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Abstract. We develop a general framework for the frequency analysis of irregularly sampled time series. It is based on the

Lomb-Scargle periodogram, but extended to algebraic operators accounting for the presence of a polynomial trend in the model

for the data, in addition to a periodic component and a background noise. Special care is devoted to the correlation between the

trend and the periodic component. This new periodogram is then cast into the Welch overlapping segment averaging (WOSA)

method in order to reduce its variance. We also design a test of significance for the WOSA periodogram, against the background5

noise. The model for the background noise is a stationary Gaussian continuous autoregressive-moving-average (CARMA)

process, more general than the classical Gaussian white or red noise processes. CARMA parameters are estimated following a

Bayesian framework. We provide algorithms computing the confidence levels for the WOSA periodogram that fully take into

account the uncertainty on the CARMA noise parameters. Alternatively, a theory using point estimates of CARMA parameters

provides analytical confidence levels for the WOSA periodogram, which are more accurate than Markov chain Monte Carlo10

(MCMC) confidence levels and, below some threshold for the number of data points, less costly in computing time. We

then estimate the amplitude of the periodic component with least squares methods, and derive an approximate proportionality

between the squared amplitude and the periodogram. This proportionality leads to a new extension for the periodogram: the

weighted WOSA periodogram, that we recommend for most frequency analyses with irregularly sampled data. The estimated

signal amplitude also permits filtering in a frequency band. Our results generalize and unify methods developed in the fields of15

geosciences, engineering, astronomy and astrophysics. They also constitute the starting point for an extension to the continuous

wavelet transform developed in a companion article (Lenoir and Crucifix, 2017). All the methods presented in this paper are

available to the reader in the Python package WAVEPAL.

1 Introduction

In many areas of geophysics, one has to deal with irregularly sampled time series. However, most of state of the art tools for the20

frequency analysis are designed to work with regularly sampled data. Classical methods include the discrete Fourier transform

(DFT), jointly with the Welch overlapping segment averaging (WOSA) method, developed by Welch (1967), or the multitaper
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method, designed in Thomson (1982) and Riedel and Sidorenko (1995). Given the excellent results they provide, it is tempting

to interpolate the data and simply apply these techniques. Unfortunately, interpolation may seriously affect the analysis with

unpredictable consequences for the scientific interpretation (Mudelsee, 2010, p. 224).

In order to deal with non-interpolated, astronomical, data, Lomb (1976) and Scargle (1982) proposed what is now known as the

Lomb-Scargle periodogram (denoted here LS periodogram). The LS periodogram is at the basis of many algorithms proposed5

in the literature, in particular, in astronomy, e.g. in Mortier et al. (2015), Vio et al. (2010), or Zechmeister and Kürster (2009),

and in geophysics, e.g. in Schulz and Stattegger (1997), Schulz and Mudelsee (2002), Mudelsee et al. (2009), Pardo Igúzquiza

and Rodríguez Tovar (2012), or Rehfeld et al. (2011). More specifically, in climate and paleoclimate, the time series are often

very noisy, exhibit a trend, and potentially carry a wide range of periodic components (e.g. see Fig. 6). Considering all these

properties, we design in this work an operator for the frequency analysis generalizing the LS periodogram. The latter was built10

to analyze data which can be modeled as a periodic component plus noise. Since the periodic component may not necessarily

oscillate around zero, Ferraz-Mello (1981) and Heck et al. (1985) extended the LS periodogram, proposing an operator that

is suitable to analyze data which can be modeled as a periodic component plus a constant trend plus noise. Their operator is

designed to take into account the correlation between the constant trend and the periodic component, and is now a classic tool

for analyzing astronomical irregularly spaced time series. In climate and paleoclimate, the periodic component may oscillate15

around a more complex trend than just a constant. This is why, in this work, we extend the previous result by proposing an

operator that is suitable to analyze data which can be modeled as a periodic component plus a polynomial trend plus noise.

Our operator is also designed to take into account the correlation between the trend and the periodic component. Our extended

LS periodogram is however not sufficient to deal with very noisy data sets, and it also exhibits spectral leakage, like the DFT.

In the world of regularly sampled, very noisy, time series, smoothing techniques can be applied to reduce the variance of20

the periodogram, after tapering the time series in order to alleviate spectral leakage (see Harris, 1978). One of them is the

WOSA method (Welch, 1967), which consists in segmenting the time series into overlapping segments, tapering them, taking

the periodogram on each segment, and finally taking the average of all the periodograms. This technique was transferred to

the world of irregularly sampled time series in the work of Schulz and Stattegger (1997), where they apply the classical LS

periodogram to each tapered segment, and take the average. In this article, we generalize their work by applying the tapered25

WOSA method to our extended LS periodogram. Moreover, we show that it is preferable to weight the periodogram of each

WOSA segment before taking the average, in order to get a reliable representation of the squared amplitude of the periodic

component. This leads us to define the weighted WOSA periodogram, that we recommend for most frequency analyses.

The periodogram is often accompanied by a test of significance for the spectral peaks, which relies on the choice of an additive

background noise. Two traditional background noises are used in practice. The first one is the Gaussian white noise, which has30

a flat power spectral density, and which is a common choice with astronomical data sets, e.g. in Scargle (1982) orHeck et al.

(1985). The second one is the Gaussian red noise or Ornstein-Uhlenbeck process, for which the power spectral density is a

Lorentzian function centered at frequency zero, and which is a common choice with (paleo)climate time series, e.g. in Schulz

and Mudelsee (2002) or Ghil et al. (2002). Arguments in favor of a Gaussian red noise as the background stochastic process for

climate time series are given in Hasselmann’s influential paper (Hasselmann, 1976). Other background noises are also found35
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in geophysics, often under the form of an autoregressive-moving-average (ARMA) process (see Mudelsee, 2010, p. 60, for

an extensive list). In this work, we consider a general class of background noises, which are the continuous autoregressive-

moving-average (CARMA) processes, defined in Sect. 3.2. A CARMA(p,q) process is the extension of an ARMA(p,q) process

to a continuous time (Brockwell and Davis, 2016, Sect. 11.5). Gaussian white noise and Gaussian red noise are particular

cases of a Gaussian CARMA process, i.e. they are a CARMA(0,0) process and a CARMA(1,0) process respectively. Recent5

advances now allow to accurately estimate the parameters of an irregularly sampled CARMA process from one of its samples

(see Kelly et al., 2014).

Estimating the percentiles of the distribution of the weighted WOSA periodogram of an irregularly sampled CARMA process

is the core of this paper. This gives the confidence levels for performing tests of significance at every frequency, i.e. test if the

null hypothesis - the time series is a purely stochastic CARMA process - can be rejected (with some percentage of confidence)10

or not. We aim at developing a very general approach. Let us enumerate some key points:

1. Estimation of CARMA parameters is performed in a Bayesian framework and relies on state of the art algorithms

provided by Kelly et al. (2014). In the special case of a white noise, we provide an analytical solution.

2. Based on 1, we provide confidence levels computed with Markov chain Monte Carlo (MCMC) methods, that fully take

into account the uncertainty on the parameters of the CARMA process, because we work with a distribution of values15

for the CARMA parameters instead of a unique set of values.

3. Alternatively to 2, if we opt for the traditional choice of a unique set of values for the parameters of the CARMA

background noise, we develop a theory providing analytical confidence levels. Compared to a MCMC-based approach,

the analytical method is more accurate and, if the number of data points is not too high, quicker to compute, especially

at high confidence levels, e.g. 99 % or 99.9 %. Computing high levels of confidence is required in some studies, for20

example in paleoceanography (Kemp, 2016).

4. Confidence levels are provided for any possible choice of the overlapping factor for the WOSA method, extending the

traditional 50 % overlapping choice (Schulz and Stattegger, 1997; Schulz and Mudelsee, 2002).

5. Under the case of a white noise background, without WOSA segmentation and without tapering, we define the F-

periodogram as an alternative to the periodogram. It has the advantage of not requiring any parameter to be estimated.25

Finally, we note that spectral power and estimated squared amplitude are no longer the same thing if the time series is irregularly

sampled. Both quantities may be of physical interest. We estimate the amplitude of the periodic component with least squares

methods, and derive an approximate proportionality between the squared amplitude and the periodogram, from which we

deduce the weights for the weighted WOSA periodogram. The estimated signal amplitude also gives access to filtering in a

frequency band.30

The paper is organized as follows: In Sect. 2, we introduce the notations and recall some basics of algebra. In Sect. 3, we define

the model for the data and write the background noise term into a suitable mathematical form. Section 4 starts with some
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reminders about the Lomb-Scargle periodogram and then extends it to take into account the trend, and a second extension

deals with the WOSA tapered case. In Sect. 5, we remind that significance testing is nothing but a statistical hypothesis testing.

Under the null hypothesis, we estimate the parameters of the CARMA process and estimate the distribution of the WOSA

periodogram, either with Monte-Carlo methods or analytically. In the case of a white noise background, we define the F-

periodogram as an alternative to the periodogram. Section 6 aims at computing the amplitude of the periodic component of the5

signal and the difference between the squared amplitude and the periodogram is explained. Sections 7 and 8 are based on the

results of Sect. 6. There, we propose a third extension for the LS periodogram and show how to perform filtering. Section 9

presents an example of analysis on a paleoceanographic time series. Finally, a Python package named WAVEPAL is available

to the reader and is presented in Sect. 10.

