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Abstract. Energy dissipation during wave propagation in fragmented geomaterials can be caused by independent movement 

of fragments leading to energy loss on their impact. By considering a pair of impacting fragments at times much greater than 

the period of their oscillations we show that at large time scale, the dynamics of the pair can be described by a linear viscous 

model with damping coefficient expressed through the restitution coefficient representing energy loss on impact. Wave 10 

propagation in fragmented geomaterials is also considered at the large time scale assuming that the wavelengths are much 

larger than the fragment sizes such that the attenuation associated with wave scattering on the fragment interfaces can be 

neglected. These assumptions lead to Kelvin-Voigt model of wave propagation, which allows the determination of dispersion 

relationship. As the attenuation and dispersion are not related to the rate dependence of rock deformation, but rather to the 

interaction of fragments the increasing damping and dispersion at low frequencies can be seen as an indication of fragmented 15 

nature of the geomaterial and the capacity of the fragments for independent movement. 

1 Introduction 

Geomaterials are often fragmented with the fragments covering different scales. This makes it important to understand the 

properties of wave propagation in such geomaterials. Fragmented materials are characterised by three major features. First is 

the bilinear nature of contacts when stiffness in compression is considerably higher than stiffness in tension. Bilinear oscillators 20 

feature multiple resonances, both multi-harmonic and sub-harmonic (see Dyskin et al., 2007; Dyskin et al., 2010; Dyskin et 

al., 2012d and literature cited there). Furthermore, chains of bilinear oscillators possess a rich structure of main resonances 

also accompanied by multi-harmonic and sub-harmonic ones (Shufrin et al., 2012; Dyskin et al., 2014). This structure of 

resonances may give an explanation to the observed spectral peaks in oscillations of blocky media (Kurlenya et al., 1996a; 

Kurlenya et al., 1996b; Kurlenya et al., 1996c). The effect of bilinearity on wave propagation was analysed by Kuznetsova et 25 

al. (2016).  

Second is the possibility of block rotations. The bending between fragments leads to elbowing of the neighbouring fragments 

in the course of their mutual rotations (Pasternak et al., 2006) as well as the dependence of bending stiffness on the moments 

(Pasternak et al., 2012; Shufrin et al., 2014). Furthermore, non-sphericity of fragments creates in the presence of compression 
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an effect of apparent negative stiffness (Dyskin and Pasternak, 2012a; Dyskin and Pasternak, 2012b; Dyskin and Pasternak, 

2012c). The resulting negative Cosserat shear modulus and its influence on wave propagation were analysed by Pasternak et 

al. (2016). It was shown that such a medium does not possess a critical frequency; subsequently the twist wave and both shear 

rotational waves of all frequencies can propagate. 

Third is the energy dissipation associated with impact of blocks characterised by low restitution. The main feature of this type 5 

of dissipation is that it acts only at the neutral position of the oscillators formed by pairs of adjacent blocks. In this paper we 

consider only this special type of energy dissipation and its influence on P- and S-wave propagation assuming that otherwise 

the fragmented medium is unimodulus (the same stiffness in compression and tension) and neglecting the effect of rotations. 

We assume that the wave length is considerably larger than the fragment sizes such that energy dissipation associated with 

scattering over interfaces can be neglected. 10 

2 A pair of fragments with impact damping 

Mathematically, the basic dynamic element involved in the process of wave propagation through fragmented geomaterials is 

a pair of neighbouring fragments, which can be modelled as a free undamped oscillator consisting of a single mass on 

undamped spring complimented by a condition that velocity decreases each time the system passes through the neutral point, 

a second order differential equation (1) is analysed. Herein, the velocity reduction is governed by a restitution coefficient 15 

 0,1 . 
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The solution of Eq. (2) prior to the first impact is a commonplace: 20 

       0 0cos sin sinX X V A           , (3) 

where 
2 2 0

0 0

0

,   arctan
X

A X V
V

   . (4) 

Analysing the second form of the solution, it is easy to determine the time of the first impact: 
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After the first impact, the velocity of oscillations reduces by restitution coefficient  . Thus, a subsequent solution has the 

following form: 

         1 1Τ Τ
cos sin

H H
X A d A
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        , (6) 

where  H t  is the Heaviside function. 5 

In this system, each next impact starting from the second occurs after time   from the previous impact decreasing stepwise 

the amplitude by  ; therefore, the general solution of the system is 

           
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It should be noted that the analysed problem is somewhat similar to a problem of a bilinear oscillator with an infinite stiffness 

in one direction (Dyskin et al., 2012d; Dyskin et al., 2013; Guzek et al., 2016) or a ball bouncing off a solid wall (Luck& 10 

Mehta, 1993; Anagnostopoulos, 2004; Jankowski, 2006), with the same coefficient of restitution, in terms of the amplitude. 

