation of variables viz. φ = f(x)g(z) where

f(x) satisfies (3.63). The resulting equation for g(z) has analytic solution in terms of Kummer

functions [Abramowitz M. and Stegun 1974].

g(z) = C1zKummerM(ν1,
3

2
, 2α2z2) + (4.85)

C2zKummerU(ν1,
3

2
, 2α2z2)

where ν1 = 4α2+ω2

8α2 .172

For µ = 0 the equation for the perturbation η is

ηzz − 4α2zηz − α2(ηz)
2 + η

(

N2

z
+ 4α2

)

= 0. (4.86)

18



Applying the transformation (4.81) to (4.86) with b = e−1 and omitting the nonlinear term in φ2

we obtain for φ the same equation as (4.83) without the derivatives with respect to x. A particular

solution of this equation is given by (4.84) while the solution of the homogeneous equation is

φ(z) = c1 erf(i
√

2αz) + c2 (4.87)

where c1, c2 are constants.173

5 Summary and Conclusions.174

Computing numerical solutions for Long’s equation has been always a challenge even in some175

(singular) limiting cases. In this paper we introduced a transformation of this equation which176

under mathematically acceptable approximations leads to analytic expressions for the solutions.177

In particular these solutions capture the dependence of the wave amplitude on the height.178

The paper provides also an extension of Long’s equation to the case where the atmospheric179

flow is not isothermal. This new equation can be solved analytically by the same transformation180

that is used for Long’s equation.181
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Figure 1: Contour plot of η for isothermal flow over a topography
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Figure 2: Contour plot of η for non-isothermal flow over a topography
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