2 Notations and mathematical background10

2.1 Notations

Let us introduce the notations for the time series. The measurements X1,X2, ...,XN are done at the times t1, t2, ..., tN respec-

tively, and we assume there is no error on the measurements as well as on the times. They are cast into vectors belonging to

RN :

|t〉=


t1

t2
...

tN

 and |X〉=


X1

X2

...

XN

 . (1)15

We use here the bra-ket notation, which is common in physics. In RN , the transpose of |a〉 is 〈a|, i.e. 〈a|′ = |a〉, and in CN , 〈a|
is the conjugate transpose of |a〉, i.e. 〈a|∗ = |a〉. The inner product of |a〉 and |b〉 is 〈a |b〉.

– LetA be a (m,n) matrix andB be a (n,m) matrix. IfA is real,A′ denotes its transpose, and ifA is complex,A∗ denotes

its conjugate transpose. The trace of AB is denoted by tr(AB) and we have tr(AB) = tr(BA).

– We use the terminology Gaussian white noise or simply white noise for a (multivariate) Gaussian random variable with20

constant mean and covariance matrix σ2I.

– |Z〉 always denotes a standard multivariate Gaussian white noise, i.e.

|Z〉 d=N (0,I), (2)

where d
= means “is equal in distribution” and I is the identity matrix.

– A sequence of independent and identically distributed random variables is denoted by “iid”.25
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2.2 Orthogonal projections in RN

The orthogonal projection on a vector space spanned by the m linearly independent vectors |a1〉, ..., |am〉 in RN for some

m ∈ N0 (m≤N ) is

Psp{|a1〉,...,|am〉} = V (V ′V )−1V ′, (3)

where sp{|a1〉, ..., |am〉} is the closed span of those m vectors, i.e. the set of all the linear combinations between them. V is a5

(N,m) matrix defined by

V =

 |a1〉 . . . |am〉

 . (4)

Like for any orthogonal projection, we have the following equalities:

Psp{|a1〉,...,|am〉} = P ′sp{|a1〉,...,|am〉} = P 2
sp{|a1〉,...,|am〉}. (5)

The m linearly independent vectors |a1〉, ..., |am〉 may be orthonormalized by a Gram-Schmidt procedure, leading to m10

orthonormal vectors |b1〉, ..., |bm〉, and the orthogonal projection may then be rewritten as

Psp{|a1〉,...,|am〉} = Psp{|b1〉,...,|bm〉} =

m∑
k=1

|bk〉〈bk|. (6)

Under that form, we see that the above projection has m eigenvalues equal to 1 and (N −m) eigenvalues equal to 0.

Let |c1〉, ..., |cq〉 be q linearly independent vectors in RN , with q ≤m, and such that sp{|c1〉, ..., |cq〉} ⊆ sp{|a1〉, ..., |am〉}.
Then (Psp{|a1〉,...,|am〉}−Psp{|c1〉,...,|cq〉}) is an orthogonal projection on sp{|c1〉, ..., |cq〉} ∩ sp{|a1〉, ..., |am〉}⊥, and15

Psp{|a1〉,...,|am〉}Psp{|c1〉,...,|cq〉} = Psp{|c1〉,...,|cq〉}Psp{|a1〉,...,|am〉} = Psp{|c1〉,...,|cq〉}. (7)

Moreover, for any vector |Y 〉 ∈ RN , we have

||(Psp{|a1〉,...,|am〉}−Psp{|c1〉,...,|cq〉})|Y 〉||
2 = ||Psp{|a1〉,...,|am〉}|Y 〉||

2− ||Psp{|c1〉,...,|cq〉}|Y 〉||
2. (8)

We recommend the book of Brockwell and Davis (1991) for more details.

2.3 Quantifying the irregularity of the sampling20

The biggest time step for which t1, ..., tN , are a subsample of a regularly sampled time series is the greatest common divisor1

(GCD) of all the time steps of |t〉. In formulas:

∆tGCD = GCD(∆t1, ...,∆tN−1), (9)
1The GCD is usually defined on the integers, but we can extend it to rational numbers. In practice, t1, ..., tN come from measurements with a finite

precision and are thus rational numbers.
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where

∆tk = tk+1− tk ∀k ∈ {1, ...,N − 1}, (10)

and

∀k ∈ {1, ...,N}, ∃m ∈ Z s.t. tk =m∆tGCD, (11)

where Z denotes the space of integer numbers. Quantifying the irregularity of the sampling is then straightforward. We define5

rt = 100
(N − 1)∆tGCD

tN − t1
. (12)

This ratio is between 0 % and 100 %, the latter value being reached with regularly sampled time series.

3 The model for the data

3.1 Definition

A suitable and general enough model to analyze the periodicity at frequency f = Ω
2π is:10

|X〉= |Trend〉+Eω cos(Ω|t〉+φω) + |Noise〉

= |Trend〉+Aω|cΩ〉+Bω|sΩ〉+ |Noise〉, (13)

withAω = Eω cos(φω),Bω =−Eω sin(φω), andE2
ω =A2

ω+B2
ω . |cΩ〉 and |sΩ〉 are defined componentwise, i.e. |cΩ〉= cos(Ω|t〉) =

[cos(Ωt1), ...,cos(ΩtN )]′ and |sΩ〉= sin(Ω|t〉) = [sin(Ωt1), ...,sin(ΩtN )]′. We have added the subscript ω to make the differ-

ence between the probed frequency, ω, and the data frequency, Ω. Indeed, the periodogram (defined in Sect. 4), the amplitude15

periodogram (Sect. 6) and the weighted WOSA periodogram (Sect. 7) do not necessarily probe the signal its its true frequency

Ω.

3.2 The background noise

3.2.1 Definition of a CARMA process

We follow here the definitions and conventions of Kelly et al. (2014), and technical details can be found in Brockwell and20

Davis (2016, Sect. 11.5).

The background noise term, |Noise〉, considered in this paper is a zero-mean stationary Gaussian continuous autoregressive-

moving-average (CARMA) process sampled at the times of |t〉. As explained in the following, it generalizes traditional back-

ground noises used in geophysics.

A CARMA(p,q) process is simply the extension of an ARMA(p,q) process to a continuous time2. A zero-mean CARMA(p,q)25

2A CARMA(p,q) process sampled at the times of an infinite regularly sampled time series is an ARMA(p,q) process.
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process y(t) is the solution of the following stochastic differential equation:

dpy(t)

dtp
+αp−1

dp−1y(t)

dtp−1
+ ...+α0y(t) = βq

dqε(t)
dtq

+βq−1
dq−1ε(t)

dtq−1
+ ...+ ε(t), (14)

where ε(t) is a continuous-time white noise process with zero mean and variance σ2. It is defined from the standard Brownian

motion B(t) through the following formula:

σdB(t) = ε(t)dt (15)5

The parameters α0, ... , αp−1 are the autoregressive coefficients, and the parameters β1, ..., βq are the moving average coeffi-

cients. αp = β0 = 1 by definition. When p > 0, the process is stationary only if q < p and the roots r1, ..., rp of
p∑
k=0

αkz
k = 0, (16)

have negative real parts. Strictly speaking, the derivatives of the Brownian motion dkB
dt , k > 0, do not exist, and we therefore

interpret Eq. (14) as being equivalent to the following measurement and state equations10

y(t) = 〈b |w(t)〉, (17)

and

d|w(t)〉=A|w(t)〉dt+ dB(t)|e〉, (18)

where |b〉= [β0,β1, ...,βq,0, ...,0]′ is a vector of length p, |e〉= [0,0, ...,0,σ]′, and

A=



0 1 0 . . . 0

0 0 1 . . . 0
...

...
...

. . .
...

0 0 0 . . . 1

−α0 −α1 −α2 . . . −αp−1


. (19)15

Equation (18) is nothing else but an Itô differential equation for the state vector |w(t)〉.
In practice, only CARMA processes of low order are useful in our framework, typically, (p,q)=(0,0), (1,0), (2,0), (2,1),

since at higher order, they often exhibit dominant spectral peaks (see Kelly et al., 2014), which is not what we want as a model

for the spectral background. Indeed, on the basis of our model, Eq. (13), it is desirable that the spectral peaks come from the

deterministic cosine and sine components. We now consider two useful particular cases of a CARMA process before analyzing20

the general case.

3.2.2 Gaussian white noise

When p= 0 and q = 0, the process reduces to a white noise, normally distributed with zero-mean and variance σ2. The |Noise〉
term in Eq. (13) is then simply

|Noise〉= σ|Z〉=K|Z〉, (20)25
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with K = σI.

3.2.3 Gaussian red noise

When p= 1 and q = 0, the CARMA(1,0) or CAR(1) process is an Ornstein-Uhlenbeck process or red noise (Uhlenbeck and

Ornstein, 1930), which is quite of interest in geophysical and other applications (Mudelsee, 2010). Since we work with a

discrete time series, it is necessary to find the solution of Eq. (14) at t1, ..., tN . This is done by integrating that equation5

between consecutive times, i.e. from ti−1 to ti ∀i ∈ {2, ...,N}. The components of the |Noise〉 vector are then:

y(t1)
d
=N (0,

σ2

2α
),

y(ti) = ρiy(ti−1) + ηi ∀i ∈ {2, ...,N}, (21)

where

ρi = exp(−α(ti− ti−1)) and ηi
d
=N (0,

σ2

2α
(1− ρ2

i )). (22)10

See Robinson (1977) and Brockwell and Davis (2016, p. 343) for more details. The requirement on stationarity, Eq. (16),

imposes α > 0. The generated time series has a constant mean equal to zero and a constant variance equal to σ2

2α . The |Noise〉
term in Eq. (13) can also be written under a matrix form:

|Noise〉=K|Z〉, (23)

where K is a (N,N) lower triangular matrix whose elements are15

Ki,j =

√
σ2

2α

√
1− ρ2

j exp(−α(ti− tj)) ∀j ≤ i, (24)

where we define ρ1 = 0. This matrix form is used in Sect. 5.3.3.