The main difference is that, described by Eq. (1), the range of   for the former type of a problem lies in a negative region, 

between -1 and 0, which leads to function X  being only in a positive domain. As a result, for equal and physically admissible 

boundary conditions and absolute values  , the odd half cycles of the solutions for those two types of problems are identical 

and the even half cycles are symmetrical about the axis 0X  . Both of these types of problems are demonstrated in Fig. 1. 15 

 

 

Figure 1: Vibrations for fragmented media (red solid line) and impact oscillator (blue dashed line) for absolute values of α = 0.9 and 

initial conditions 0X = 0.5 and 0V = 1.0. 
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3 Equivalent linear damping 

Although the analysed model is relatively simple to describe, its implementation for wave propagation problems is challenging, 

the reason being that the boundaries of the time intervals where the system behaves linearly are not known a priori as they are 

influenced by incomplete restitution and hence need to be determined step by step. Therefore, an equivalent continuous model, 

e.g., Kelvin-Voigt model, with effective coefficients should be chosen and the relationship between it and the original model 5 

should be established. 

Kelvin-Voigt model represents a free oscillation of a mass with damping that can be characterised in a dimensionless form by 

the damping coefficient 0  : 

   0 02 0,    0 ,    0Y Y Y Y X Y V         . (8) 

Equation (8) has three different types of solutions, depending on the value of  , which are overdamped ( 1  ), critically 10 

damped ( 1  ) or underdamped ( 0 1  ): 
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Among those three solution types, only the underdamped solution is physically admissible for a comparison with the proposed 

model because the other two types do not intersect the axis 0X  . Consequently, the relationship between the damping 15 

coefficient and restitution coefficient is carried out using the underdamped solution. 

Comparing the expressions inside the sin functions in (6) and (9) one can see that: 

2
21








. (10) 

In the discrete model, the initial conditions consist of zero displacement and given initial velocity. So, hereafter, the initial 

displacement 0X  is set as 0, which leads to 1 =π. 20 

Thus, using Eq. (10) for the Kelvin-Voigt model, it is possible to find a relation between  X   and  2Y  . For the former 

system, after a number of cycles N, with the passing time 2N  , the solution becomes: 

   2

0 sin 2NX V N      (11) 

On the other hand, for the Kelvin-Voigt model, using Eq. (10) one has: 
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As long as the third terms in Eqs. (11) and (12) are identical, the relationship between the damping parameters can be 

determined by comparison of the amplitudes of the systems: 
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. (13) 

The first term of the right side in Eq. (13) goes rapidly to unity even for significant values of  . Thus, for a purpose of 5 

homogenisation of the proposed model, this term can be substituted by unity, Fig. 2: 

2
exp
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



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. (14) 

 

 

Figure 2: Relationship (14) between α and ζ. 10 

 

It is seen from Eq. (14) that as 0  , 1   (the left boundary) and when 1  , 0   (the right boundary). The left 

boundary proves that the solutions for undamped oscillations (Eq. (8), 0  ) and oscillations with full restitution (Eq. (2), 

1  ) are identical. The right boundary corresponds to zero restitution and can be modelled by this relationship as a system 

with the critical damping ( 1  ) intersecting 0X   as time tends to infinity. Also, Eq. (14) shows that the relationship 15 

between the damping parameters does not depend on the initial velocity of the systems or on the current time for all   within 

the range of the underdamped oscillations. Hence, taking into consideration the previous statements, Eq. (14) should be applied 

for 0 1  . As a result, systems with both damping and incomplete restitution can be analysed by using equivalent viscous 

damping, reducing the complexity of the discrete problem.  
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When both types of energy dissipation take place, the restitution coefficient should be replaced by a damping coefficient; 

therefore, a reverse relationship is also important to define. It can be found relatively easy from Eq. (14), selecting only positive 

roots. 

