
Reviewer#1. 

 

The authors are most grateful for your comments. We have followed your suggestions and revised the 

manuscript accordingly in many places. Please, find our responses below. 

 

GENERAL  

 

This paper uses primarily 2-D simulations to study the collision of internal solitary waves with trapped 

cores of different amplitudes. The motivation is observed collisions of Morning Glory clouds in 

Australia. Results focus on the phase shift, amplitude change and kinematic mechanisms underlying the 

actual collision. I find this paper to be an interesting read which, nevertheless, leaves several questions. 

Numerous questions exist about how the simulations sweep parameter space, how the initial trapped 

core waves are set up and the physical mechanisms behind the actual collision. In terms of the latter, I 

am greatly concerned about the adequacy of the 2-D and 3-D resolution of the simulations, particularly 

in light of the use of a Schmidt number of O(10
3
) ?!? How well do these simulations resolve the finer 

features one expects, even in 2-D, due to the wind-up of the isopycnals by the K-H billows and how can 

we truly speak of turbulence and mixing at the resolutions used ? How much are the computed fields 

smeared at the finest-resolved scale by numerical diffusion ? Finally, there are a few points where the 

English needs polishing. One general grammatical comment: When describing the results, the authors 

often shift between past and present tense. Please keep the verb tenses consistent throughout the text. I 

list my specific comments below. If the authors address them I will gladly consider re-reading the paper 

to recommend it for publication.  

 

Answer. See answers to specific comments. 

 

SPECIFIC  

 

Abstract  

 

Line 12: Change “monotonous” to monotonic.  

 

Answer. Done. 

 

Introduction  

Page 2, Line 2: The English feels awkward here. I would change to “… experiments and numerical 

solutions of both the DJL equation and the actual Navier-Stokes equations.  

 

Answer. Done. 

 

Section 2  
1. Use of a Schmidt number of Sc = ν/≈1,000 is highly perplexing. Such a value of Sc should allow the 

formation of very fine scale patterns in the density field: 2-D runs can support very sharp gradients, 

either due to the straining of the pycnocline during collision or due to the roll-up of isopycnal lines by 

K-H instabilities, which are most likely below grid resolution. In 3-D, one would expect a Batchelor  

scale (presuming the K-H billows can attain some level of turbulence) which is equal to 10001/2 times 

smaller than the Kolmogorov scale. Are the simulations resolving this scale ?  

 

The authors need to clarify the following points:  



a. Have they conducted grid independence studies at least for their 2-D higher-amplitude ISW 

collision runs, where we expect the finest-scale patterns to form in the density field ?  

 

Answer. We carried out doubling-grid tests to verify that chosen grid adequately described flow fields. 

The comparison for wave A13 is shown in Figs. A1 and A2 (see answers to Comments 1b-1c). The text 

was added accordingly. 

p. 4 l. 25 “Most of the runs were performed in a two-dimensional setting with a grid resolution of 

3000 400  (length and height, respectively), whereas several  runs for waves A9-A13 were also carried 

out with a grid resolution of 6000 800  (length  and height, respectively) to verify effect of grid 

resolution on the wave interaction and to make the fine structure clearer. Comparison of the baseline and 

doubled grid resolution showed the equivalence of the calculated fields, with the exception of wave A13 

for which 6000 800  resolution was used.” 

 

 

b. How many grid points span the actual pycnocline ? My back-of-the-envelope calculations show 

that the pycnocline is very coarsely resolved. Upon wave collision, it’ll even be further strained 

and less resolved. Numerical diffusion of the low-order method underlying the authors’ model 

can artificially smooth out things.  

 

Answer. For the series  A  number of grid points span the pycnocline was 17 for grid 3000x400 and 35 

for grid resolution 6000x800, for the series  B  the number of grid points span the pycnocline was 34 for 

grid 3000x400,whereas for the series  C  the number of grid points span the pycnocline was 68 for grid 

3000x400.   

c. In a 2-D run, how many grid points does one have across a K-H billow associated with 

instabilities along the wave ? One would need at least 30 grid points to guarantee that the 

resultant transverse instabilities are properly resolved in 3-D.  

 

Answer. In our simulations about  45 grid points were placed across KH  billow in the case (A13;A13) 

and Sc=1000 for grid resolution 3000x400 and more than 90 grid points covered KH billow for grid 

resolution 6000x800 as shown in Fig. A1-A2. For the rest of series of experiments this coverage was 

greater. 

 
Fig. A1 Snapshot of the density field for case (A13;A13) at 175   and Sc=1000 for grid 

resolution 3000x400 (a) and extended snapshot of KH billow with grid points (b). 



 
Fig. A2 Snapshot of the density field for case (A13;A13) at 175   and Sc=1000 for grid resolution 

6000x800 (a) and extended snapshot of KH billow with grid points (b). 

d. When 3-D runs are conducted, what is the local Reynolds number (based on local value of shear 

and B-V frequency along the wave-strained pycnocline) in the regions where K-H billows are 

observed, prior to K-H billow formation ? Is this Reynolds number high enough for actual 

turbulence to form within these billows or do they simply form, possibly pair and support some 

weak transverse instability ? How do we know that there are not scales smaller than the 

transverse instability that form ? Again, numerical diffusion can drive some very spurious results 

here.  

 

Answer. We excluded results of 3D simulation from this paper. 

 

 

e. MOST IMPORTANTLY: In 2-D, the authors should conduct a comparison of one simulation of 

high amplitude ISW collision at Sc = 1 and 1000, where I would hope/assume Sc = 1 is well-

resolved by the authors’ choice of grid. How do the results compare ? The Sc=1 case is 

presumably more relevant to the atmospheric Morning Glory case which motivates this study.  
 

Answer. Text and figure were added to consider the impact of small diffusivity on the collision 

processes. 

p. 7 l.8 “In the ocean and in the most of the laboratory experiments the Schmidt number is about 700-

800. The used grid does not allow the whole range of inhomogeneities in salinity (density) to be 

resolved. Therefore, it is important to evaluate the effect of molecular diffusion of salinity on the 

dynamics of waves and to verify the possibility that diffusion can be neglected in the wave collision for 

large Sc.  Two cases for large amplitude waves were considered (A9;A9) and (A13;A13). We performed 

runs for Sc=1; 10 and 1000. In the collision case (A9;A9) the behaviour of colliding waves are the same, 

whereas the difference between runs for Sc=1 and Sc=1000 was less than 1% of /   and   values. 

The comparison of the density snapshots during collision in case (A13;A13) for different Schmidt 

numbers is shown in Fig. 9. Figure clearly depicts difference between structure of interacting waves for 

cases  Sc=1 and Sc=10. The corresponding values of /   and   differ by 5% and 0.6%, 

respectively. This was in agreement with the results by Deepwell and Stastna (2016), where it was 

shown essential effect of molecular diffusivity on the mass transport by mode-2 ISW in the range 

1 Sc<20 . At the same time, the results of calculations at Sc=10 and Sc=1000 in Fig.9b and 9c 



practically coincide, which indicates that molecular diffusion may not be taken into account when 

studying the global properties of colliding waves. This conclusion agrees with (Terez and Knio, 1998) as 

they estimate that the value of Sc=100 was “sufficiently high for density diffusion to be ignored during 

simulation period”  and the results of the Deepwell and Stastna (2016) simulation, according to which 

the mass transfer is virtually independent of Sc already at Sc>20. However, diffusion can be important 

for small scale mixing processes in tiny density structures (see e.g. Galaktionov et al., 2001) forming in 

result of instability and turbulent cascade processes  (Deepwell and Stastna, 2015) and persisting over 

time in a wake behind moving bulge of trapped fluid (Terez and Knio, 1998). These subgrid scale 

structures in our simulations were smashed by numerical diffusion which did not affect larger scale due 

to use of second order total variation diminishing (TVD) scheme for advective terms in transport 

equation. “ 

 

 
Figure 9. Comparison of the density snapshots during collision of ISWs in case (A13;A13) for different 

Schmidt numbers. (a) Sc=1. (b) Sc=10. (c) Sc=1000. The right half of the numerical flume is shown due 

to the symmetry of the interaction process. 

 

 

The authors need to answer all the above questions. If they cannot they should at least be honest that 

their results are highly contingent on the degree of pycnocline resolution and the degree of numerical 

diffusion in their low-order numerical method.  

 

2. Page 3, Line 10: The authors discuss at this point the various scaling parameters they use. Later on in 

the paper, in page 7, there’s a discussion as to how such a scaling does not work for the Euler 

equations. To this end, it would help greatly if the scaled Navier-Stokes eqns. were written out explicitly 

hereand a warning was given to the reader about potential inapplicability of this finding to the Euler 

eqns.  

 

Answer. We included dimensionless NS equations and clarified discussion on complete and incomplete 

similarity on non-dimensional parameters as you suggested. 

 

p. 3  l.27   “Generally, however, the flow dependence on the viscosity, diffusivity and depth can retain at  

Re , Sc   and   and scaling on them is called incomplete (Barenblatt,1996). In most cases 

it is impossible to determine the kind of self-similarity a priori, until the solution of the full problem. 

Like Maderich et al. (2015), we follow suggestion by Barenblatt (1996) “assuming in succession 



complete similarity, incomplete similarity, lack of similarity - and then comparing the relations obtained 

under each assumption with data from numerical calculations, experiments, or the results of analytic 

investigations”.  The simulation results (Maderich et al., 2015), show that the flume depth in the range  

23 92  does not affect the characteristics of the ISWs with trapped cores. The sensitivity of the 

wave dynamics to the values of   was found by Carr et al., (2008) in the range 4 11  . From these 

studies we conclude that results our simulations in the range 23 92   (Table 1) does not depend on 

 . The possible effects of Schmidt and Reynolds numbers will be discussed in sections Sect. 3.4 and 

Sect.3.6.” 

 

p. 8   l. 28  “From dimensional arguments ( ,Re ,Sc)loss mE   , where   is function  of three 

arguments. Assuming complete similarity on the Rem   and Sc   consider dependence 
lossE   on 

 . As seen in Fig. 12, this dependence given  for symmetric collisions ( = L = R ) is not monotonic 

and is not universal, changing depending on the series of calculations. “ 

 

p. 9  l. 8  “The absence of complete self-similarity on the Reynolds and Schmidt numbers also means 

that the Euler equations do not describe the wave interaction processes in deep water even for the range 

of stable waves. As shown in Table 1, the parameter Rem  varies in Series A-C several times for waves 

of the same dimensionless amplitude  . The incomplete similarity scaling following Barenblatt (1996) 

results in relation: ( )Re Scm n

loss mE   , where   is function of , m and n are exponents. However, 

this rescaling also did not result in universal dependence. We conclude that it is due to the different 

mechanisms governing collision process in ranges I-III: nonlinear wave interaction, collapse of collided 

trapped masses and instability. Another factor influencing the interaction may be the diffusivity effect 

(Deepwell and Stastna, 2016), which is described by the Schmidt number. However, in these 

experiments, the Schmidt number was large and constant. “ 

 

3. Same page, line 19: Correct to “The simulations of interacting ISWs”. Now, when one turns to table 

1, there is an exhaustive list of simulations, organized in 4 groups, A through D. This is not an easy 

table to read. Please separate groups A, B, C and D by a space. Also, both in the text of page 3 but also 

in the figure caption, help the reader out by clearly stating what A, B, C and D represent. Finally, in the 

caption define what the first 5 parameters are so that the reader doesn’t have to flip back and forth to 

the actual text.  

 

Answer. We added text to explain difference between groups A-D, and added text to caption and also 

separated groups A-D in the Table 1. 