Note that, if the time series is regularly sampled, ρ is a constant and Eq. (21) becomes the equation of a finite-length AR(1)

process, which is stationary since α > 0 implies ρ < 1.

3.2.4 The general Gaussian CARMA noise20

The solution of Eq. (14) at the time tn (n= 2, ...,N ), that we denote by yn, is

yn = 〈b |wn 〉,

where |wn〉= exp(A(tn− tn−1))|wn−1〉+ |ηn〉, (25)

|ηn〉 follows a multivariate normal distribution with zero mean and covariance matrix Cn given by

Cn =

tn−tn−1∫
0

dtexp(At)|e〉〈e|exp(A′t), (26)25
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The above formula requires the computation of matrix exponentials and numerical integration. This can be avoided by diago-

nalizing matrix A, with A= UDU−1. D is a diagonal matrix with diagonal elements given by the roots of Eq. (16):

Dkk = rk ∀k ∈ 1, ...,p, (27)

and U is a Vandermonde matrix, with

Ulk = rl−1
k ∀l,k ∈ 1, ...,p. (28)5

Now, by defining |w̃n〉= U−1|wn〉, we get

yn = 〈b|U |w̃n〉, (29a)

where |w̃n〉= Λn|w̃n−1〉+ |η̃n〉. (29b)

The matrix exponential exp(A(tn− tn−1)) has been transformed into Λn = U−1 exp(A(tn− tn−1))U which is simply a diag-

onal matrix with elements Λnkk
= exp(rk(tn− tn−1)). The covariance matrix of |η̃n〉, that we write Σn, also takes a relatively10

simple form:

Σnkl
=−σ2 κkκ

∗
l

(rk + r∗l )
(1− exp((rk + r∗l )(tn− tn−1))) ∀k, l ∈ {1, ...,p}, (30)

which is a Hermitian matrix, and where |κ〉 is the last column of U−1. The initial condition y1 is determined by imposing

stationarity, which is fulfilled only if |w1〉 has a zero mean and a covariance matrix V whose elements are

Vkl =−σ2

p∑
m=1

rk−1
m (−rm)l−1

2Re{rm}
∏p
s=1,s6=m(rs− rm)(r∗s + rm)

∀k, l ∈ {1, ...,p}. (31)15

Stationarity implies that the process y(t) has a zero mean and variance 〈b|V |b〉 ∀t. All the above formulas and how to get them

can be found in Kelly et al. (2014), Jones and Ackerson (1990) and Brockwell and Davis (2016, Sect. 11.5.2).

Generation of a CARMA(p,q) process can be performed with the Kalman filter since Eq. (29b) and (29a) are nothing but the

state and measurement equations respectively (see Kelly et al., 2014, for more details). Alternatively, |y〉 can be written under

a matrix form as in Eq. (23). Matrix formalism is useful in Sect. 5.3.3. Let us start with Eq. (29b):20

|w̃n〉= Λn|w̃n−1〉+U−1|ηn〉. (32)

The covariance matrix of |ηn〉,Cn = UΣU∗, is of course real symmetric and positive semi-definite. We thus have the following

Schur decomposition:

Cn =QnQ
′
n, (33)
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where Qn is a real matrix. Consequently,

|w̃n〉= Λn|w̃n−1〉+U−1Qn|εn〉

= ΛnΛn−1|w̃n−2〉+ ΛnU
−1Qn−1|εn−1〉+U−1Qn|εn〉

= ...

=

n∑
i=2

(

n∏
l=i+1

Λl)U
−1Qi|εi〉+

n∏
l=2

Λl|w̃1〉, (34)

where |ε1〉, ..., |εn〉 are iid standard Gaussian white noises. The product of the Λ’s can be simplified. Its diagonal elements are:

(Yin)jj := (

n∏
l=i+1

Λl)jj = exp(rj(tn− ti)). (35)5

As stated above, |w1〉 follows a multivariate normal distribution with zero mean and covariance matrix V . We can use again

the Schur decomposition to write V =WW ′, where W is a real matrix, yielding

|w̃n〉=

n∑
i=2

YinU
−1Qi|εi〉+Y1nU

−1W |ε1〉

=

n∑
i=1

Pin|εi〉, (36)

with P1n = Y1nU
−1W and Pin = YinU

−1Qi for i > 1. The CARMA process at time tn is then given by10

yn = 〈b|U |w̃n〉

=

n∑
i=1

〈b|U |Pin|εi〉. (37)

Finally, the |Noise〉 term in Eq. (13) is

|Noise〉= |y〉=



〈b|U |P11 〈0| ... ... 〈0|
〈b|U |P12 〈b|U |P22 〈0| ... 〈0|

. . .
. . .

〈b|U |P1N 〈b|U |P2N ... ... 〈b|U |PNN




|ε1〉
|ε2〉

...

|εN 〉

=K|Z〉, (38)

where K is a (N,N × p) real matrix and |Z〉 has a length N × p. Matrix K is triangular if p= 1, which is the particular case15

treated in Sect. 3.2.3.

3.3 The trend

The model for the trend must be as general as possible and compatible with a formalism based on orthogonal projections (see

Sect. 4). This is the reason why we choose a polynomial trend of some degree m:

|Trend〉=

m∑
k=0

γk|tk〉, where |tk〉= [tk1 , ..., t
k
N ]′, (39)20

10



where |tk〉 is defined componentwise, i.e. |tk〉= [tk1 , ..., t
k
N ]′. Considering or not the presence of a trend in the model for the

data is left to the user, given that we can always interpret a polynomial trend of low order as a very low-frequency oscillation.

4 Periodogram & relatives

4.1 Lomb-Scargle periodogram

Consider the orthogonal projection of the data |X〉 onto the vector space spanned by the vectors cosine and sine, defined5

by |cω〉= cos(ω|t〉) and |sω〉= sin(ω|t〉). The periodogram at the frequency f = ω
2π is defined as the squared norm of that

projection:

||Psp{|cω〉,|sω〉}|X〉||
2. (40)

When the time series is regularly sampled with a constant time step ∆t, and if we only consider the Fourier angular frequencies,

ωk = 2πk
N∆t (k = 0, ..., N −1), the periodogram defined above is equal to the squared modulus of the discrete Fourier transform10

(DFT) of real signals.

Now, rescale |cω〉 and |sω〉 such that they are orthonormal. This can be done by defining

|c]ω〉=
cos(ω|t〉−βω)√

ΣNi=1 cos2(ωti−βω)
, |s]ω〉=

sin(ω|t〉−βω)√
ΣNi=1 sin2(ωti−βω)

, (41)

where βω is the solution of

tan(2βω) =
ΣNi=1 sin(2ωti)

ΣNi=1 cos(2ωti)
. (42)15

The spanned vector space naturally remains unchanged (see Fig. 1). These formulas are nothing but the Lomb-Scargle formulas

(Scargle, 1982, Eq. (10)). The periodogram is now

||Psp{|cω〉,|sω〉}|X〉||
2 = 〈c]ω |X 〉2 + 〈s]ω |X 〉2. (43)

Note that, for any signal |X〉 ∈ RN ,

0≤
||Psp{|cω〉,|sω〉}|X〉||2

〈X |X 〉
≤ 1, (44)20

and this is equal to 1 if |X〉=A|cω〉+B|sω〉.
Some properties of the LS periodogram are presented in appendix A. Here and for the rest of the article, the frequency f =

ω/2π is considered as a continuous variable.
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Figure 1. Schematic view of the linear rescaling in RN leading to the Lomb-Scargle formulas. In yellow is drawn a subset of sp{|cω〉, |sω〉}. A span is

invariant under linear combinations of its vectors. The dashed line corresponds to the minimal euclidean distance between the data |X〉 and sp{|cω〉, |sω〉}.

4.2 Periodogram and mean

The LS periodogram applies well to data which can be modeled as

|X〉=Aω|cΩ〉+Bω|sΩ〉+ |Noise〉. (45)

However, the periodic components may not necessarily oscillate around zero, and a better model is

|X〉= µ|t0〉+Aω|cΩ〉+Bω|sΩ〉+ |Noise〉, (46)5

where |t0〉= [1,1, ...,1]′. Substracting the average of the data is then often done before applying the LS periodogram. But

that mere operation implicitly assumes that 〈 t0 |cΩ 〉= 〈 t0 |sΩ 〉= 0, which is not necessarily the case. In other words, the

data average is not necessarily equal to µ, the process mean. Fig. 2a illustrates that fact. Note that this discrepancy occurs in

regularly sampled data as well, at non-Fourier frequencies, i.e. when N∆t is not a multiple of the probing period. See Fig. 2b.
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Figure 2. Signal average and sampling. (a) The continuous signal is in dashed blue and it is irregularly sampled at red dots. The continuous signal oscillates

around 1 (blue line), which does not correspond to the average of the sampled signal (red line). (b) Same as (a) with a regularly sampled signal.