1
2

21 1
ln ln 

 
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. (15) 

In order to analyse the accuracy of Eq. (14), an example of vibration amplitudes of an oscillator representing fragmented 5 

media,  X  , with different   and vibrations of an equivalent Kelvin-Voigt model, 
21

Y




 
 
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, is presented in Fig. 3. The 

initial conditions for both cases are 0 0.0X   and 0 1.0V  . 

It is seen that between the impacts, the functions can be quite different even for high values of  . Indeed, the energy 

dissipation in the original system occurs at discrete times. Replacing the discrete system with a time-continuous system is 

equivalent to using the time scale considerably larger than the period. At this scale, the resulting damping is the same as in the 10 

original discrete system.  

 

 

Figure 3: Vibrations for fragmented media (solid lines) and equivalent Kelvin-Voigt model (dashed lines) for α = 0.9 (red),  

α = 0.6 (blue), α = 0.3 (green) and initial conditions 0X = 0.0 and 0V = 1.0. 15 

The dissipated energy of vibrations with the same parameters are given for both cases by the following equations, where Wx is 

the energy dissipation function for the discrete model and Wy is the same function for equivalent Kelvin-Voigt model. These 

dependencies are shown in Fig. 4.  
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The dissipated energy  XW  , cannot be approximated by 
21

YW




 
 
  

 between impacts, especially for small restitution 

coefficients, because here a continuous function is approximated by a stepwise function. Nevertheless, they approach the same 

values at impacts; therefore, the proposed function and the equivalent continuous function (linear damping) can be used as an 

approximation of the discrete one for times considerably higher than the period of free vibrations. 

 5 

Figure 4: Dissipated energy of vibrations for fragmented media (solid line) and equivalent Kelvin-Voigt model (dashed line) for  

α = 0.9 (red), α = 0.6 (blue), α = 0.3 (green) and initial conditions 0X = 0.0 and 0V = 1.0. 

4 Wave propagation in isotropic medium with equivalent damping 

Now, after establishing the large time scale equivalence of the discrete and continuous dynamics of a pair of fragments, the 

wave propagation in fragmented geomaterials can be modelled by replacing the fragmented geomaterial with a visco-elastic 10 

continuum where the energy dissipation on impact is described by a Kelvin-Voigt model. The P-wave velocity pc , and 

coefficient of absorption pa  are expressed by the following equations (White, 1983) and are shown in Fig. 5 for different   
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where c  is the P-wave velocity without damping and 1  is wave frequency. 

 

 

Figure 5: Velocity characteristics of a p-wave propagating in fragmented media: phase velocity (solid line) and coefficient of 

absorption (dashed line) for α = 0.9 (red), α = 0.6 (blue), α = 0.3 (green). 5 

It is seen that both the wave velocity and absorption increase with frequency, however the increase in the wave velocity 

becomes weaker as the restitution coefficient increases. Subsequently, the dispersion vanishes as the restitution coefficient 

tends to 1, i.e. the impacts are not accompanied by energy loss. It is noteworthy that these formulae can be implemented for 

S-waves as well. 

Conclusion 10 

A possible mechanism of wave attenuation in fragmented geomaterials with fragment sizes much smaller than the wavelengths 

is the energy loss on impact of the contacting fragment to each other. The energy loss is characterised by the restitution 

coefficient. It is shown that the wave propagation in such a discrete material can be modelled by wave propagation in an 

equivalent visco-elastic continuum if the characteristic times involved are considerably greater than the periods of oscillations 

of all neighbouring pairs of fragments. The attenuation is modelled by Kelvin-Voigt model; its equivalent damping being 15 

expressed through the restitution coefficient and the period of oscillations of contacting fragments averaged over all pairs. For 

all restitution coefficients smaller than 1, the wave velocity shows dispersion relationship, which is the stronger the smaller 

the restitution is. The attenuation and dispersion are not related to rate dependent rock deformation, but rather to the interaction 

of fragments. For that reason the effect is long-wave. Therefore, increasing damping and dispersion at low frequencies can be 

seen as an indication of fragmented nature of the geomaterial and the capacity of the fragments for independent movement. 20 
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