 

p. 4 l. 14 “The waves are divided into four groups: (A,B,C) depending on the thickness of the stratified 

layer and D for simulation of ISW reflection from a vertical wall in the laboratory experiment (Stamp 

and Jacka, 1995)”. 

p. 14 Table 1.  “Summary of parameters of interacting ISWs: pycnocline thickness parameter h, wave 

amplitude a, wavelength 
0.5 , ratio , dimensionless ISW amplitude  , Froude number Frmax, minimum 

Richardson number Rimin, Reynolds number Rem and class of ISW.” 

 

4. Same page, line 23: Apparently, the authors are using these runs to double up for both simulations of 

mode-1 waves with trapped cores, for a near-surface stratification, and mode-2 waves in a two layer  



stratification. The latter assumes perfectly symmetry of the solution around the middle of the pycnocline. 

Is this a realistic assumption and could it lead to misrepresentation of the actual physics ? How do the 

authors contrast this approach to that used by Stastna and Deepwell who examine the full domain.  

 

Answer. We carried out simulations in deep flume ( 1 ) when depth of flume effects were weak that 

allowed using the results of simulation near the bottom as for surface layer as for mode-2 waves 

assuming symmetry. The simulations by Stastna and Deepwell (2016)  for mode-2  waves corresponded 

value of   10    whereas we carried out simulations in range 23 92   . The text was reworked 

accordingly. 

 

p.4 l. 21 “For large  , these allow for the simulation of the interaction of mode-1 ISWs with trapped 

core, propagating in stratified layers near the surface, and the ISWs interaction near the bottom, as 

considered here, and the interaction of mode-2 ISWs, assuming symmetry in the Boussinesq 

approximation around the horizontal midplane (Maderich et al., 2015).” 

 

5. Same page, line 26: Is the no-flux condition applied to salinity or density ? The authors should clarify 

what active scalar they actually examine and what type of equation of state they use, if it is salinity they 

are actually working with.  

 

Answer. We used salinity stratified water. The text was added accordingly.  

 

p. 2 l. 27 “A free-surface non-hydrostatic numerical model for variable-density flows using the Navier-

Stokes equations in the Boussinesq approximation (Kanarska, Maderich, 2003; Maderich et al., 2012) 

was applied in the simulations of a numerical basin emulating a laboratory flume filled with salinity-

stratified water. 

p. 3 l. 3 “An equation of state ( , )T S   (Mellor, 1991) was used for constant temperature o15T C .” 

 

6. How are the initial actual waves generated ? Are they produced by solving the DJL equation and then 

inserted into the Navier-Stokes solver to allow for the trapped core to actually evolve dynamically ? 

Alternatively, is some higher-density fluid released at the pycnocline as done by Stastna and Deepwell ? 

 

Answer. The ISWs were generated at both ends of the flume by the collapse of the mixed regions (see p. 

3 bl.5). 

  

 

7. See Comment 1 above: How do we know that the resolution used by the authors is sufficient ? Have 

grid-independence tests been conducted ? What is the resolution of various critical lengthscales of the 

problem ? I seriously question the utility of the 3-D runs, at least until the authors are honest about their 

limitations.  

 

Answer. See answer to comment 1. 

 

Results  
8. Page 4, Line 16: The reference to fluid having escaped both trapped cores and then subject to a 

buoyancy-driven collapse, countered by viscosity and diffusion of mass, raises the question: Are the 

trapped cores of the original waves subject to any leakage of mass in the first place ?  

 



Answer. We refined description of the experiment, accordingly.  

p. 5  l. 17 “The trapped fluid slowly leaks from rear of trapped bulge similarly to the laboratory 

experiments (e. g. Maderich et al., 2001; Brandt and Shipley, 2014). However, after collision, the waves 

lost all fluid trapped by the wave cores.” 

 

 

 

9. Page 4, line 29: What is a “small offset pycnocline” ?  

 

Answer. The text was rewritten accordingly. 

p. 6 l.1 “Some mass exchange that occurred in the mode-2 experiment (Stamp and Jacka, 1995) was,  

perhaps, the result of a slight displacement of the pycnocline in the vertical direction, which is often 

observed in laboratory experiments (Carr et al., 2015). 

 

10. Page 5, Line 14 and onward: We suddenly are told that the numerical simulations include runs with 

internal waves with trapped cores reflecting off a side boundary. See my comment (3) above. Nowhere 

in section 2 are we told that reflecting internal waves are studied. Pre-dispose the reader please !  

 

Answer. The run with reflection from side boundary was separated in text and table, accordingly.  

 

p.  4 l. 14  “The parameters of interacting ISWs are given in Table 1. The waves are divided into four 

groups: (A,B,C) depending on the thickness of the stratified layer and D for simulation of ISW reflection 

from a vertical wall in the laboratory experiment (Stamp and Jacka, 1995).” 

 

11. Same page, line 30: Beyond K-H instabilities, are the other mechanisms through which fluid can 

escape the trapped core ? Consulting Kevin Lamb’s two JFM papers (2002 and 2003) might provide 

some useful insights in this regard.  

 

Answer.  The text was added accordingly. 

p. 7 l. 1 “The waves carry out trapped fluid, but the cores gradually lose trapped fluid to the wake 

through KH billows shifting to the wave rear and through recirculation  in trapped core (Terez and Knio, 

1998; Maderich et al., 2001; Lamb, 2002). “ 

 

12. Same page, line 33: Can one truly speak of mixing in a 2-D context, when the actual process is 

turbulent but not resolved in 3-D ? At least qualify the statement by saying that “mixing, as represent in 

a 2-D context”.  

 

Answer. We eliminated the “mixing” in this sentence. The text was added also to another sentence. 

p.  6  l. 10. “Then, the fluid in the cores is entrained by the outgoing waves with some mixing, as 

represent in a 2-D context, arising due to instability.” 

 

 

13. Figure 9 and relevant discussion in text: The top four panels need to be magnified by at least a 

factor of two. Any smaller-scale feature is barely visible and any transverse structure cannot be seen at 

all. This begs the question once again, how well-resolved are these transverse instabilities ? The authors 

use 45 spanwise grid-points and it seems that the domain is wide enough to capture about 4 (??) 

wavelengths thereof. Again, taking into account the numerical diffusion of their method, can we really 



speak of resolving anything below the scale of the transverse instability ? Please see my comment (1). As 

such, any mention of turbulence and mixing in this section should be made with great caution.  

 

Answer. We excluded results of 3D simulation from paper. Therefore, Figure 9 was substituted by 

figure with Sc impact analysis. 

 

 

14. Page 7, line 11: More detail is needed as to how ΔΕ dis is defined. Does one conduct a run of a 

single wave and measure the energy at the beginning at end of the run, with any losses driven by viscous 

decay (and apparently numerical diffusion) and shear instability ?  

 

Answer. We provided more detail on calculation of the energy loss due to the wave collision: 

 

p.8 l.14 We defined the energy loss due to the wave collision (
lossE ) as the difference between the total 

loss of energy 
totE due to the collision and the loss of energy by two single waves due to the viscous 

decay or instability disE   

loss tot dissE E E                     (9) 

The relative loss of energy due to the collision of ISWs can be calculated as the normalized difference in 

energy of  waves before and after collision  
( ) ( ) ( ) ( )

( ) ( )

bf bf af af

L R L R
tot bf bf

L R

PSE PSE PSE PSE
E

PSE PSE

  
 


              (10) 
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where ( )bf

LPSE  and ( )bf

RPSE are the pseudo-energies of the  waves before collision at the cross-sections 

Lx   and Rx ,respectively, and ( )af

LPSE and ( )af

RPSE are the pseudo-energies of the waves after collision at 

the cross-sections Lx   and Rx , respectively, whereas 
( )af

LPSE   and 
( )af

LPSE  are the  energies of the 

transmitted  waves without interaction at cross sections Lx   and Rx , respectively.  The pseudo-energy is 

the sum of the kinetic and available potential energies (Shepherd-1993) of waves before and after 

collision. The method for estimation of the available potential energy and energy fluxes was given in 

(Scotti et al., 2006; Lamb, 2007). A detailed description of the procedure of the pseudo-energy 

calculation was presented by Maderich et al., (2010). 

 

 

15. Same page, line 22 and onward: This is a very interesting discussion. However, please see my 

comment (2) above. Including the actual scaled Navier-Stokes in the text would help the reader 

understand why this scaling won’t apply to the Euler equations. Moreover, the remaining discussion is 

confusing. Please clarify what is meant by “complete” and “incomplete” similarity. As always, my 

concern of use of a Schmidt number close to 1,000 arises.  

 

Answer. See answers to comment 2. 

 

 

Conclusions  



 

16. Page 8, line 10: This study also examines mode-1 waves, simply with a near-surface stratification. 

Clarify that this contrast is made to mode-1 waves in a “two-layer stratification”.  

 

Answer. Done. 

p. 9 l.25 “The dependence is similar to the interaction of the mode-1 waves in a two-layer stratification 

(Terletska et al., 2017), with the difference being that the phase shift continues to grow for the collision 

of  interfacial waves of mode-1.”. 

 

17. Same page, line 15: Again, I doubt that this study resolves any turbulence. What we’re seeing is the 

product of numerical diffusion. Also, correct “monotonous” to “monotonic”.  

 

Answer. The text was changed accordingly. 

p.9 l. 29 “The collision of locally shear unstable waves of class (iii) was accompanied by the 

development of instability.” 

 

 

 

18. Trapped cores in internal solitary waves are efficient mechanisms for transporting particulate 

matter, not just mass (see the work of Lamb). Can the authors at least offer some comment here as to 

how much collision impacts the capacity for an ISW to transport mass ?  

 

Answer. We added text accordingly.  

p. 9 l. 30 “We conclude that this kind of interaction reduces the capacity for an ISW to transport mass.” 

 

19. It is clear to me that this study examines trapped core waves where the core forms due to near-

surface stratification, i.e. one is looking at surface cores. However, the work of Lien et al. clearly 

observed subsurface cores in the South China Sea ; the localization of the cores in the subsurface 

orginates from the presence of a background current and the specifics of its vertical structure. Although 

I see an investigation of ISWs with subsurface cores to be outside of the scope of the particular study, it 

would help if the authors referenced such phenomena as a topic of future investigation. 

 

Answer. We mentioned work by Lien et al. (2012) in Introduction. The text was added accordingly. 

p.10 l. 9 “The obtained results can be applied to the interaction dynamics of subsurface trapped core 

formed within a shoaling large amplitude internal waves (Lien et al., 2012).”  

 

 

 

 

 

 

 

 

 

 

 

 

 



Reviewer#2. 

 

The authors are most grateful for your comments. We have followed your suggestions and revised the 

manuscript accordingly in many places. Please, find our responses below. 