In order to deal with the mean in a suitable way, we define the periodogram as

||(Psp{|t0,cω〉,|sω〉}−Psp{|t0〉})|X〉||2. (47)

Formula (47) is taken from Brockwell and Davis (1991), Ferraz-Mello (1981) or Heck et al. (1985); equivalence between

them is shown in appendix B. [Psp{|t0〉,|cω〉,|sω〉}−Psp{|t0〉}] is also an orthogonal projection. A simple example will justify the

principle. Consider the following purely deterministic mono-periodic signal with N data points:5

|Y 〉= µ|t0〉+A|cω〉+B|sω〉= V3|Φ〉, (48)

with |t0〉 |cω〉 |sω〉
 , (49)

and

|Φ〉=


µ

A

B

 . (50)10
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The projection at ω is

(Psp{|t0〉,|cω〉,|sω〉}−Psp{|t0〉})|Y 〉= (I−Psp{|t0〉})Psp{|t0〉,|cω〉,|sω〉}|Y 〉

= (I−Psp{|t0〉})V3|Φ〉

= |Y 〉−Psp{|t0〉}|Y 〉

=A|cω〉+B|sω〉−
〈 t0 |cω 〉
〈 t0 | t0 〉

A|t0〉− 〈 t
0 |sω 〉
〈 t0 | t0 〉

B|t0〉. (51)

We see that it is invariant with respect to µ, and we find back the signal minus its average. We thus have

||(Psp{|t0〉,|cω〉,|sω〉}−Psp{|t0〉})|Y 〉||2 =N Var(|Y 〉), (52)5

where Var(|Y 〉) =
(∑N

i=1Y
2
i

)
/N −

(∑N
i=1Yi

)2

/N2. This is a result similar to what we get with regularly sampled data and

the DFT3.

Now, we do a Gram-Schmidt orthonormalization like in Ferraz-Mello (1981), in order to simplify formula (47). To this end,

we define the three orthonormal vectors |h0〉= |t0〉/|||t0〉||, |h1〉 and |h2〉 satisfying

sp{|t0〉, |cω〉, |sω〉}= sp{|h0〉, |h1〉, |h2〉}. (53)10

Consequently,

Psp{|t0〉,|cω〉,|sω〉}−Psp{|t0〉} = |h1〉〈h1|+ |h2〉〈h2|, (54)

and

||(Psp{|t0〉,|cω〉,|sω〉}−Psp{|t0〉})|X〉||2 = 〈h1 |X 〉2 + 〈h2 |X 〉2. (55)

Note that, for any signal |X〉 ∈ RN , we have15

0≤
||(Psp{|t0〉,|cω〉,|sω〉}−Psp{|t0〉})|X〉||2

N Var(|X〉)
≤ 1, (56)

and this is equal to 1 for a signal given by |X〉= µ|t0〉+A|cω〉+B|sω〉.

4.3 Periodogram and a polynomial trend

If we want to work with the full model, Eq. (13), which has a polynomial trend of degree m, we can naturally extend the result

of Sect. 4.2 and work with20

||(Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉||2 = 〈hm+1 |X 〉2 + 〈hm+2 |X 〉2, (57)

3If we have |Y 〉= µ|t0〉+A|eω〉, where |eω〉= exp(i2πω|t〉) and ω being a Fourier frequency, then ||DFTω(|Y 〉)||2 = ||Psp{|eω〉}|Y 〉||
2 =

N ||A||2 =N Var(|Y 〉). Var is here the biased variance, which is defined as the squared norm of the signal minus its average value, and divided by N .
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where |hm+1〉 and |hm+2〉 are determined from a Gram-Schmidt orthonormalization starting with the orthonormalization of

|t0〉, ..., |tm〉.
It may happen that, for large m, the correlation matrix in the formula of orthogonal projection be singular. In that case, two

options, less optimal, are possible: reduce the degree m, or perform the detrending before the spectral analysis, for example

with a moving average.5

Similarly to Sect. 4.2, we have, for any signal |X〉 ∈ RN ,

0≤
||(Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉||2

|||X〉−Psp{|t0〉,...,|tm〉}|X〉||2
≤ 1, (58)

and this is equal to 1 for a signal given by |X〉=
∑m
k=0 γk|tk〉+A|cω〉+B|sω〉. Finally, we have a result similar to Eq. (51), in

the sense that the projection given in Eq. (57) is invariant with respect to the parameters of the trend (but it naturally depends

on the choice of the degree m).10

4.4 Tapering the periodogram

A finite length signal can be seen as an infinite length signal multiplied by a rectangular window. This implies, among others,

that a mono-periodic signal will have a periodogram characterized by a peak of finite width, with possibly large sidelobes,

instead of a Dirac delta function. This is called spectral leakage.

The phenomenon has been deeply studied in the case of regularly sampled data. Leakage may be controlled by choosing15

alternatives to the default rectangular window. This is called windowing or tapering (see Harris, 1978, for an extensive list of

windows). They all share the property to vanish at the borders of the time series.

In the case of irregularly sampled data, building windows for controlling the leakage is a much more challenging task. Even

with the default rectangular window, leakage is very irregular, data and frequency dependent, due to the long-range correlations

in frequency between the vectors on which we do the projection. To our knowledge, no general and stable solution for that20

issue is available in the literature. We thus recommend to use the default rectangular window, i.e. do no tapering, if rt, defined

in Eq. (12), is small, and to use simple windows, like the sin2 or the Gaussian window, for moderately irregularly sampled

data (rt greater than 80 % or 90 %). With tapering, formula (57) becomes

||(Psp{|t0〉,|t1〉,...,|tm〉,|Gcω〉,|Gsω〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉||2, (59)

where G is a frequency-independent diagonal matrix, which is used to weight the sine and cosine vectors. For example, with a25

sin2 window, also called Hanning window, we have

Gkk = sin2

(
π (tk − t1)

tN − t1

)
∀k ∈ {1, ...,N}. (60)
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4.5 Smoothing the periodogram with the WOSA method

4.5.1 The consistency problem

Besides spectral leakage, another issue with the periodogram is consistency. Indeed, for regularly sampled time series, the

periodogram is known not to be a consistent estimator of the true spectrum as the number of data points tends to infinity (see

Brockwell and Davis, 1991, Chap. 10). Another view of the problem is that the periodogram remains very noisy whatever5

the number of data points we have at our disposal. Smoothing procedures are therefore applied to reduce the variance of

the periodogram. The drawback of any smoothing procedure is naturally a decrease of the frequency resolution. Among the

smoothing methods available in the literature, two are traditionally used: multitaper methods (MTM), developed by Thomson

(1982) and Riedel and Sidorenko (1995), and the Welch overlapping segment averaging (WOSA) method (Welch, 1967). See

Walden (2000) for a unified view.10

Multitaper methods are certainly not generalizable to the case of irregularly sampled data, except in very specific cases that

are not of interest in geophysics, like in Bronez (1988), which deals with band-limited signals, useful in the field of the

telecommunications, or Fodor and Stark (2000), which considers regularly sampled time series with some gaps, useful for time

series with a ratio rt, defined in Eq. (12), close to 100. We will then use the WOSA method applied to the LS periodogram, like

in Schulz and Stattegger (1997) and Schulz and Mudelsee (2002), or to its relatives (formulas (47), (57), or the most general15

(59)).

4.5.2 Principle of the WOSA method

Trendless time series

The time series is divided into overlapping segments. The tapered LS periodogram is computed on every segment, and the

WOSA periodogram is the average of all these tapered periodograms. This technique relies on the fact that the signal is20

stationary, as always in spectral analysis4. The length of the segments and the overlapping factor need to be chosen depending

on how much we want to reduce the variance of the noise. As a general rule, shortening the segments will decrease the

frequency resolution. Consequently, there is always a trade-off between the frequency resolution and the variance reduction.

For regularly sampled data, each segment of fixed length has the same number of data points. In the irregularly sampled case,

it is not anymore the case and we have two options.25

1. Take segments with a fixed number of points and thus a variable length. In the non-tapered case, the periodogram on

each segment provides deterministic peaks (coming from the deterministic sin/cos components) with more or less the

same height. But variable length segments will give deterministic peaks of variable width.

2. Take segments of fixed length but with a variable number of data points. The periodogram on each segment provides

deterministic peaks with more or less the same width, except if there is a big gap at the beginning or at the end of the30

4Basically, the spectrum cannot be defined without that hypothesis. See the Wiener-Khinchin theorem in e.g. Priestley (1981, Chap. 4)
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segment, such that its effective length is reduced. But they will have variable height since the number of data points is

not constant.

We judge it is better to have peaks with similar width on each segment when averaging the periodograms in a frequency band.

Consequently, we recommend the second option. An example of WOSA segmentation is shown on Fig. 8a.

Time series with a trend5

The only difference with the previous case is that, for each segment, we consider the projection on |t0〉, ..., |tm〉 jointly with the

tapered cosine and sine components. Formula (59) is applied to each segment with |Gcω〉 and |Gsω〉 localized on the WOSA

segment, but |t0〉, ..., |tm〉 are taken on the full length of the time series, because the trend is the one of the whole time series.