 

I enjoyed reading this paper because the numerical simulations are of high quality, the experimental 

design is well devised, and the results yield interesting insight into the behavior of colliding nonlinear 

internal solitary waves with trapped cores. I have one suggestion for major revision although this won’t 

require too much work, and some suggestions for clarification:  

1) My only suggestion for revision is that the authors remove the three-dimensional results and 

discussion of the mixing, dissipation, and energetics. I would only trust discussion of these if the authors 

demonstrated that they are truly resolved through discussion of grid resolution requirements for DNS, 

i.e. grid resolution via Kolmogorov scale. It is hard to imagine that the mixing is resolved given that the 

molecular diffusion is so small. In fact, unresolved two-dimensional simulations can lead to more mixing 

because the inverse energy cascade in two dimensions stretches density filaments and leads to more 

numerical mixing, even if the dissipation is actually lower in two dimensions (see Fringer and Street 

2003; doi:10.1017/S0022112003006189, Arthur and Fringer, 2014; doi:10.1017/jfm.2014.641). An 

additional problem with discussion of the energetics in the paper is that the Reynolds number varies 

significantly for different runs. Arthur and Fringer (2014) showed that not accounting for Reynolds 

number effects can give a very different picture of the dynamics of breaking internal solitary waves on 

slopes. Such may be the case for the results in Figure 12, for which it is difficult to determine whether 

the behavior of the energy loss is due to alpha effects or Reynolds number effects. It may be that the two-

dimensional simulations represent the energetics to a reasonable degree, as in many studies of internal 

wave energetics, although I would not necessarily trust the arguments concerning the mixing. Either 

way, I suggest that the authors discuss the three-dimensional effects and associated energetics in a 

different paper.  

Answer. We have revised the text accordingly: 

(i) Results of 3D simulation were excluded from this manuscript; 

(ii) The effect of Rem was discussed in text; 

p. 9  l. 8 “The absence of complete self-similarity on the Reynolds and Schmidt numbers also means that 

the Euler equations do not describe the wave interaction processes in deep water even for the range of 

stable waves. As shown in Table 1, the parameter Rem  varies in Series A-C several times for waves of 

the same dimensionless amplitude  . The incomplete similarity scaling following Barenblatt (1996) 

results in relation: ( )Re Scm n

loss mE   , where   is function of  , m and n are exponents. However, 

this rescaling also did not result in universal dependence. We conclude that it is due to the different 

mechanisms governing collision process in ranges I-III: nonlinear wave interaction, collapse of collided 

trapped masses and instability. Another factor influencing the interaction may be the diffusivity effect 

(Deepwell and Stastna, 2016), which is described by the Schmidt number. However, in these 

experiments, the Schmidt number was large and constant. “ 

(iii) Text was added on limitations using 2D setting: 



p. 10 l.8 “Notice, however, that  the destruction of the KH billows is essentially three-dimensional 

process, therefore, 3D high-resolution simulation is necessary to predict turbulence development (Arthur 

and Fringer,2014, Deepwell and Stasna, 2016). This is the subject of a separate study, whereas the 

interaction of the colliding waves as a whole can be described in 2D setting.” 

2) Please discuss how you chose the grid resolution for the two-dimensional simulations.  

Answer. We carried out doubling-grid tests to verify that chosen grid adequately described flow fields. 

The comparison for wave A13 is show in Figs. 1 and 2. The text was added accordingly. 

p. 4 l. 25 “Most of the runs were performed in a two-dimensional setting with a grid resolution of 

3000 400  (length and height, respectively), whereas several  runs for waves A9-A13 were also carried 

out with a grid resolution of 6000 800  (length  and height, respectively) to verify effect of grid 

resolution on the wave interaction and to make the fine structure clearer. Comparison of the baseline and 

doubled grid resolution showed the equivalence of the calculated fields, with the exception of wave A13 

for which 6000 800  resolution was used.” 

 
Fig. A1 Snapshot of the density field for case (A13;A13) at 175   and Sc=1000 for grid resolution 

3000x400 (a) and extended snapshot of KH billow with grid points (b). 

 
Fig. A2 Snapshot of the density field for case (A13;A13) at 175   and Sc=1000 for grid resolution 

6000x800 (a) and extended snapshot of KH billow with grid points (b). 



3) The Richardson number should be defined as Rim=g’h/(Um 2) so that it is consistent with the way the 

other nondimensional parameters are defined, i.e. in terms of the independent parameters following the 

Buckingham Pi theorem. 

Answer. While there are various estimates of Froude, Richardson and Reynolds numbers, we found 

(Maderich etal., 2015) that definitions (5)-(7)  allow one to adequately classify the state of colliding 

waves of large amplitude using local characteristics such as minimum Richardson number or the ratio of 

maximal local velocity to the ISW phase velocity.  

p.4 l. 5 “The important features of the ISWs can be described by dimensionless amplitude is /a h  , 

the Froude, Richardson and Reynolds numbers based on local characteristics of waves (Maderich et 

al.,2015).” 

 4) It would be helpful if, on page 3, you discussed the general features of Series A-D, and included a 

brief description in another column in Table 1, i.e. a column indicated by “Comments” which, for series 

A would state, “No trapped cores”. Also please indicate whether the waves were in regimes (i), (ii), or 

(iii) in Table 1.  

Answer. We added column with class of colliding waves. In accordance with the definition of the class 

of the ISW, waves with trapped cores belong to the classes (ii) and (iii). 

5) What is the justification for choosing such a small molecular diffusion?  

Answer.  Text and figure were added to consider the impact of small diffusivity on the collision 

processes. 

p.7 l. 8 “In the ocean and in the most of the laboratory experiments the Schmidt number is about 700-

800. The used grid does not allow the whole range of inhomogeneities in salinity (density) to be 

resolved. Therefore, it is important to evaluate the effect of molecular diffusion of salinity on the 

dynamics of waves and to verify the possibility that diffusion can be neglected in the wave collision for 

large Sc.  Two cases for large amplitude waves were considered (A9;A9) and (A13;A13). We performed 

runs for Sc=1; 10 and 1000. In the collision case (A9;A9) the behaviour of colliding waves are the same, 

whereas the difference between runs for Sc=1 and Sc=1000 was less than 1% of /   and   values. 

The comparison of the density snapshots during collision in case (A13;A13) for different Schmidt 

numbers is shown in Fig. 9. Figure clearly depicts difference between structure of interacting waves for 

cases  Sc=1 and Sc=10. The corresponding values of /   and   differ by 5% and 0.6%, 

respectively. This was in agreement with the results by Deepwell and Stastna (2016), where it was 

shown essential effect of molecular diffusivity on the mass transport by mode-2 ISW in range 

1 Sc<20 . At the same time, the results of calculations at Sc=10 and Sc=1000 in Fig.9b  and 9c 

practically coincide, which indicates that molecular diffusion may not be taken into account when 

studying the global properties of colliding waves. This conclusion agrees with (Terez and Knio, 1998) as 

they estimate that the value of Sc=100 was “sufficiently high for density diffusion to be ignored during 

simulation period” and the results of the Deepwell and Stastna (2016) simulation, according to which the 

mass transfer is virtually independent of Sc already at Sc>20. However, diffusion can be important for 

small scale mixing processes in tiny density structures (see e.g. Galaktionov et al., 2001) forming in 

result of instability and turbulent cascade processes  (Deepwell and Stastna, 2015) and persisting over 

time in a wake behind moving bulge of trapped fluid (Terez and Knio, 1998). These subgrid scale 



structures in our simulations were smashed by numerical diffusion which did not affect larger scale due 

to use of second order total variation diminishing (TVD) scheme for advective terms in transport 

equation.“ 

 
Figure 9. Comparison of the density snapshots during collision of ISWs in case (A13;A13) for different 

Schmidt numbers. (a) Sc=1. (b) Sc=10. (c) Sc=1000. The right half of the numerical flume is shown due 

to the symmetry of the interaction process. 

 

6) Page 4, Line 9: Please explain the meaning of and how you computed the phase shift   , and how it 

is normalized by 0 .  

Answer. We estimated temporal phase shift by comparing trajectories of the wave crests with and 

without collision. This temporal phase shift was normalized to characteristic time  

p.5 l. 9 “…whereas normalized to characteristic time 0  temporal phase shift   is    .” 

p.5 l. 10 “We estimated temporal phase shift by comparing trajectories of the wave crests with and 

without collision.” 

 

7) Page 4, Line 10: Please explain how you expect Da/a and Dq to behave for limiting cases ( 0    

and   ). Why does 4   as   ?  

Answer. We added text with explanations. 

p. 6 l. 12 “As shown in Fig. 4a, for stable waves of class (ii), the runup excess /   still almost 

linearly increases in the range 2.3 4.6  , whereas the increase in the phase shift    is substantially 

slowed down when 1  , and then   tends towards a constant value 4  . The distributions of 

/  and  in Fig. 4 for stable waves were approximated by linear and exponential dependencies, 

respectively, which were based on the weakly-nonlinear asymptotics /    and    

(Matsuno,1998) for small   and obtained in numerical experiments almost constant distribution of 

 at large  . “ 

8) On Page 5, Line 5, you state that the colliding waves pass through each other. Theory suggests that 

nonlinear waves exchange momentum by bouncing off each other, just like billiard balls (e.g. Fringer 

and Holm 2001; doi:10.1016/S0167-2789(00)00215-3).  



Answer.  The collision of large amplitude  ISWs  with trapped cores is complicated process, which in 

theory has not yet been described in detail, in particular for waves of different amplitude. To avoid 

misinterpretation of results we changed “transmitted” waves to “outgoing” waves. 

9) Please do not include the regressions on Page 5, line 13, unless you can justify the functional 

relationships through scaling or other means.  

Answer. See  answer to comment 7) 

10) Minor: a. I don’t understand the meaning of the sentence starting with “The waves of class (ii) …” 

on line 8 of page 1. b. Throughout: monotonous à monotonic. 

Answer.  The text was changed accordingly. 

p. 1 l. 9 “The colliding waves of class (ii) lose fluid trapped by the wave cores when a normalized on 

thickness of pycnocline amplitudes are in the range of approximately between 1 and 1.75.” 
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Abstract. The dynamics and energetics of a head-on collision of internal solitary waves (ISWs) with trapped cores propagating

in thin pycnocline were studied numerically within the framework of the Navier-Stokes equations for a stratified fluid. The

peculiarity of this collision is that it involves the trapped masses of a fluid. The interaction of ISWs differs for three classes

of ISWs: (i) weakly nonlinear waves without trapped cores, (ii) stable strongly nonlinear waves with trapped cores, and (iii)

shear unstable strongly nonlinear waves. The wave phase shift
:
of

::::
the

:::::
equal

:::::::
colliding

::::::
waves

:
grows as the amplitudes of the5

interacting waves increase for colliding waves of classes (i) and (ii) and remains almost constant for those of class (iii). The

:::::::::
normalized

::
to

::::::::
amplitude

::
of

::::::
waves excess of the maximum runup amplitude over the sum of the amplitudes of

::
the

:::::
equal

:
colliding

waves almost linearly increases with increasing amplitude of the interacting waves belonging to classes (i) and (ii); however,

it decreases somewhat for those of class (iii). The
:::::::
colliding

:
waves of class (ii) with a normalized on thickness of pycnocline

amplitude lose fluid trapped by the wave cores
:::::
when

:
a
::::::::::
normalized

::
on

::::::::
thickness

:::
of

:::::::::
pycnocline

:::::::::
amplitudes

:::
are

:
in the range

::
of10

approximately between 1 and 1.75. The interacting stable waves of higher amplitude capture cores and carry trapped fluid

in opposite directions with little mass loss. The collision of locally shear unstable waves of class (iii) is accompanied by the

development of three-dimensional instabilityand turbulence
::::::::
instability. The dependence of loss of energy on the wave amplitude

is not monotonous
::::::::
monotonic. Initially, the energy loss due to the interaction increases as the wave amplitude increases. Then,

the energy losses reach a maximum due to the loss of potential energy of the cores upon collision and then start to decrease.15

With further amplitude growth, collision is accompanied by the development of instability and an increase in the loss of energy.

The collision process is modified for waves of different amplitudes because of the exchange of trapped fluid between colliding

waves due to the conservation of momentum.

1 Introduction

Internal solitary waves (ISWs) are widespread in stratified oceans and lakes (Helfrich and Melville, 2006). The observed ISWs20

are mostly waves of mode-1 propagated as waves of depression or as waves of elevation. When near-surface or near-bottom

layers are stratified, then mode-1 ISWs of large amplitude can trap and transport fluid in their cores, as observed in the ocean

(Moum et al., 1990; Lien et al., 2012; Klymak et al., 2003; Scotti and Pineda, 2004) and in the atmospheric boundary layer (the

phenomenon known as “the morning glory” (Christie, 1992; Reeder et al., 1995)). These waves have been studied in laboratory

experiments (Grue et al., 2000; Carr et al., 2008; Luzzatto-Fegiz and Helfrich, 2014). The fluid can also be trapped by ISWs of25

mode-2 (Yang et al., 2010; Shroyer et al., 2010; Ramp et al., 2015) propagating in the thin interface layer between two uniform

1



density layers, as has been shown in laboratory experiments (e.g., Davis and Acrivos (1967); Maxworthy (1980); Kao and Pao

(1980); Honji et al. (1995); Stamp and Jacka (1995); Maderich et al. (2001); Brandt and Shipley (2014); Carr et al. (2015)).

The weakly nonlinear solution for the corresponding ISW (i.e., the Benjamin-Ono (BO) soliton (Benjamin, 1967; Ono, 1974))

agrees well with experimental data for a small amplitude ISW without mass transport. However, experiments and solutions both

of
::::::::
numerical

::::::::
solutions

::
of

:::::
both the Dubreil-Jacotin-Long (DJL) equation and within the framework of the

:::
the

:::::
actual

:
Navier-5

Stokes equations (Lamb, 2002; Helfrich and White, 2010; Lamb and Farmer, 2011; Salloum et al., 2012; Maderich et al., 2015;

Luzzatto-Fegiz and Helfrich, 2014; Deepwell and Stastna, 2016) show that BO solitons cannot even qualitatively describe the

dynamics and transport features of large amplitude waves. A detailed review of laboratory and numerical experiments is given

by (Maderich et al., 2015).
::::::::::::::::::
Maderich et al. (2015).

:

Little is known regarding the interaction of waves with trapped cores. This kind of interaction is of special interest, as the10

masses of fluid trapped by waves are also involved in the interaction. The oblique interaction of “morning glories” over northern

Australia was described by Reeder et al. (1995).
:::::::
Head-on

:::::::
collision

:::
as

:
a
:::::::
special

::::
case

::
of

:::::::
oblique

::::::::::
interactions

:::
was

::::::::::
considered

::
by

::::::::::::::::::
Matsuno (1998) using

::
a
:::::::::::
second-order

::::::::
analysis

::
of

::::::::::::::
small-amplitude

:::::::::
interfacial

:::::
waves

:::
in

::::
deep

:::::
fluid.

:
A mostly qualitative

description of the head-on collision of mode-2 waves with trapped cores, obtained through conducting several laboratory

experiments (Kao and Pao, 1980; Honji et al., 1995; Stamp and Jacka, 1995) and via a numerical simulation (Terez and Knio,15

1998), has been given. These experiments showed that (i) waves experience a phase shift during collision, (ii) large amplitude

waves in the interaction process exchange
:::::::
transport

:
trapped masses of fluids between incident waves

::::
fluid

::::
after

::::::::
collision,

::::
(iii)

:::::
waves

::
of

:::::::
unequal

::::::::
amplitude

::::::::
exchange

::::::
masses

::
of

:::::::
trapped

::::
fluid

::
in

:::
the

:::::::::
interaction

::::::
process, and (iii

:
iv) some trapped fluid is ejected

upon collision. According to Gear and Grimshaw (1984), interaction processes can be distinguished as strong interactions when

waves propagate in almost the same direction and the time of interaction is relatively long and as weak interaction when waves20

propagate in almost opposite directions and the time of interaction is relatively short. However, a numerical study of both

overtaking and head-on collisions of large amplitude mode-1 and weakly nonlinear mode-2 ISWs Stastna et al. (2015) showed

that these interactions are strong interactions resulting in the degeneration of mode-2 ISWs. In this paper, the dynamics and

energetics of a head-on collision of ISWs with trapped cores for a wide range of amplitudes and stratifications are studied

numerically within the framework of the Navier-Stokes equations. The paper is organized as follows: the numerical flume25

setup is described in section 2, the results of experiments on the collision of waves of equal and non-equal amplitudes are

discussed in section 3, and the main results are summarized in section 4.

2 The numerical model setup

A free-surface non-hydrostatic numerical model for variable-density flows using the Navier-Stokes equations in the Boussinesq

approximation (Kanarska and Maderich, 2003; Maderich et al., 2012) was applied in the simulations of a numerical flume30

emulating a laboratory flume
::::
basin

:
filled with salinity-stratified water. The numerical flume and experimental configurations

are shown in Fig. 1. Here, (x,y,z)
:::
The

:::::::::
simulations

:::::
were

:::::::::
performed

::
in

:
a
::::::::::::::
two-dimensional

::::::
setting

:::::
where

:::::
(x,y) are the Cartesian

coordinates in the longitudinal , transverse and vertical directions, respectively. The vertical coordinate z is directed upward.

2



The flume has a length Lx = 3 m ,
:::
and a depth H=0.46 mand a width Ly = 0.5 m. It was filled with

::::::
salinity

::
S

:::::::
stratified

:
water,

in which the density of the upper layer is ρ1, and with a thin pycnocline near the bottom, expressed a
::
as

ρ(z) = ρ0

(
1− ∆ρ

ρ0
tanh

( z

h

))
, (1)

where ρ0 is density at the bottom, ∆ρ= ρ0 − ρ1 is the density difference between the bottom and the surface, and h is the

pycnocline layer thickness.
:
a
:::::::::
parameter

::
of

::::
the

::::::::::
pycnocline.

:::
An

::::::::
equation

::
of

:::::
state

::::::::::
ρ= ρ(S,T )

::::::::::::::::
(Mellor, 1991) was

:::::
used

:::
for5

:::::::
constant

::::::::::
temperature

:::::::::
T = 15◦C.

:

The ISWs were generated at both ends of the flume by the collapse of the mixed regions with the density ρ0. Following

Maderich et al. (2015), the shape of the mixed region was selected to be half of a BO soliton to reduce the mixing due to the

collapse. The wave amplitude varied according to the initial volume of the mixed fluid and thickness of the pycnocline h. The

kinematic viscosity ν was 1.14× 10−6 m2s−1, and the molecular diffusion χ was 10−9 m2s−1.10

An ISW is characterized by an amplitude a, which represents the maximum displacement of the isopycnal (Fig. 1), a wave

speed Uc, calculated as the velocity of the wave crest, and a wavelength λ0.5, estimated to be a half-width with which the

amplitude of the wave is reduced by half. The maximal speed of the wave is Um. The wave parameters were evaluated in the

sections xL=xR=0.5 m away from the centre of the laboratory tank xC . For example, the amplitudes of waves propagating

from the left to the right in the cross-sections xL and xR are defined as aL(xL) and aL(xR), while those propagating from the15

right to the left are defined as aR(xL) and aR(xR), respectively.

The simulation results are presented in dimensionless form. The coordinates
:::::::::
xi = (x,z)

:
are normalized to h, and the time

τ = t/τ0 is dimensionless, where t is time, τ0 =
√
2ρ0h/∆ρg, and g is gravity; the velocity U = (U,V,W )

:::::::::
ui = (u,w)

is normalized to the long linear wave phase velocity c0 =
√

gh∆ρ/2ρ0 (Benjamin, 1967). The important dimensionless

parameters characterizing the waves are the ratio ε=H/h and dimensionless amplitude
::::::::::::::::
C0 =

√
gh∆ρ/2ρ0 :::::::::::::::

(Benjamin, 1967);20

:
p
::
is
::::::::
pressure

::::::::
deviation

::
in

:::
the

::::::::::
Boussinesq

:::::::::::::
approximation

::::::::::
normalized

::
to

:::
the

::::::::
ρ0gh/2;

::::::::::::::
ρ′ = (ρ− ρ0)/ρ0::

is
:::::::::::::::

non-dimensional

::::::
density

:::::::::
deviation.

::::
The

::::::::
governing

:::::::::::::
Navier-Stokes

::::::::
equations

:::
for

::::::::
stratified

:::::
fluid

::
in

::::::::::::::
non-dimensional

:::::
form

:::
are

:::::::
written

::
in
::::

the

:::::::::
Boussinesq

::::::::::::
approximation

::
as

:

∂ui

∂xi
= 0,

:::::::

(2)

∂ui

∂τ
+uj

∂ui

∂xj
=− ∂p

∂xi
− 1

2
ρ′δi,3 +

1

Re

∂

∂xj

(
∂ui

∂xj
+

∂uj

∂xi

)
,

:::::::::::::::::::::::::::::::::::::::::::::::::

(3)25

∂ρ′

∂τ
+uj

∂ρ′

∂xj
=

1

ReSc

∂2ρ′

∂xj∂xj
,

:::::::::::::::::::::::::

(4)

:::::
where

:::
δij :

is
:::
the

:::::::::
Kronecker

:::::
delta,

::::::::::
Re=C0h/ν ::

is
::
the

::::::::
Reynolds

:::::::
number

:::::
based

:::
on

:::::
linear

::::::
theory,

::::::::
Sc = ν/χ

::
is

:::
the

:::::::
Schmidt

:::::::
number.

:::
The

:::::
effect

:::
of

:::
the

::::::
height

::
of

:::
the

::::::::::::
computational

:::::
tank

::
on

::::
the

::::
ISW

::::::::::
propagation

::
is
:::::::::

described
::
by

:::::::::
parameter

:::::::::
ε=H/h.

::
It

:::
can

:::
be

:::::::
assumed

::::
that

:::
the

::::::
results

::
of

::::::::::
experiments

::::
and

:::::::::
simulation

:::
for

:::::
small

::::::::
viscosity

:::::::::
(Re→∞),

:::::
small

:::::::::
diffusivity

:::
for

:::::
water

:::::::::
(Sc→∞)

:::
and

:::
for

::::
deep

:::::
water

::::::::
(ε→∞)

::::
will

:::
not

:::::::
depend

::
on

:::
the

:::::::::
viscosity,

::::::::
diffusivity

::::
and

:::
the

::::::
depth.

::::
That

::::
case

::
is

:::::::
referred

:::
by

:::::::::
Barenblatt30

:::::
(1996)

:::
as

:
a
::::::::
complete

::::::::
similarity

::::
with

:::
the

::::::::::
parameters

:::
Re,

:::
Sc

:::
and

::
ε.

:::::::::
Generally,

::::::::
however,

:::
the

::::
flow

::::::::::
dependence

:::
on

:::
the

::::::::
viscosity,

3



::::::::
diffusivity

::::
and

:::::
depth

:::
can

:::::
retain

::
at

::::::::
Re→∞,

:::::::
Sc→∞

:::
and

:::::::
ϵ→∞

:::
and

::::::
scaling

:::
on

::::
them

::
is
::::::
called

:::::::::
incomplete

::::::::::::::::
(Barenblatt, 1996).

::
In

::::
most

:::::
cases

::
it
::
is

:::::::::
impossible

:::
to

::::::::
determine

::::
the

::::
kind

::
of

::::::::::::
self-similarity

::
a
:::::
priori

:
,
::::
until

:::
the

:::::::
solution

:::
of

:::
the

:::
full

::::::::
problem.