4.5.3 The WOSA periodogram in formulas

Two parameters are required: the length of WOSA segments, D, and the overlapping factor, β ∈ [0,1[. β = 0 when there is no10

overlap. We denote by Q the number of WOSA segments, which is equal to

Q=

⌊
tN − t1−D

(1−β)D

⌋
+ 1, (61)

where bc is the floor function. Because of the rounding, D must be adjusted afterwards:

D =
tN − t1

1 + (1−β)(Q− 1)
. (62)

Define τq to be the starting time of the qth segment (q ∈ {1, ...,Q}). Note that τq is not necessarily equal to one of the compo-15

nents of |t〉. It follows that

τq = t1 + (1−β)(q− 1)D q = 1, ...,Q. (63)

The WOSA periodogram is then

||PWOSA(ω)|X〉||2 =
1

Q

Q∑
q=1

||(Psp{|t0〉,|t1〉,...,|tm〉,|Gqcω,q〉,|Gqsω,q〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉||2

=
1

Q

Q∑
q=1

〈X|(Psp{|t0〉,|t1〉,...,|tm〉,|Gqcω,q〉,|Gqsω,q〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉. (64)20

Note that the sum of these orthogonal projections is not anymore an orthogonal projection. |Gqcω,q〉 and |Gqsω,q〉 are the

tapered cosine and sine on the qth segment. For example, with the Hanning (sin2) window,

(Gqcω,q)k = gq(tk)cos(ω(tk − τq)), (Gqsω,q)k = gq(tk)sin(ω(tk − τq)), (65)
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where

gq(tk) =

 sin2
(
π (tk−τq)

D

)
if 0≤ (tk − τq)≤D,

0 otherwise.
(66)

It may be shown that sp{|t0〉, |t2〉, ..., |tm〉, |Gqcω,q〉, |Gqsω,q〉} is invariant with the variable τq appearing in the cosine and sine

terms, so that we can impose τq = 0 ∀q inside the cosine and sine terms.5

In formula (64), for each orthogonal projection, we apply a Gram-Schmidt orthonormalization (similarly to Sect. 4.3):

||PWOSA(ω)|X〉||2 =
1

Q

Q∑
q=1

(〈X |h1,q(ω)〉〈h1,q(ω) |X 〉+ 〈X |h2,q(ω)〉〈h2,q(ω) |X 〉), (67)

where, for each q, |h1,q(ω)〉 and h2,q(ω)〉 are orthonormal. We are now able to write the WOSA periodogram under a simple

matrix form:

||PWOSA(ω)|X〉||2 = 〈X|MωM
′
ω|X〉, (68)10

where

Mω =
1√
Q

|h1,1(ω)〉 |h2,1(ω)〉 . . . |h1,Q(ω)〉 |h2,Q(ω)〉

 . (69)

4.5.4 Practical considerations

First, note that the Gram-Schmidt orthonormalization process requires at least m+ 3 data points. WOSA segments with less

than m+ 3 points must therefore be ignored in the average of the periodograms.15

Second, as we want to get deterministic peaks with more or less the same width on every segment, a WOSA segment is kept in

the average if the data cover some percentage of its length D, namely,

qth segment kept if: 100
tq,2− tq,1

D
≥ C, (70)

where tq,1 and tq,2 are the times of the first and last data points inside in the qth segment, and C is the coverage factor. Its

default value in WAVEPAL is 90 %.20

Third, the frequency range on the qth segment is bounded by these two frequencies:

fmin =
1

tq,2− tq,1
and fmax =

1

2∆tq
. (71)

The maximal period (1/fmin) corresponds to the effective length on the segment. The maximal frequency in the case of reg-

ularly sampled data must be the Nyquist frequency, fmax = 1/2∆t. For irregularly sampled data, different choices for ∆tq
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are possible. As suggested in appendix A, an option is ∆tq = ∆tGCD,q, but this choice is insufficient to avoid pseudo-aliasing

issues. Imagine for example a regularly sampled time series with 1000 data points and ∆t= 1. Add one point at the end with

the last time step being 0.1. The resulting irregularly sampled time series will thus have ∆tGCD = 0.1. If we take fmax = 5, it is

obvious that some kind of aliasing will occur between f = 0.5 and fmax. This it what we call pseudo-aliasing. A much better

choice in this case is of course fmax = 0.5. Section 5 of Bretthorst (2001) provides further discussions on this topic.5

In practice,

∆tq = max

{∑N
k=1Gqk,k

∆tck
tr(Gq)

,

∑N−1
k=1 Hqk,k

∆tk

tr(Hq)

}
, (72)

where

∆tk = tk+1− tk ∀k ∈ {1, ...N − 1},

∆tck =
tk+1− tk−1

2
∀k ∈ {2, ...N − 1},

∆tc1 = t2− t1,

∆tcN = tN − tN−1, (73)10

and Hq is a diagonal matrix with

Hqk,k
= taper at time

tk + tk+1

2
, k ∈ {1, ...,N − 1}, (74)

appears to work well. More justification and an example are provided in part II of this study (Lenoir and Crucifix, 2017, Sect.

3.8), where it is shown that such a formula can handle aliasing issues in the case of time series with large gaps. Matrix Hq is

similar to matrix Gq , defined in Sect. 4.4, but with elements taken at (tk + tk+1)/2 instead of tk. Quantity ∆tq is equal to the15

maximum between the average time step and the average central time step if there is no tapering (Gq =Hq = I), and is equal to

∆t in the regularly sampled case. These restrictions on the frequency bounds imply that the total number of WOSA segments,

Q, in formula (64), is not the same for all the frequencies. This is illustrated on Fig. 8b.

Fourth, in order the have a reliable average of the periodograms, we only represent the periodogram at the frequencies for

which the number of WOSA segments is above some threshold. In WAVEPAL, default value for the threshold at frequency f20

is

Threshold: min{10,max
{f}

Q(f)}, (75)

where Q(f) is the number of WOSA segments at frequency f . It means that frequency f belongs to the range of frequencies

of the WOSA periodogram if Q(f) is greater than or equal to the threshold.
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5 Significance testing with the periodogram

5.1 Hypothesis testing

Significance testing allows us to test for the presence of periodic components in the signal. It is mathematically expressed as a

hypothesis testing (see Brockwell and Davis, 1991, Chap. 10). Taking our model, Eq. (13), the null hypothesis is

H0 :Aω =Bω = 0. (76)5

Therefore, |X〉= |Trend〉+ |Noise〉. The alternative hypothesis is

H1 :Aω and Bω are not both zero. (77)

The decision of accepting or rejecting the null hypothesis is based on the periodogram evaluated at ω, whose general formula is

given in Eq. (64). The test is performed independently for each frequency (pointwise testing). Concretely, for each frequency,

we compute the distribution of the periodogram under the null hypothesis, and then see if the data periodogram at that frequency10

is above or below a given percentile (e.g. the 95th) of that distribution. The percentile is called level of confidence. If the data

periodogram is above theX th percentile of the reference distribution, we reject the null hypothesis withX % of confidence. The

level of significance is equal to (100−X) %, e.g. a 95 % confidence level is equivalent to a 5 % significance level. Hypothesis

testing is, for this reason, often called significance testing. See Fig. 8c and 8d for an illustration on paleoclimate data. We

recommend Priestley (1981, Chap. 6) for more details on the methodology.15

To perform significance testing, we thus need

1. to estimate the parameters of the process under the null hypothesis. This is studied in Sect. 5.2.

2. to estimate the distribution of the periodogram under the null hypothesis. This is studied in Sect. 5.3.

5.2 Estimation of the parameters under the null hypothesis

5.2.1 Introduction20

Under the null hypothesis, the signal is |X〉= |Trend〉+ |Noise〉, and we thus need to estimate the parameters of the trend and

those of the zero-mean CARMA process. The best statistical approach is to estimate them jointly, and marginalize over the

parameters of the trend, since the periodogram is invariant with respect to these parameters, according to Sect. 4.3. But this

would imply very involved computations that are way beyond the scope of this work. We are thus forced to a compromise

and proceed as follows: data are detrended, |Xdet〉= |X〉−Psp{|t0〉,|t1〉,...,|tm〉})|X〉, and then we estimate the parameters of25

the CARMA process, based on the model µ|t0〉+ |Noise〉, where |Noise〉 is a zero-mean stationary Gaussian CARMA process

sampled at the times of |t〉.
Estimation of CARMA parameters is done in a Bayesian framework. We analyze separately the case of the white noise, which

is done analytically, and the case of CARMA(p,q) processes with p≥ 1, for which Markov-Chain Monte-Carlo (MCMC)

methods are required. Bayesian analysis provides a posterior distribution of the parameters based on priors.30
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5.2.2 Gaussian white noise

We want to estimate the two parameters of the white noise, the mean µ and the variance σ2. According to the Bayes theorem:

Π(µ,σ2|D) =
Π(D|µ,σ2)Π(µ,σ2)

Π(D)
∼Π(D|µ,σ2)Π(µ,σ2), (78)

where Π is the probability density function (PDF) and D is the detrended data Xdet,1, ...,Xdet,N . Based on the PDF of a

multivariate white noise, the likelihood function is5

Π(D|µ,σ2) =

(√
1

2πσ2

)N
exp

(
−
∑N
i=1(Xdet,i−µ)2

2σ2

)
. (79)

We take Jeffreys priors (Jeffreys, 1946) for µ and σ2:

Π(µ,σ2) = Π(µ)Π(σ2), with Π(µ)∼ 1 and Π(σ2)∼ 1

σ2
(80)

Jeffreys priors are non-informative and invariant under reparametrization. Note that Π(σ2) is log-uniform.