:::::
Like

:::::::::::::::::::
(Maderich et al., 2015),

:::
we

::::::
follow

:::::::::
suggestion

::
by

::::::::::::::::::::::::
Barenblatt (1996) “assuming

::
in
::::::::::

succession
::::::::
complete

::::::::
similarity,

::::::::::
incomplete

::::::::
similarity,

::::
lack

::
of

:::::::::
similarity

:
-
::::
and

::::
then

:::::::::
comparing

:::
the

::::::::
relations

::::::::
obtained

:::::
under

::::
each

::::::::::
assumption

::::
with

::::
data

:::::
from

:::::::::
numerical

::::::::::
calculations,

:::::::::::
experiments,

::
or

:::
the

::::::
results

:::
of

:::::::
analytic

:::::::::::::
investigations”.

:::
The

:::::::::
simulation

::::::
results

::::::::::::::::::::::::
(Maderich et al., 2015) show

::::
that5

::
the

::::::
flume

:::::
depth

::
in

:::
the

:::::
range

::::::::::
23≤ ε≤ 92

::::
does

:::
not

:::::
affect

:::
the

::::::::::::
characteristics

::
of

:::
the

:::::
ISWs

::::
with

:::::::
trapped

:::::
cores.

::::
The

:::::::::
sensitivity

::
of

::
the

:::::
wave

::::::::
dynamics

::
to

:::
the

::::::
values

::
of

:
ε
::::
was

:::::
found

:::
by

::::::::::::::::
Carr et al. (2008) in

:::
the

:::::
range

::::::::::
4≤ ε≤ 11.

:::::
From

::::
these

::::::
studies

:::
we

::::::::
conclude

:::
that

::::::
results

::
of

::::
our

:::::::::
simulations

:::
in

:::
the

:::::
range

::::::::::
23≤ ε≤ 92

::::::
(Table

::
1)

:::
do

:::
not

:::::::
depend

::
on

:::
ε.

:::
The

::::::::
possible

:::::
effects

:::
of

:::::::
Schmidt

::::
and

::::::::
Reynolds

:::::::
numbers

::::
will

::
be

::::::::
discussed

::
in

:::::::
sections

:::
3.4

:::
and

::::
3.6.

:::
The

::::::::
important

:::::::
features

:::
of

:::
the

:::::
ISWs

:::
can

:::
be

::::::::
described

::
by

::::::::::::
dimensionless

:::::::::
amplitude

::
is α= a/h

:
,
:::
the

:::::::
Froude,

:::::::::
Richardson

::::
and10

::::::::
Reynolds

:::::::
numbers

:::::
based

::
on

:::::
local

::::::::::::
characteristics

::
of

:::::
waves

:::::::::::::::::::
(Maderich et al., 2015). The Froude number Frmax is defined as the

ratio of the maximum local velocity Um to the phase velocity Uc:

Frmax =
Um

Uc
. (5)

The shear stability of an ISW can be described by the minimum Richardson number Rimin calculated for a wave crest:

Rimin =
g

ρ0

∂ρ

∂z

/(
∂U

∂z

)2

, (6)15

where ρ(x,y,z, t) is the density. The wave ,
:::
U

:
is
::::::::::::

longitudional
:::::::::
component

::
of

::::::::
velocity.

:::
The

:::::
ISW Reynolds number is defined

as

Rem =
Um(a)

ν
. (7)

The parameters of interacting ISWs are given in Table 1. They
::::
The

:::::
waves

:::
are

::::::
divided

::::
into

::::
four

::::::
groups:

:::::::
(A,B,C)

:::::::::
depending

:::
on

::
the

:::::::::
thickness

::
of

:::
the

:::::::
stratified

:::::
layer

::::
and

::
D

:::
for

:::::::::
simulation

::
of

::::
ISW

::::::::
reflection

:::::
from

:
a
:::::::

vertical
::::
wall

::
in

:::
the

:::::::::
laboratory

::::::::::
experiment20

::::::::::::::::::::
(Stamp and Jacka, 1995).

::::
The

:::::
waves

::
in
:::::
Table

::
1 can be categorized according to the values of the parameters Frmax and Rimin

(Maderich et al., 2015) into three classes: (i) the weakly nonlinear waves without trapped cores at 1<Rimin, Frmax <1; (ii) the

stable strongly nonlinear waves with trapped cores at 0.15< Rimin < 1, 1< Frmax < 1.3 ; (iii) the unstable strongly nonlinear

waves
::::
with

::::::
trapped

:::::
cores at Rimin<0.1; Frmax ≈ 1.35. The boundary conditions on the surface include the kinematic condition

for the free surface. At the lateral and bottom
:::
rest

::
of

:
boundaries, the free-slip conditions are used.

::
No

::::
flux

:::::::::
condition

:::
for25

::::::
density

::::::::
deviation

::::
was

::::::
applied

::
at
:::
all

::::::::::
boundaries.

:
For large ε, this allows

::::
these

:::::
allow

:
for the simulation of the interaction of

mode-1 ISWs with trapped core, propagating in stratified layers near the surface and
::
the

:::::
ISWs

::::::::::
interaction near the bottom,

::
as

:::::::::
considered

:::::
here, and the interaction of mode-2 ISWs, assuming symmetry in the Boussinesq approximation around the

horizontal midplane (Maderich et al., 2015). No flux condition for salinity was applied at all boundaries. The
:::
The

::::::::
numerics

::
of

model is described in detail in (Kanarska and Maderich, 2003; Maderich et al., 2012). A total of 35
::
40

:
runs were performed30

in Series A-D. Most of the runs were performed in a two-dimensional setting with a grid resolution of 3000× 400 (length

and height, respectively), whereas several three-dimensional runs were
::::
runs

:
(
:::::
waves

:::::::::
A11-A13)

:::::
were

::::
also carried out with a

4



grid resolution of 2000× 200× 45 (length, height and width, respectively)
:::::::::
6000× 800

:::
to

:::::
verify

:::::
effect

::
of
::::

grid
:::::::::

resolution
:::
on

::
the

:::::
wave

:::::::::
interaction

::::
and

::
to

:::::
make

:::
the

::::
finest

::::::::
structure

::::::
clearer.

:::::::::::
Comparison

::
of

:::
the

::::
main

::::
and

:::::::
doubled

::::
grid

::::::::
resolution

:::::::
showed

:::
the

:::::::::
equivalence

:::
of

:::
the

::::::::
calculated

::::::
fields,

::::
with

:::
the

::::::::
exception

::
of

:::::
wave

:::
A13

:::
for

::::::
which

:::::::::
6000× 800

:::::::::
resolution

::::
was

::::
used.

3 Results and discussion

3.1 Interaction of waves of equal amplitudes without trapped cores5

The interaction of ISWs of equal amplitude αL = αR = 0.81 (case (A2; A2)) is shown in Fig. 2a. These waves belong to the

class of weakly nonlinear waves without trapped cores (Frmax=0.71, Rimin = 52 ). After a collision, waves retain their profile

and lose amplitude mainly due to the viscous effects. Before and after collision, the wave profiles are similar to those of the

weakly nonlinear BO solitons even if the wave amplitudes are not small (Fig. 3). The collision for this class of waves is not

fully elastic, as seen in Fig. 4, where the relative excess .
::::
For

:::
two

:::::
layer

:::::::::::
stratification,

::
in

:::::
which

:::
the

:::::
outer

::::
layer

::
is

:::::::
assumed

::
to

:::
be10

::::::
infinite

:::::
deep,

:
a
:::::::::::::::
weakly-nonlinear

:::::
theory

:::::::::::::::::::::
(Matsuno, 1998) predicts

::::::
excess

:::
∆α

:
of the maximum runup amplitude αm :::

αm over

the sum of the amplitudes of equal interacting waves ∆α (runup excess) and the phase shift ∆θ are plotted versus α. Here,

α= αL = αR, ∆α= αm/α− 2 and ∆θ is the phase shift normalized at the characteristic time scale τ0::
α

::
as

::::::::
∆α∼ α2

:::::::
whereas

:::::::::
normalized

::
to

:::::::::::
characteristic

::::
time

:::
τ0:::::::

temporal
::::::

phase
::::
shift

:::
∆θ

::
is

:::::::
∆θ ∼ α. The presence of a phase shift due to the collision of

mode-2 waves for α= 0.98 was confirmed in a laboratory experiment (Honji et al., 1995).
:::
We

::::::::
estimated

::::::::
temporal

:::::
phase

::::
shift15

::
by

:::::::::
comparing

::::::::::
trajectories

::
of

:::
the

:::::
wave

:::::
crests

::::
with

::::
and

::::::
without

::::::::
collision.

:
As seen in Fig. 4 the relative runup excess ∆α and

:::::
∆α/α

::::
and

:::::::::
normalized

::::::::
temporal phase shift ∆θ increase as the interacting wave amplitude α increases

:
at
:::::
small

::::
and

::::::::
moderate

:
α
::
as

:::::::
weakly

::::::::
nonlinear

:::::
theory

:::::::
predicts.

3.2 Interaction of waves with a trapped core and moderate amplitude

The head-on collision between ISWs of equal moderate amplitude with trapped cores α= αL = αR = 1.6 (case (A5; A5))20

is characterized by special features, as seen in Fig. 2b. These waves, belonging to class (ii), i.e., stable strongly nonlinear

waves with trapped cores (Frmax=1.11, Rimin=1.1), carried fluid in the cores before collision.
:::
The

:::::::
trapped

::::
fluid

::::::
slowly

:::::
leaks

::::
from

::::
rear

::
of

:::::::
trapped

:::::
bulge

::::::::
similarly

::
to

:::
the

:::::::::
laboratory

::::::::::
experiments

:::
(e.

::
g.

:::::::::
Maderich

::
et

:::
al.,

:::::
2001;

::::::
Brandt

::::
and

:::::::
Shipley,

::::::
2014).

However, after collision, the waves lost
::
all

:
fluid trapped by the wave cores. This fluid slowly collapsed in the viscous and

diffusive-viscous regimes (Galaktionov et al., 2001). The profile of the incident wave at α= 1.6 (as well as other character-25

istics (Maderich et al., 2015)) essentially differs from the predictions made by using the weakly nonlinear theory (Fig. 5a).

The amplitudes of transmitted
::::::::
interacting

:
waves (Frmax=1.0, Rimin =1.2) decrease after collision. They propagate as weakly

nonlinear BO solitons (Fig. 5b). This kind of head-on collision occurs in the range of approximately 1≤ α≤ 1.6. Notice that in

the numerical study Terez and Knio (1998), the wave lost trapped fluid in the process of interaction even at α= 2.1. As shown

in Fig. 4, the normalized excess of the maximum amplitude ∆α almost linearly increases in the range 1≤ α≤ 2, whereas the30

increase in the phase shift ∆θ slows down.
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3.3 Interaction of internal waves with stable trapped cores

The large amplitude ISWs with 1.2 <∼Frmax
<∼ 1.3 and 0.15<∼Rimin < 1 are characterized by stable long-lived cores. Fig. 6a

shows the collision of waves with equal amplitude α= αL = αR = 3.3 (case (A9; A9)) with the parameters Frmax=1.28

and Rimin=0.25. As seen in the figure, the volumes of dyed fluid in the trapped core collide together with the waves. The

cores did not mix during the collision, which was also observed in a laboratory experiment (Honji et al., 1995). Then, the5

transmitted
:::::::
outgoing waves captured the cores and carried the dyed fluid in the opposite directions with little mass loss. Some

mass exchange
::::::
between

::::::
waves that occurred in the mode-2 experiment (Stamp and Jacka, 1995) was, perhaps, the result of a

small offset pycnocline
:::::
slight

:::::::::::
displacement

::
of

:::
the

::::::::::
pycnocline

::
in

:::
the

:::::::
vertical

::::::::
direction,

:::::
which

::
is
:::::
often

::::::::
observed

::
in

:::::::::
laboratory

::::::::::
experiments (Carr et al., 2015).

The interaction process is described in Fig. 7 in more detail. Here, the velocity and vorticity fields are shown together with10

an isopycnal distribution. At the beginning of collision (Fig. 7a), the trapped cores almost touch. They form a pair of vortices

carrying trapped fluid upward. The next snapshot (b) corresponds to the time when the potential energy of the interacting waves

reaches a maximum and the kinetic energy reaches a minimum. Unlike waves of class (i), at this moment in time, the kinetic

energy of the waves does not vanish because the flows in the trapped cores change sign when the colliding waves pass through

each other
:::
due

::
to
:::

the
::::::::

collision. This process is also different from the process of the formation of waves with captured cores15

due to the collapse of the mixed region, which was initially in a state of rest. Then, the fluid in the cores is entrained by the

transmitted
:::::::
outgoing waves with some mixing

:
,
::
as

::::::::
represent

::
in

:
a
::::
2-D

:::::::
context,

::::::
arising due to instability, resulting

:
.
::::
This

::::::
results

in the slight loss of mass from the trapped cores and a decrease in the phase velocity of 8 % (Figs. 7c and 6a). As shown in

Fig. 4
::
4a, for stable waves of class (ii), the runup excess ∆α

:::::
∆α/α

:
still almost linearly increases in the range 2.3≤ α≤ 4.6,

whereas the increase in the phase shift ∆θ is substantially slowed down when α > 1, and then ∆θ tends towards a constant20

value at α≥ 4. The distributions of ∆α and ∆θ in Fig. 4 for stable waves were approximated based on the
::
by

:
linear and

exponential dependences
:::::::::::
dependencies, respectively, as

:::::
which

:::::
were

:::::
based

:::
on

:::
the

:::::::::::::::
weakly-nonlinear

::::::::::
asymptotics

::::::::::
∆α/α∼ α

:::
and

:::::::
∆θ ∼ α

::::::::::::::::
(Matsuno, 1998) for

:::::
small

::
α

:::
and

::::::::
obtained

::
in

::::::::
numerical

::::::::::
experiments

::::::
almost

:::::::
constant

::::::::::
distribution

::
of

:::
∆θ

::
at

::::
large

:::
α.

:::::
These

::::
fitted

::::::
curves

:::
are

:

∆α= 0.116α, ∆θ = 4.1[1− exp(−1.33α)]. (8)25

The behaviour of mode-2 ISWs during reflection off a solid vertical wall is similar to that of the collision of two waves of

equal amplitude. A comparison with the simulated reflection of ISWs off a vertical wall (case D1) in a laboratory experiment

(Stamp and Jacka, 1995) is given in Fig. 8. The parameters of the experiment were as follows: density difference ∆ρ/ρ0=0.05,

pycnocline thickness h= 0.0025m and α= 2.2. The incident wave belongs to the class (ii) ISWs (ii)
:
of

:::::
ISWs: Frmax=1.18,

Rimin=1.05. The calculated density isopycnals in a vertical cross-section along the flume at t= 16s in Fig. 8a agree with the30

density isopycnals visualized in the experiment by water insoluble droplets of different densities in Fig. 8b. The interaction

process is similar to that shown in Fig. 6a, where after collision, some instability and mixing are observed in the rear of the

trapped core. In simulated case D1, the corresponding values of Frmax and Rimin after reflection are 1.1 and 1.21, respectively.

The simulated and observed trajectories of the wave crests, as shown in Fig. 8c, are similar. The corresponding simulated runup
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excess ∆α=0.28 and phase shift ∆θ= 3.8. These values agree with the other values of ∆α and ∆θ in Fig. 4. The experimentally

observed (Stamp and Jacka, 1995) phase shift values are also given in Fig. 4b. They demonstrate large scatter due to difficulties

encountered in the experiment, as indicated by (Stamp and Jacka, 1995).

3.4 Interaction of internal waves with unstable trapped cores

The large amplitude ISWs with Frmax ≈ 1.3 and Rimin
<∼ 0.1 belong to class (iii), which is characterized by a local wave-5

induced shear instability resulting in the appearance of the Kelvin-Helmholtz (KH) billows (Maderich et al., 2015); glob-

ally, however, this wave/self-generated shear system can be stable, as noted by (Almgren et al., 2012). The waves carry out

trapped fluid, but the cores gradually lose trapped fluid to the wake through KH billows shifting to the wave rear
:::
and

:::::::
through

::::::::::
recirculation

::
in

:::::::
trapped

::::
core

::::::::::::::::::::::::::::::::::::::::::::::::
(Terez and Knio, 1998; Maderich et al., 2001; Lamb, 2002). Fig. 6b shows the collision of waves

with equal amplitude α= αL = αR = 6.4 (case (A13; A13), with the parameters Frmax=1.31 and Rimin =0.06)for a 2D setting.10

Unlike that shown in Fig. 6a (case (A9; A9)), the collision of trapped cores was accompanied by billows, resulting in mix-

ing. The divergent waves remained locally unstable, again forming KH billows in the wave aft. The amplitude of diverging

waves gradually decreased due to the loss of mass of the trapped cores. The mixing process caused by the destruction of the

KH billows is essentially three-dimensional; therefore, 3D structures should be important for the transport of trapped cores

(Deepwell and Stastna, 2016). The wave collision in a 3D setting for the same case (15

::
In

:::
the

:::::
ocean

:::
and

:::
in

:::
the

::::
most

::
of

::::
the

::::::::
laboratory

:::::::::::
experiments

:::
the

:::::::
Schmidt

:::::::
number

::
is

:::::
about

:::::::
700-800.

::::
The

::::
used

::::
grid

:::::
does

:::
not

::::
allow

:::
the

::::::
whole

:::::
range

::
of

::::::::::::::
inhomogeneities

::
in

::::::
salinity

::::::::
(density)

::
to

:::
be

::::::::
resolved.

::::::::
Therefore,

::
it
::
is

::::::::
important

:::
to

:::::::
evaluate

:::
the

:::::
effect

::
of

::::::::
molecular

::::::::
diffusion

:::
of

::::::
salinity

:::
on

:::
the

::::::::
dynamics

:::
of

:::::
waves

::::
and

::
to

:::::
verify

::::
the

:::::::::
possibility

:::
that

::::::::
diffusion

::::
can

::
be

::::::::
neglected

:::
in

::
the

:::::
wave

::::::::
collision

:::
for

::::
large

:::
Sc.

::::
Two

:::::
cases

:::
for

:::::
large

:::::::::
amplitude

:::::
waves

:::::
were

:::::::::
considered

::::
(A9;

::::
A9)

:::
and

::
(A13; A13)is shown in

Fig. .
:::
We

:::::::::
performed

::::
runs

:::
for

:::::
Sc=1;

:::
10

:::
and

:::::
1000.

::
In

:::
the

::::::::
collision

::::
case

:::::::
(A9;A9)

:::
the

::::::::
behaviour

:::
of

:::::::
colliding

::::::
waves

:::
are

:::
the

:::::
same,20

:::::::
whereas

:::
the

::::::::
difference

::::::::
between

::::
runs

:::
for

::::
Sc=1

::::
and

::::::::
Sc=1000

:::
was

::::
less

::::
than

:::
1%

:::
of

::::::
∆α/α

:::
and

::::
∆θ

::::::
values.

:::
The

::::::::::
comparison

:::
of

::
the

:::::::
density

::::::::
snapshots

::::::
during

::::::::
collision

::
in

::::
case

:::::
(A13;

:::::
A13)

:::
for

:::::::
different

::::::::
Schmidt

:::::::
numbers

::
is

::::::
shown

::
in

::::
Fig. 9. The interacting

ISWs are visualized by a density isosurface with ρ
:::::
Figure

::::::
clearly

:::::::
depicts

::::::::
difference

::::::::
between

:::::::
structure

:::
of

:::::::::
interacting

::::::
waves

::
for

:::::
cases

:::
Sc=1005 kg m−3 at different times. In the side plans, the distributions of the density are shown. Initially,

:
1
::::
and

::::::
Sc=10.

:::
The

:::::::::::::
corresponding

:::::
values

:::
of

::::::
∆α/α

:::
and

::::
∆θ

:::::
differ

:::
by

:::
5%

::::
and

:::::
0.6%,

:::::::::::
respectively.

::::
This

::::
was

::
in

:::::::::
agreement

:::::
with

:::
the25

:::::
results

:::
by

::::::::::::::::::::::::
Deepwell and Stastna (2016),

::::::
where

::
it

::::
was

:::::
shown

::::::::
essential

:::::
effect

:::
of

::::::::
molecular

:::::::::
diffusivity

:::
on

:::
the

:::::
mass

::::::::
transport

::
by

:::::::
mode-2

::::
ISW

:::
in

:::
the

:::::
range

::::::::::
1≤ Sc< 20

::
.
::
At

::::
the

::::
same

:::::
time,

:::
the

::::::
results

:::
of

::::::::::
calculations

::
at

::::::
Sc=10

::::
and

::::::::
Sc=1000

::
in

::::::
Fig.9b

:::
and

::
9c

:::::::::
practically

::::::::
coincide,

::::::
which

:::::::
indicates

::::
that

::::::::
molecular

::::::::
diffusion

::::
may

:::
not

:::
be

::::
taken

::::
into

:::::::
account

:::::
when

:::::::
studying

:::
the

::::::
global

::::::::
properties

::
of

::::::::
colliding

::::::
waves.

::::
This

::::::::::
conclusion

:::::
agrees

:::::
with

:::::::::::::::::::::
Terez and Knio (1998) as

::::
they

:::::::
estimate

::::
that

:::
the

:::::
value

::
of

:::::::
Sc=100

:::
was

:::::::::::
“sufficiently

::::
high

:::
for

::::::
density

::::::::
diffusion

::
to

:::
be

:::::::
ignored

::::::
during

:::::::::
simulation

::::::
period”

::::
and

:
the development of instability was30

two-dimensional (Fig. 9a), resulting in the development of KH billows similar to that in the 2D simulation in Fig. 6b.
:::::
results

:::
by

:::::::::::::::::::::::::::::::::
Deepwell and Stastna (2016) simulation,

::::::::
according

::
to

:::::
which

:::
the

:::::
mass

::::::
transfer

::
is
:::::::
virtually

:::::::::::
independent

::
of

::
Sc

:::::::
already

::
at

::::::
Sc>20.

However, overturning the KH billows resulted in the appearance of spanwise structures. These processes were enhanced by

the interaction of waves and their trapped cores, causing spanwise instability and turbulence (Fig
:::::::
diffusion

:::
can

:::
be

::::::::
important

:::
for

7



::::
small

:::::
scale

::::::
mixing

::::::::
processes

::
in

::::
tiny

::::::
density

:::::::::
structures

:::
(see

::::
e.g.

::::::::::::::::::::::
(Galaktionov et al., 2001))

:::::::
forming

::
in

:::::
result

::
of

::::::::
instability

::::
and

:::::::
turbulent

:::::::
cascade

::::::::
processes

::::::::::::::::::::::::::::
(Deepwell and Stastna, 2016) and

::::::::
persisting

::::
over

::::
time

::
in

::
a
::::
wake

::::::
behind

:::::::
moving

:::::
bulge

::
of

:::::::
trapped

::::
fluid

:::::::::::::::::::
(Terez and Knio, 1998).