Since we do not actually need to estimate µ (see Sect. 4.3 and formula (64)), we marginalize over that variable,10

Π(σ2|D) =

+∞∫
−∞

dµΠ(µ,σ2|D)

∼ 1

σ2

+∞∫
−∞

dµΠ(D|µ,σ2)

∼ 1

σ2

(√
1

2πσ2

)N
exp

(
−
∑N
i=1X

2
det,i

2σ2

) +∞∫
−∞

dµexp(−(aµ2 + 2bµ))

∼ 1

σ2

(√
1

2πσ2

)N
exp

(
−
∑N
i=1X

2
det,i

2σ2

)√
π

a
exp

(
b2

a

)
, (81)

with a=N/2σ2 and b=−
∑N
i=1Xdet,i/2σ

2. Rearranging terms gives

Π(σ2|D)∼
(

1

σ2

)N+1
2

exp

(
− 1

βσ2

)
, (82)

with β = 2/Nσ̂2, where σ̂2 = is the (biased) variance of the detrended data5. With the variable change y = 1/σ2, we have15

Π(y|D)∼ y
N−3

2 exp(−y/β), (83)

which is nothing but a gamma distribution:

1

σ2

d
= γ

(
N − 1

2
,

2

Nσ̂2

)
. (84)

5σ̂2 = 1
N

∑N
i=1X

2
det,i− ( 1

N

∑N
i=1Xdet,i)

2
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Note that the mean of the distribution in Eq. (84) is equal to (N − 1)/(Nσ̂2), which is the usual unbiased estimator of 1/σ2.

Finally, the PDF of σ2 is maximum at

σ2
max =

N

N + 1
σ̂2. (85)

This is obtained from the derivative of Eq. (82).

5.2.3 Gaussian CARMA(p,q) noise with p ≥ 15

For other cases than the white noise, Kelly et al. (2014) provide robust algorithms to estimate the posterior distribution of the

CARMA parameters and of the parameter µ of an irregularly sampled, purely stochastic, time series, which can be modeled as a

CARMA process. Those algorithms are based on Bayesian inference and MCMC methods. We recommend to read in particular

Sect. 3.3 and 3.6 of Kelly et al. (2014) for a discussion on the choice of the priors and for computational considerations

respectively. That paper is accompanied by a Python and C++ package called CARMA pack. Some outputs of CARMA pack10

are shown in Sect. 9.

5.3 Estimation of the distribution of the periodogram under the null hypothesis

5.3.1 Working with a trendless stochastic process

Under the null hypothesis, the signal is |X〉= |Trend〉+ |Noise〉=
∑m
k=0 γk|tk〉+ |Noise〉. The WOSA periodogram, Eq. (64),

being invariant with respect to the parameters of the trend, we can pose γk = 0 for all k and |X〉 reduces to a zero-mean15

CARMA process.

5.3.2 Monte-Carlo approach

For each frequency, we need the distribution of the WOSA periodogram, Eq. (68), where |X〉 is now a CARMA process for

which we know the distribution of its parameters, from Sect. 5.2. With Monte-Carlo methods, we are thus able to estimate any

percentile of the distribution of the periodogram. If |X〉 is a zero-mean white noise, |X〉 is sampled from a standard normal20

distribution multiplied by the square root of the variance, whose inverse is sampled from the gamma distribution (Eq. (84)). If

|X〉 is a CARMA(p,q) process with p≥ 1, |X〉 is generated with the Kalman filter (from CARMA pack - see Sect. 5.2.3). An

example of confidence levels is shown on Fig. 8d.

We are thus able to estimate confidence levels for the WOSA periodogram taking into account the uncertainty on the parameters

of the background noise.25

5.3.3 Analytical approach

If we consider constant CARMA parameters, we show in this section that analytical confidence levels can be computed, even

in the very tail of the distribution of the periodogram of the background noise. An example is given on Fig. 8c. The advantage

of the analytical approach is double:
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1. It provides confidence levels converging to the exact solution, as the number of conserved moments increases (see

below). From a certain number of conserved moments, we can consider that convergence is numerically reached (see

Fig. 9). Such an approach is particularly interesting for high confidence levels, as illustrated on Fig. 8c with the 99.9 %

confidence level, for which a MCMC approach would require a huge number of samples to get a satisfactory accuracy.

2. As a consequence, for a given percentile, computing time is usually shorter with the analytical method than with the5

MCMC method. We note, however, that the MCMC approach generally needs less computing time when the number of

data points becomes large, as shown in appendix E.

First approximation

If the marginal posterior distribution of each CARMA parameter is unimodal, we take the parameter value at the maximum

of its PDF (white noise case, see Eq. (85)), or the median parameter6 (other cases). Note that multimodality tends to appear10

more frequently for CARMA processes of high order. Working with a unique set of parameters allows us to find an analytical

formula for the distribution of the WOSA periodogram. Considering the matrix forms of the CARMA noise (Eq. (20) or (38))

and the WOSA periodogram (Eq. (68)), we demonstrate the following theorem.

Theorem 1. The WOSA periodogram, defined in Eq. (68), under the null hypothesis (76), is

||PWOSA(ω)|X〉||2 d
=

2Q(ω)∑
k=1

λk(ω)χ2
1k
, (86)15

where |X〉=
∑m
k=0 γk|tk〉+K|Z〉, K is the CARMA matrix defined in Eq. (20) or (38), and Q(ω) is the number of WOSA

segments at ω.

χ2
11

, ..., χ2
12Q(ω)

are iid chi-square distributions with 1 degree of freedom, and λ1(ω), ..., λ2Q(ω)(ω) are the eigenvalues of

M ′ωKK
′Mω and are non-negative. Matrix Mω is defined in Eq. (69).

Proof. Since the WOSA periodogram, Eq. (68), is invariant with respect to the parameters of the trend, we pose them equal to20

zero and consider the zero-mean CARMA process

|X〉=K|Z〉. (87)

The periodogram is thus

||PWOSA(ω)|X〉||2 = 〈Z|K ′MωM
′
ωK|Z〉= γ′γ, (88)

with γ =M ′ωK|Z〉. Since |Z〉 is a standard multivariate normal distribution, we have25

γ
d
=N (0,M ′ωKK

′Mω). (89)

6For CARMA processes with p > 0 and q ≥ 0, the marginal posterior distribution is obtained by MCMC methods, and determining the maximum of the

PDF thus requires some post-processing, such as smoothing the distribution. A simple alternative is to take the median.
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M ′ωKK
′Mω is a (2Q(ω),2Q(ω)) real symmetric positive semi-definite matrix. We can thus diagonalize it:

∃ an orthogonal matrix U s.t. U ′M ′ωKK
′MωU =D, (90)

with D being a diagonal matrix with the 2Q(ω) non-negative eigenvalues of M ′ωKK
′Mω . We now have U ′γ d

=N (0,D), and

||PWOSA(ω)|X〉||2 = γ′γ = γ′UU ′γ = 〈Z|
√
D
√
D|Z〉 d=

2Q(ω)∑
k=1

λk(ω)χ2
1k
, (91)

where the χ2
1k

distributions are iid.5

The pseudo-spectrum is defined as the expected value of the periodogram distribution:

Ŝ(ω) =

2Q(ω)∑
k=1

λk(ω) = tr(M ′ωKK
′Mω). (92)

The difference between the pseudo-spectrum and the traditional spectrum is explained in appendix C.

If the background noise is white, we have K = σI and this implies that tr(M ′ωKK
′Mω) = tr(M ′ωMω)σ2 = tr(MωM

′
ω)σ2 =

2σ2, such that the pseudo-spectrum is10

Ŝ(ω) = 2σ2, (93)

and is thus flat. This is a well-known result of the LS periodogram (Scargle, 1982), generalized here to more evolved peri-

odograms. Moreover, if there is no WOSA segmentation (Q(ω) = 1 ∀ω), the periodogram is exactly chi-square distributed

with 2 degrees of freedom:

||(Psp{|t0〉,|t1〉,...,|tm〉,|Gcω〉,|Gsω〉}−Psp{|t0〉,|t1〉,...,|tm〉})σ|Z〉||2
d
= σ2χ2

11
+σ2χ2

12

d
= σ2χ2

2, (94)15

which is also a generalization of a well-known result of the LS periodogram (Scargle, 1982).

The variance of the distribution of the periodogram, Eq. (86), is equal to 2
∑2Q(ω)
k=1 λ2

k(ω) = 2||M ′ωKK ′Mω||2F , where || · ||F
is the Frobenius norm. As expected, it decreases with Q, as illustrated on Fig. 3.
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Figure 3. Analytical variance of the WOSA periodogram for a Gaussian red noise with σ = 2 and α= 1/20 (see Sect. 3.2.3 for the definition of a red noise)

for different values of Q. The frequency range is chosen such that, for each curve, Q(ω) is constant all along. The red noise is built on the irregularly sampled

times of ODP1148 core (see Sect. 9).

Going back to Eq. (86), it is well-known that a linear combination of (independent) χ2 distributions is not analytically

solvable. Fortunately, excellent approximations are available in Provost et al. (2009), allowing to avoid Monte-Carlo methods.