::::::
These

:::::::
subgrid

::::
scale

:::::::::
structures

::
in

:::
our

::::::::::
simulations

:::::
were

:::::::
smashed

:::
by

::::::::
numerical

::::::::
diffusion

::::::
which

:::
did

:::
not

:::::
affect

:::::
larger

::::
scale

:::
due

::
to
::::
use

::
of

::::::
second

::::
order

::::
total

::::::::
variation

::::::::::
diminishing

::::::
(TVD)

::::::
scheme

:::
for

::::::::
advective

:::::
terms

::
in

::::::::
transport

:::::::
equation. 9b, c). The diverging waves after the collision remained shear-unstable (Fig. 9d). The comparison of side plans for the5

2D setting and for the cross-section averaged distribution of density for the 3D setting are given in Figs. 9e and 9f, respectively.

As seen in the figure, 3D instability results in greater mixing comparative with the 2D case. Therefore, KH billow visible in 2D

setting (Fig.9e) disappeared in cross averaged 3D distribution in Fig. 9f. However, differences between 2D and 3D estimations

of ∆α and ∆θ in Fig. 3 did not exceed 2.5% and 1.2%, respectively.

3.5 Interaction of internal waves with trapped cores and different amplitudes10

The collision process is modified for waves of different amplitudes by the exchange of trapped fluid between colliding waves

due to the conservation of momentum (Stamp and Jacka, 1995). This process is shown in Fig. 10 for two cases. In the first

case, two stable strongly nonlinear waves with trapped cores collide (αL = 3.3 with Frmax=1.28, Rimin=0.25; αR =2.15 with

Frmax=1.16, Rimin =0.4). As seen in Fig. 10a, the part of the trapped core fluid from the wave of larger amplitude (blue colour)

is merged with the trapped fluid from the smaller wave (red colour) without noticeable mixing. The circulation inside the core15

of the larger transmitted
:::::::
outgoing

:
wave results in the stirring of the fluid in such a way that the smaller core fluid eventually

ends up inside the fluid from the larger wave.

The collision of an ISW of small amplitude (class (i)) with a stable wave of large amplitude (class (ii)) was considered for

case (A11; A1) to study the possibility of triggering instability in the wave of large amplitude via a small disturbance, similar

to the waves of mode-1 in a two-layer fluid (Almgren et al., 2012). The simulation results are shown in Fig. 10b. As seen in20

the figure, the small amplitude ISW (α= 0.5; Frmax=0.33, Rimin =81) triggered instability in the ISW with an amplitude that

was ten times larger than that of the small wave. Notice that the large amplitude wave has parameters (α= 4.6; Frmax=1.3,

Rimin =0.15) that are close to critical for the development of instability. The amplitude of the small wave essentially decreased

during the interaction process due to the interaction and due to the viscous attenuation at the low Reynolds number of the

wave (Rem =45.1). Unlike the head-on collision of large amplitude mode-1 and weakly nonlinear mode-2 ISWs (Stastna et al.,25

2015), the transmitted
:::::::
outgoing wave of small amplitude did not degenerate. Spatiotemporal diagrams for the paths of two

ISWs of different amplitudes colliding head-on are shown in Fig. 11 for cases (A9; A7) and (A1; A11). As seen in Fig.

11a, the trajectories of waves of larger amplitude propagating from left to the right were less subject to changes due to the

collision, whereas the phase shift and the decrease of phase velocity for the smaller waves propagating from right to the left

were essentially greater.30

3.6 Estimation of the energy loss due to collision
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:::
We

::::::
defined

:
a
:::::::
relative

::::::
energy

:::
loss

:::
due

::
to
:::
the

:::::
wave

:::::::
collision

::::::::
(∆Eloss)

::
as

:::
the

:::::::::
difference

:::::::
between

:::
the

::::
total

:::
loss

::
of
::::::
energy

::::
Etot::::

due

::
to

:::
the

::::::::
collision

:::
and

:::
the

::::
loss

::
of

::::::
energy

::
by

::::
two

:::::
single

::::::
waves

:::
due

::
to

:::
the

::::::
viscous

::::::
decay

::
or

::::::::
instability

::::::
∆Edis:

∆
:
Eloss
::::

=∆
:::

Etot
:::

−∆
:::

Edis
:::

. (9)

The relative loss of energy due to the collision of ISWs can be calculated as the normalized difference in energy of incoming

waves and transmitted waves5

∆E =
PSE

(in)
L +PSE

(in)
R −PSE

(tr)
L −PSE

(tr)
R

PSE
(in)
L +PSE

(in)
R

,

where PSE
(in)
L and PSE

(in)
R ::::

waves
::::::
before

:::
and

:::::
after

:::::::
collision

:

∆Etot =
PSE

(bf)
L +PSE

(bf)
R −PSE

(af)
L −PSE

(af)
R

PSE
(bf)
L +PSE

(bf)
R

,

:::::::::::::::::::::::::::::::::::::::::::::

(10)

∆Edis =
PSE

(bf)
L +PSE

(bf)
R − P̃SE

(af)

L − P̃SE
(af)

R

PSE
(bf)
L +PSE

(bf)
R

,

:::::::::::::::::::::::::::::::::::::::::::::

(11)

:::::
where

::::::::
PSE

(bf)
L :::

and
::::::::
PSE

(bf)
R :

are the pseudo-energies of the incoming waves
:::::
waves

::::::
before

:::::::
collision

:
at the cross-sections xL10

and xR, respectively, and PSE
(tr)
L and PSE

(tr)
R :::::::

PSE
(af)
L ::::

and
::::::::
PSE

(af)
R :

are the pseudo-energies of the transmitted waves

:::::
waves

::::
after

::::::::
collision at the cross-sections xL and xR, respectively

:
,
:::::::
whereas

::::::::
P̃SE

(af)

L ::::
and

::::::::
P̃SE

(af)

L :::
are

:::
the

:::::::
energies

:::
of

:::
the

:::::::
outgoing

::::::
waves

::::::
without

:::::::::
interaction

::
at

:::::
cross

:::::::
sections

::
xL::::

and
:::
xR,

::::::::::
respectively. The pseudo-energy is the sum of the kinetic and

available potential energies (Shepherd, 1993) of incident and transmitted waves
:::::
waves

::::::
before

:::
and

:::::
after

:::::::
collision. The method

for estimation of the available potential energy and energy fluxes was given in (Scotti et al., 2006; Lamb, 2007). A detailed15

description of the procedure of the pseudo-energy calculation was presented by (Maderich et al., 2010). We define the energy

loss due to the wave collision (∆Eloss) as the difference between the total loss of energy Etot (6) and the loss of energy by

single waves due to the viscous decay or instability ∆Edis

∆Eloss=∆Etot−∆Edis.

::::::::::::::::::
Maderich et al. (2010).

:
20

::::
From

::::::::::
dimensional

:::::::::
arguments

:::::::::::::::::::::
∆Eloss =Φ(α,Rem,Sc),:::::

where
::
Φ
::
is

:::::::
function

::
of

::::
three

::::::::::
arguments.

::::::::
Assuming

::::::::
complete

::::::::
similarity

::
on

:::
the

:::::::::
Rem →∞

::::
and

:::::::
Sc→∞

::::::::
consider

::::::::::
dependence

::::::
∆Eloss:::

on
::
α.

:
As seen in Fig. 12, the dependence of the relative loss of

energy on the dimensionless wave amplitude
::
this

::::::::::
dependence

:::::
given for symmetric collisions (α= αL = αR) is not monotonous

::::::::
monotonic

:::
and

::
is

:::
not

::::::::
universal,

::::::::
changing

:::::::::
depending

:::
on

:::
the

:::::
series

::
of

:::::::::::
calculations. It can be divided into three different ranges. In range

I (0≤ α≤ 1), the energy loss due to the interaction increases as the wave amplitude increases. This range coincides with the25

range of weakly nonlinear waves without trapped cores. In range II (1< α≤ 1.75), the relative energy losses reach a max-

imum. The range coincides with the range in which colliding waves lose trapped cores in the process of interaction. This

9



fact can explain the relative maximum of energy loss as the loss of potential energy of the cores. In range III (1.75≤ α), the

behaviour of the loss of energy is also non-monotonous
::::::::::::
non-monotonic

:
and non-similar. At first, in the zone of stable large

amplitude collisions, the loss of energy decreases, but as the amplitudes of collided waves increase, the interaction is accom-

panied by the development of instability; therefore, the loss of energy increases. Finally, for unstable waves, the energy losses

due to the interaction increase monotonically with increasing amplitude. The Euler equations for stratified fluid do not contain5

non-dimensional parameters if the thickness of

:::
The

:::::::
absence

:::
of

::::::::
complete

::::::::::::
self-similarity

::
on

::::
the

::::::::
Reynolds

::::
and

:::::::
Schmidt

::::::::
numbers

::::
also

:::::
means

::::
that

:::
the

::::::
Euler

::::::::
equations

:::
do

:::
not

:::::::
describe

:::
the

:::::
wave

::::::::::
interaction

::::::::
processes

:::
in

::::
deep

:::::
water

:::::
even

:::
for

:
the stratified layer h, the phase velocity of the long

linear waves c0 and the characteristic time τ0 are used for the equation scaling. Therefore, it should be expected that the

dimensionless relations in Figs. 4 and 12 will be similar for different h. However, they demonstrate a lack of complete10

similarity due to the potential influence of other parameters. It was suggested by (Maderich et al., 2015) that this is a result

of the incomplete similarity on the wave Reynolds number Rem, representing the effect of viscosity.
::::
range

::
of

::::::
stable

::::::
waves.

As shown in Table 1, the parameter Rem varies in Series A-C several times for waves of the same dimensionless amplitude

α. Another factor of the incomplete similarity can
:::
The

:::::::::
incomplete

:::::::::
similarity

::::::
scaling

::::::::
following

::::::::::::::::::::::
(Barenblatt, 1996) results

::
in

:::::::
relation:

::::::::::::::::::::::
∆Eloss ∼Ψ(α)Rem

mScn,
:::::
where

::
Ψ
::

is
::::::::

function,
:::
m

:::
and

::
n

:::
are

:::::::::
exponents.

::::::::
However,

::::
this

::::::::
rescaling

:::
also

::::
did

:::
not

:::::
result15

::
in

:::::::
universal

:::::::::::
dependence.

:::
We

::::::::
conclude

::::
that

::
it

:
is
::::

due
::
to

:::
the

::::::::
different

::::::::::
mechanisms

:::::::::
governing

::::::::
collision

::::::
process

::
in

::::::
ranges

:::::
I-III:

::::::::
nonlinear

::::
wave

::::::::::
interaction,

:::::::
collapse

::
of

:::::::
collided

:::::::
trapped

::::::
masses

:::
and

:::::::::
instability.

:::::::
Another

:::::
factor

::::::::::
influencing

:::
the

:::::::::
interaction

::::
may

be the diffusivity effect (Deepwell and Stastna, 2016), which is described by the Schmidt numberSc = ν/χ. However, in our

study
::::
these

:::::::::::
experiments, the Schmidt number was

::::
large

:::
and

:
constant.