Second approximation

We approximate the linear combination of independent chi-square distributions, conserving its first d moments. When d→∞,

the approximation converges to the exact distribution. In practice, estimation of a percentile is already very good with a very5

few moments, as illustrated on Fig. 9. Let us proceed step by step by increasing the number of conserved moments. Define

X =
∑2Q(ω)
k=1 λk(ω)χ2

1k
.

1-moment approximation

We require the expected value of the process to be conserved, which is satisfied with the following approximation:

X
d
≈ 1

2Q(ω)
[

2Q(ω)∑
k=1

λk(ω)]χ2
2Q(ω), (95)10

or, equivalently,

X
d
≈ 1

2Q(ω)
Ŝ(ω)χ2

2Q(ω). (96)

2-moment approximation

The approximate distribution of the linear combination of the chi-square distributions must have two parameters, and we

conserve the expected value and variance. A chi-square distribution with M degrees of freedom provides a good fit:15

X
d
≈ gχ2

M . (97)
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Equating the expected values and variances gives

M =
(tr(A))2

||A||2F
and g =

||A||2F
tr(A)

, (98)

where A=M ′ωKK
′Mω and ||A||2F is the squared Frobenius norm of matrix A, i.e. the sum of its squared eigenvalues. Note

that gχ2
M

d
= γM/2,2g , where 2g is the scale parameter of the gamma distribution, which motivates the following d-moment

approximation.5

d-moment approximation

We apply here the formulas presented in Provost et al. (2009). Let fX be the PDF of X . This distribution is approximated by

the PDF of a dth degree gamma-polynomial distribution:

fX(x)≈ γα,β(x)

d∑
i=0

ξix
i, x≥ 0, (99)

where the parameters α and β are estimated with the 2-moment approximation detailed above. ξ0, ..., ξd are the solution of10 
ξ0

ξ1
...

ξd

=


η(0) η(1) . . . η(d− 1) η(d)

η(1) η(2) . . . η(d) η(d+ 1)
...

...
...

...
...

η(d) η(d+ 1) . . . η(2d− 1) η(2d)



−1
1

µ(1)
...

µ(d)

 . (100)

µ(1), ..., µ(d) are the exact first d moments of X and can be computed analytically by recurrence (see Eq. (5) of Provost et al.,

2009). η(h) is the hth moment of the gamma distribution, η(h) = βhΓ(α+h)/Γ(α). The approximate cumulative distribution

function (CDF) of X , evaluated at c0, is then

FX(c0)≈ 1

Γ(α)

d∑
i=0

ξiβ
iγ(i+α,c0/β), c0 > 0, (101)15

where γ(s,x) is the lower incomplete gamma function:

γ(s,x) =

x∫
0

dt ts−1 exp(−t). (102)

After all that chain of calculus, we reached our objective, that is, the estimation of a confidence level for the WOSA peri-

odogram. It is given by the solution c0 of

1

Γ(α)

d∑
i=0

ξiβ
iγ(i+α,c0/β)− p= 0, (103)20

for some p-value p, e.g. p= 0.95 for a 95 % confidence level.

The gamma-polynomial approximation can be extended to the generalized gamma-polynomial approximation. The latter is

based on the generalized gamma distribution and is defined in appendix D. It gives percentiles that usually converge faster than
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with the gamma-polynomial approximation. However, we observed that the generalized gamma-polynomial approximation is

quite sensitive to the quality of the first guess for the three parameters of the generalized gamma distribution (see appendix

D). We thus recommend the use of the gamma-polynomial approximation as a first choice. Both options are available in

WAVEPAL.

Finally, we mention that there exists an alternative expression to the above development, in terms of Laguerre polynomials (see5

Provost, 2005). It has the advantage of not requiring the matrix inversion in Eq. (100), the latter possibly being singular at large

values of the degree d. However, we have not found any improvement on the stability or computing time using that approach.

5.4 The F-periodogram for the white noise background

We shown in Eq. (94) that the periodogram of a Gaussian white noise is exactly chi-square distributed if there is no WOSA

segmentation. Significance testing against a white noise requires the estimation of the white noise variance after having de-10

trended the data. Knowing that a F-distribution is the ratio of independent chi-square distributions, it is possible to get rid of

the detrending and variance estimation and deal with a well-known distribution, by working with

(N −m− 3)||(Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉||2

2||(I−Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉})|X〉||2
. (104)

We call it the F-periodogram. We already know that the numerator is invariant with respect to the parameters of the trend

of the signal. It is clear that the denominator is invariant with respect to the parameters of the trend as well as with respect15

to the amplitudes of the periodic components (only the |Noise〉 term remains when applying it to Eq. (13)). Moreover, that

ratio is invariant with respect to the variance of the signal. Last but not least, the orthogonal projections in the numerator,

[Psp{|t0〉,|t2〉,...,|tm〉,|cω〉,|sω〉}−Psp{|t0〉,|t2〉,...,|tm〉}], and in the denominator, [I−Psp{|t0〉,|t2〉,...,|tm〉,|cω〉,|sω〉}], are done on spaces

that are orthogonal to each other. Consequently, if we consider the null hypothesis (76) with a white noise, the numerator and

the denominator follow independent chi-square distributions, and20

(N −m− 3)||(Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉||2

2||(I−Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉})|X〉||2
d
=

(N −m− 3)χ2
2

2χ2
N−m−3

d
= F (2,N −m− 3), (105)

where

|X〉 d=
m∑
k=0

γk|tk〉+N (µ,σ2)
d
= |Trend〉+N (µ,σ2), (106)

and where F (2,N −m− 3) is the Fisher-Snedecor distribution with parameters 2 and N −m− 3. In conclusion, the F-25

periodogram can be an alternative to the periodogram when performing significance testing. It has the advantage of not re-

quiring any parameter to be estimated and applies under the following conditions

– The background noise is assumed to be white

– There is no WOSA segmentation
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– There is no tapering

The F-periodogram is available in WAVEPAL under the above requirements.

With a WOSA segmentation, projections at the numerator and at the denominator are not performed anymore on orthogonal

spaces, and this cannot therefore be applied.

The above results are a generalization of formulas in Brockwell and Davis (1991) and Heck et al. (1985). See appendix F for5

additional details.

6 The amplitude periodogram

6.1 Definition

Going back to Eq. (13), we now look for the amplitude Eω =
√
A2
ω +B2

ω at a given frequency f = ω
2π . The estimation of E2

ω

is called the amplitude periodogram and is denoted by Ê2
ω . We estimate Aω and Bω with a least squares approach. We start10

with a trendless signal, and will show that the amplitude periodogram and the periodogram are approximately proportional.

6.2 Trendless signal

6.2.1 No tapering

The estimated amplitudes we look for, Âω and B̂ω , are the solution of

(Âω, B̂ω) = argmin
{(A,B)∈R2}

|| |X〉− (A|cω〉+B|sω〉)||2. (107)15

Since we look for the minimal distance, the solution is given by the orthogonal projection onto the vector space spanned by

|cω〉 and |sω〉, namely

Psp{|cω〉,|sω〉}|X〉= Âω|cω〉+ B̂ω|sω〉. (108)

Let us develop this equation:

Vω2(V ′ω2
Vω2)−1V ′ω2

|X〉= Vω2 |Φ̂ω〉, (109)20

where

Vω2
=

 |cω〉 |sω〉
 and |Φ̂ω〉=

 Âω

B̂ω

 , (110)

and we find the well-known expression for the solution of a least squares problem:

|Φ̂ω〉= (V ′ω2
Vω2

)−1V ′ω2
|X〉. (111)
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Finally,

Êω = |||Φ̂ω〉||. (112)

In the regularly sampled case, at the Fourier frequencies, the amplitude periodogram is proportional to the periodogram, with

a factor 2/N (or a factor 1/N at ω = 0 and ω = π/∆t ; the projection being done on the single cosine at those frequencies). It

is not anymore the case with irregularly sampled time series, and the proportionality is only approximate:5

Ê2
ω ≈

2

N
||Psp{|cω〉,|sω〉}|X〉||

2. (113)

To prove the above formula, rewrite the model (13) at Ω = ω:

|X〉= Eω cos(ω|t〉+φω −βω +βω) + |Noise〉

=Aω cos(ω|t〉−βω) +Bω sin(ω|t〉−βω) + |Noise〉, (114)

where βω is defined in Eq. (42) and makes the phase-lagged sine and cosine orthogonal. Aω and Bω no longer have the same10

expressions as in Eq. (13), but we still have E2
ω =A2

ω+B2
ω . We can rewrite Eq. (111) but this time with Vω2 holding the above

phase-lagged sine and cosine. We now make use of the approximation stated in Lomb (1976, p. 449):

N∑
i=1

cos2(ωti−βω)≈ N

2
and

N∑
i=1

sin2(ωti−βω)≈ N

2
. (115)

Note that the sum of both is exactly equal to N . Equation (113) is then obtained observing that V ′ω2
Vω2
≈ N

2 I. Basic trigonom-

etry gives the following equalities for the relative error of the above approximations:15 ∣∣∣∣∣
∑N
i=1 cos2(ωti−βω)−N/2

N/2

∣∣∣∣∣=

∣∣∣∣∣
∑N
i=1 sin2(ωti−βω)−N/2

N/2

∣∣∣∣∣=

∣∣∣∣∣
∑N
i=1 cos(2(ωti−βω))

N

∣∣∣∣∣ , (116)

so that the two approximations of (115) reduce to only one:∑N
i=1 cos(2(ωti−βω))

N
≈ 0. (117)

The quality of this approximation is illustrated on Fig. 4.