4 Conclusions20

The dynamics and energetics of a head-on collision of internal solitary waves (ISWs) with trapped cores propagating in thin

pycnocline were studied numerically within the framework of the Navier-Stokes equations for a stratified fluid. The peculiarity

of this collision is that it involves the trapped masses of a fluid. The interaction of ISWs differs
:::
was

:::::::
different

:
for three classes of

waves: (i) weakly nonlinear waves without trapped cores, (ii) stable strongly nonlinear waves with trapped cores, and (iii) shear

unstable strongly nonlinear waves with trapped cores. The simulations showed that the wave phase shift grew as the amplitudes25

of the interacting waves increased for interacting waves of classes (i) and (ii) and remained almost constant for those of class

(iii). The excess of the maximum runup amplitude over the sum of the amplitudes of colliding waves almost linearly increased

as the amplitudes of the interacting waves belonging to classes (i) and (ii) increased. However, it decreased somewhat for

those of the unstable class (iii). The dependence is similar to the interaction of the mode-1 waves
::
in

:
a
::::::::
two-layer

:::::::::::
stratification

(Terletska et al., 2017), with the difference being that the phase shift continues to grow for the collision of
::::::::
interfacial

:
waves30

of mode-1. The waves of class (ii) with a normalized thickness of the pycnocline amplitude α fully lost fluid trapped by the

wave cores in the approximate range of 1≤ α≤ 1.75. The interacting stable waves of higher amplitude captured cores and

carried trapped fluid in the opposite directions with little mass loss. The collision of locally shear unstable waves of class

10



(iii) was accompanied by the development of three-dimensional instabilityand turbulence.
:::::::::
instability.

:::
We

:::::::::
concluded

:::
that

::::
this

::::
kind

::
of

:::::::::
interaction

:::::::
reduced

:::
the

::::::::
capacity

:::
for

::
an

:::::
ISW

::
to

::::::::
transport

:::::
mass.

:
The dependence of energy loss on wave amplitude

was not monotonous
:::::::::
monotonic. Initially, the energy loss due to the interaction increased with increasing wave amplitude.

Then, the energy losses reached a maximum due to the loss of potential energy of the cores upon collision and then started

to decrease. With further amplitude growth, the collision was accompanied by the development of instability, and the loss of5

energy increased. The collision process was modified for waves of different amplitudes because of the exchange of trapped

fluid between colliding waves due to the conservation of momentum. Merging of the trapped fluid due to the collision of

stable waves belonging to class (ii) occurred through the stirring mechanism without noticeable mixing. Similar to waves of

mode-1 in a two-layer fluid (Almgren et al., 2012; Terletska et al., 2017), the interaction of a wave of large amplitude with

a wave of small amplitude can trigger local wave instability of the large amplitude wave if the parameters of this wave are10

::::
were

:
close to critical for the development of instability.

:::
The

::::::::
obtained

::::::
results

:::
can

:::
be

::::::
applied

:::
to

:::
the

:::::::::
interaction

::::::::
dynamics

:::
of

:::::::::
subsurface

::::::
trapped

::::
core

::::::
formed

::::::
within

:
a
::::::::
shoaling

::::
large

:::::::::
amplitude

::::::
internal

::::::
waves

:::::::::::::::
(Lien et al., 2012).

:::::::
Notice,

:::::::
however,

::::
that

:::
the

:::::::::
destruction

::
of

:::
the

::::
KH

::::::
billows

::
is

:::::::::
essentially

:::::::::::::::
three-dimensional

:::::::
process,

:::::::::
therefore,

:::
3D

::::::::::::
high-resolution

:::::::::
simulation

::
is
:::::::::
necessary

::
to

::::::
predict

:::::::::
turbulence

:::::::::::
development

::::::::::::::::::::::::::::::::::::::::::::::
(Arthur and Fringer , 2014; Deepwell and Stastna, 2016).

::::
This

::
is
:::
the

:::::::
subject

::
of

::
a

:::::::
separate

:::::
study,

:::::::
whereas

:::
the

:::::::::
interaction

::
of

:::
the

:::::::
colliding

::::::
waves

::
as

:
a
::::::
whole

:::
can

::
be

:::::::::
described

::
in

:::
2D

::::::
setting.15
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Table 1. Summary of parameters of interacting ISWs
:
:
::::::::
pycnocline

::::::::
thickness

::::::::
parameter

::
h,

::::
wave

::::::::
amplitude

::
a,
:::::::::

wavelength
:::::
λ0.5,

::::
ratio

::
ε,

::::::::::
dimensionless

::::
ISW

::::::::
amplitude

::
α,

:::::
Froude

::::::
number

::::::
Frmax,

:::::::
minimum

:::::::::
Richardson

::::::
number

:::::
Rimin,

:::::::
Reynolds

::::::
number

::::
Rem:::

and
::::
ISW

::::
class.

Wave h a λ
:::
λ0.5 ε α Frmax Rimin Rem ::::

Wave
:

(cm) (cm) (cm)
::::
class

A1 0.5 0.25 3.15 92 0.5 0.33 81 45.1
:
i

A2 0.5 0.4 2.35 92 0.81 0.71 52 86.59
:::
86.6

:
i

A3 0.5 0.575
:::
0.58 1.9 92 1.15 0.82 14 132

:
i

A4 0.5 0.675
:::
0.68 2 92 1.35 0.98 11 166.05

::
166

: :
i

A5 0.5 0.8 2.2 92 1.6 1.11 1.1 223
:
ii
:

A6 0.5 0.94 2.4 92 1.88 1.12 0.8 277.4
:
ii
:

A7 0.5 1.075
:::
1.08 2.65 92 2.15 1.16 0.4 338.4

:
ii

A8 0.5 1.3 3.15 92 2.6 1.25 0.35 443.4
::
443

: :
ii

A9 0.5 1.7 3.65 92 3.3 1.28 0.25 683.0
::
683

: :
ii

A10 0.5 1.9 4.25 92 3.38 1.29 0.19 785.2
::
785

: :
ii

A11 0.5 2.3 4.75 92 4.6 1.3 0.15 1075
:
ii
:

A12 0.5 2.5 5.35 92 5 1.35 0.12 1242
::
iii

A13 0.5 3.2 6.35 92 6.4 1.31 0.06 1681
::
iii

B1 1 0.63 5.21 46 0.63 0.51 24 153.4
::
153

: :
i

B2 1 0.85 4.23 46 0.85 0.68 11.5 225.5
::
225

:
i

B3 1 1.25 3.61 46 1.25 1.02 2.4 388.0
::
388

: :
ii
:

B4 1 1.95 5.25 46 1.95 1.16 0.38 765.5
::
765

:
ii

B5 1 2.68 6.65 46 2.68 1.22 0.18 1225.
:::
1225

:
ii

B6 1 2.86 7.1 46 2.86 1.22 0.13 1345.
:::
1345

:
ii

B7 1 3.56 8.6 46 3.56 1.23 0.11 1839.
:::
1839

::
iii

C1 2 0.42 14 23 0.21 0.19 52 161.4
::
161

:
i

C2 2 0.76 10.4 23 0.38 0.30 25 291.2
::
291

: :
i

C3 2 1.2 7 23 0.6 0.50 3.1 511.68
::
511

:
i

C4 2 1.7 6.1 23 0.85 0.69 1.1 669.1
::
669

:
i

C5 2 2.02 6.21 23 1.01 0.84 0.45 881.6
::
881

:
i

C6 2 2.6 6.25 23 1.3 0.9 0.23 1159.
:::
1159

:
i

C7 2 2.9 7.22 23 1.45 1.01 0.22 1483.
:::
1483

:
ii
:

C8 2 3.3 7.9 23 1.65 1.08 0.18 1851.
:::
1851

:
ii
:

C9 2 3.5 8.5 23 1.75 1.147 0.15 2030.
:::
2030

:
ii

C10 2 4.1 9.2 23 2.05 1.17 0.13 2521.
::::
2521

:
ii

C11 2 4.56 10.82 23 2.28 1.23 0.12 2812.
::::
2812

:
ii

C12 2 4.846 12.44 23 2.42 1.24 0.09 3171.
::::
3171

::
iii

C13 2 5.28 13.4 23 2.64 1.25 0.07 3478.
:::
3478

::
iii

C14 2 5.94 15.31 23 2.97 1.29 0.05 3884.
:::
3884

::
iii

D1 0.25 0.55 12.5 56 2.2 1.18 1.05 329
:
ii
:
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Figure 1. Configuration of the experiment exploring the interaction of ISWs with trapped cores.

Figure 2. Snapshots of the density isopycnals during the collision of ISWsin a 2D setting. (a) Case (A2; A2). (b) Case (A5; A5). The trapped

cores are visualized by dyed fluid.
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Figure 3. Wave profile of incident wave in section xL :::::
before (a) and wave profile of transmitted wave

:::
after

:::
(b)

:::::::
collision in section xR ::

xL

(b) for α= 1.6
:::::::
α= 0.81

:
(case A5

::
A2; A5

::
A2). These profiles are compared with the profile of the BO soliton.

Figure 4. Relative runup excess ∆α (a) and phase shift ∆θ (b) of the interacting symmetric ISWs versus the normalized amplitude of the

wave α. The filled symbols correspond to the cases with KH instability. The fits, done by using a straight line in (a) and an exponential

function in (b), are shown.
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Figure 5. Wave profile of incident wave in section xL :::::
before (a) and wave profile of transmitted wave

:::
after

:::
(b)

:::::::
collision in section xR ::

xL

(b) for α= 1.6 (case A5; A5). These profiles are compared with the profile of the BO soliton.

Figure 6. Snapshots of the density isopycnals during the collision of ISWsin a 2D setting. (a) Case (A9; A9). (b) Case (A13; A13). The

trapped cores are visualized by dyed fluid.
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Figure 7. Details of the interaction of waves of equal amplitude α= 3.3 at different times (case (A9; A9)) in a 2D setting. The velocity,

vorticity ω and isopycnals are shown.

Figure 8. Comparison of the simulated reflection of ISWs off a vertical wall (case D1) in a 2D setting with a laboratory experiment

(Stamp and Jacka, 1995). (a) Snapshot of the calculated density isopycnals, visualized by a black tracer trapped fluid at t= 16 s. (b) Density

isopycnals in the experiment, visualized by water insoluble droplets of different densities. (c) Spatio-temporal diagrams of the path of an

ISW during reflection off a wall.

19



Figure 9. Three-dimensional evolution
:::::::::
Comparison of

::
the

::::::
density

:::::::
snapshots

:::::
during

:::::::
collision

::
of ISWs for

:
in
:
case (A13; A13) (a-d)

::
for

:::::::
different

::::::
Schmidt

:::::::
numbers. The wave is visualized by (adensity isosurface with ρ

:
)
::
Sc=1005 kg m−3. The side plan shows the distribution of density.

The comparison of side plans for a 2D setting and for the cross-section averaged distribution of density for a 3D setting at τ = 250 are given

in
:
1.
:

(e
:
b) and

:::::
Sc=10. (fc) , respectively

:::::::
Sc=1000.

::::
The

::::
right

:::
half

::
of

:::
the

::::::::
numerical

:::::
flume

:
is
::::::

shown
:::
due

::
to

:::
the

:::::::
symmetry

:::
of

::
the

:::::::::
interaction

:::::
process.
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Figure 10. Snapshots of the density isopycnals during the collision of ISWs with different amplitudes for case (A9; A7) (a) and case (A11;

A1) (b). The trapped cores are visualized by dye.

Figure 11. Spatio-temporal diagrams for paths of two ISWs of different amplitudes colliding head-on. (a) Case (A9; A7); .
:

(b) case
::::
Case

(A11; A1)
:
.
:::
The

:::::::
diagrams

:::
for

::
the

:::::
waves

::::::
without

::::::::
interaction

:::
are

:::::
shown

::
by

::::::
dashed

::::
lines.

21



Figure 12. Plot of the energy loss versus the amplitude of the equal colliding waves. The filled symbols correspond to the cases with KH

instability. The crossed symbols correspond to the cases where colliding waves lost trapped cores in the process of interaction.
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