6.2.2 With tapering20

Like with the periodogram, leakage also appears in the amplitude periodogram. Consequently, it may be better to work with the

projection on tapered cosine and sine if the data are not too much irregularly sampled, as explained in Sect. 4.4. Considering

the tapered case is also an important mathematical prerequisite for an extension to the continuous wavelet transform. This is

developed in part II of this study (Lenoir and Crucifix, 2017).

Âω and B̂ω are determined by projecting the data onto tapered cosine and sine:25

Psp{|Gcω〉,|Gsω〉}|X〉= Âω|cω〉+ B̂ω|sω〉. (118)
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Developing the equation gives

|Φ̂ω〉= (V ′ω2
GVω2)−1V ′ω2

G|X〉, (119)

and

Êω = |||Φ̂ω〉||, (120)

where Vω2
is defined in Sect. 6.2.1 and G is defined in Sect. 4.4.5

Note that the approach we follow does not correspond to the classical least squares problem as above since, in Eq. (118), the

cosine and sine are tapered only on the left-hand side of the equality. However, one can reconstruct a signal from its projection

coefficients with another function than the one which is used to determine those coefficients (see Torrésani, 1995, Eq. (II.8)

p. 15, in which the similarity with Vω2 |Φ̂ω〉= Vω2(V ′ω2
GVω2)−1V ′ω2

G|X〉 is evident). Note that Vω2(V ′ω2
GVω2)−1V ′ω2

G is a

projection, since it is idempotent, but the projection is not orthogonal, because it is not symmetric.10

Similarly to the non-tapered case, we now determine an approximate proportionality between the amplitude periodogram and

the tapered periodogram. We start with the model (13) evaluated at Ω = ω and written under the following form

|X〉=Aω cos(ω|t〉−βω) +Bω sin(ω|t〉−βω) + |Noise〉, (121)

where βω is introduced such that 〈Gcω |Gsω 〉= 0, or equivalently, such that V ′ω2
G2Vω2

is diagonal. A little development gives

the formula for determining βω:15

tan(2βω) =

∑N
i=1G

2
ii sin(2ωti)∑N

i=1G
2
ii cos(2ωti)

, (122)

which is a generalization of Eq. (42). We now make use of the following approximations:∑N
i=1Gii cos(2(ωti−βω))

tr(G)
≈ 0, (123a)∑N

i=1G
2
ii cos(2(ωti−βω))

tr(G2)
≈ 0, (123b)

which are similar to the approximation made in (117). That implies, with no extra approximation, the following formulas:20

N∑
i=1

Gii cos2(ωti−βω)≈ tr(G)

2
,

N∑
i=1

Gii sin
2(ωti−βω)≈ tr(G)

2
, (124)

and
N∑
i=1

G2
ii cos2(ωti−βω)≈ tr(G2)

2
,

N∑
i=1

G2
ii sin

2(ωti−βω)≈ tr(G2)

2
. (125)25
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Note that in (124) and (125), the sum of the two members is conserved and we find back Eq. (115) when G= I. Moreover, we

approximate the following sum:∑N
i=1Gii cos(ωti−βω)sin(ωti−βω)

tr(G)/2
≈ 0, (126)

so that V ′ω2
GVω2

is diagonal. The quality of these approximations is illustrated on Fig. 4. Putting all together gives

V ′ω2
GVω2 ≈

tr(G)

2
I, and V ′ω2

G2Vω2 ≈
tr(G2)

2
I, (127)5

from which we deduce

Ê2
ω ≈

2tr(G2)

tr(G)2
||Psp{|Gcω〉,|Gsω〉}|X〉||

2. (128)

Finally, we mention that the above relation is approximate as well in the case of regularly sampled time series.
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Figure 4. Illustration of the quality of the approximations (a) Eq. (123a) (b) Eq. (123b) and (c) Eq. (126). In blue: No tapering (square taper), in green: sin2

taper, in red: Gaussian taper. The approximation (117) is thus in blue in (a) or (b). Each panel represents the left-hand side of the equation, multiplied by 100,

to express percentage. This indicates how small is the numerator compared to the denominator. The time vector |t〉 comes from the ODP1148 core (see Sect.

9) for which ∆tGCD = 1 kyr.

6.3 Signal with a trend

We now work with the full model (13) including the trend. Our aim is again to find the amplitude Eω , or, equivalently Aω and10

Bω . We proceed in the same way as in Sect. 6.2:

Psp{|t0〉,|t1〉,...,|tm〉,|Gcω〉,|Gsω〉}|X〉=

m∑
k=0

γ̂k|tk〉+ Âω|cω〉+ B̂ω|sω〉= Vωm+3
|Φ̂ω〉, (129)
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where

Vωm+3 =

 |t0〉 . . . |tm〉 |cω〉 |sω〉

 , (130)

and

|Φ̂ω〉=



γ̂0

...

γ̂m

Âω

B̂ω


. (131)

We can write: Psp{|t0〉,|t1〉,...,|tm〉,|Gcω〉,|Gsω〉} =Wωm+3(W ′ωm+3
Wωm+3)−1W ′ωm+3

, whereWωm+3 is identical to Vωm+3 except5

in the last two columns, where the cosine and sine are tapered by G. We thus obtain

|Φ̂ω〉= (W ′ωm+3
Vωm+3

)−1W ′ωm+3
|X〉, (132)

and

Ê2
ω = Â2

ω + B̂2
ω = Φ̂ω(m+ 2)2 + Φ̂ω(m+ 3)2, (133)

where Φ̂ω(m+ 2) and Φ̂ω(m+ 3) are the two last components of vector |Φ̂ω〉.10

6.4 With WOSA

The signal being stationary, we can estimate the amplitude on overlapping segments and take the average. That gives a better

estimation, more robust against the background noise, but it has the disadvantage of widening the peaks and thus reducing the

resolution in frequency. We simply take Eq. (132), apply it to each segment7, and compute the average. We have

Ê2
ω =

1

Q(ω)

Q(ω)∑
q=1

[Φ̂q,ω(m+ 2)2 + Φ̂q,ω(m+ 3)2]. (134)15

6.5 Amplitude periodogram or periodogram?

So far, we have studied in detail the periodogram and its confidence levels as well as the estimated amplitude. Of course,

confidence levels can also be determined for the amplitude, with Monte-Carlo simulations, or with an analytical approximation

similar to Sect. 5.3.3.

In the regularly sampled case, at Fourier frequencies, the cosine and sine vectors are orthogonal, so that, in the non-tapered case20

7We remind that the vectors |tk〉 associated to the trend are taken on the whole time series. Only the (tapered) cosine and sine are taken on the WOSA

segment.
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and with a constant trend, there is no difference between the periodogram and the amplitude periodogram, up to a multiplicative

constant. Even with WOSA segmentation, the number of data points being identical on each segment, that multiplicative

constant remains invariant.

In the irregularly sampled case, choosing one or the other depends on what one wants to conserve. The periodogram conserves

the flatness of the white noise pseudo-spectrum (see Eq. (93)) and can therefore be of interest to study the background noise5

of the time series. On the other hand, the amplitude periodogram gives a direct access to the estimated signal amplitude.

Another criteria to take into account is the computing time. Indeed, the amplitude periodogram requires matrix inversions (or,

equivalently, resolution of linear systems) and is then slower to compute, while the periodogram allows to deal with orthogonal

projections and is computationally more efficient. Finally, we mention that, with a trendless signal, difference between both is

rather explicit (see Eq. (118)):10

Periodogram: ||Âω|cω〉+ B̂ω|sω〉||2 (135)

versus

Amplitude periodogram: Â2
ω + B̂2

ω. (136)

This is variance (multiplied by the number of data points) versus squared amplitude. A compromise between the amplitude

periodogram and the periodogram is the weighted periodogram, which is defined in the next section.15

7 The weighted WOSA periodogram

Taking into account the approximate linearity between the amplitude periodogram and the tapered periodogram, Eq. (128), a

possibility is to perform the frequency analysis with a weighted version of the WOSA periodogram. On each WOSA segment,

the periodogram is weighted by wq = 2tr(G2
q)/tr(Gq)2, q = 1, ...,Q(ω). The advantage of the weighted WOSA periodogram

is to provide deterministic peaks (coming from Aω|cω〉+Bω|sω〉) of more or less equal power on all the WOSA segments,20

thus alleviating the issue stated in Sect. 4.5.2. The disadvantage is that the pseudo-spectrum of a white noise is not flat anymore

(Eq. (93) is not valid anymore, except when Q= 1). Working with the weighted version is done by modifying matrix Mω , Eq.

(69), which is now

Mω =
1√
Q(ω)

√w1|h1,1(ω)〉 √w1|h2,1(ω)〉 . . .
√
wQ(ω)|h1,Q(ω)(ω)〉

√
wQ(ω)|h2,Q(ω)(ω)〉

 . (137)

Note that the weights wq are the same on each segment when the time series is regularly sampled, so that the whole WOSA25

periodogram is, in that case, just multiplied by a constant, and the pseudo-spectrum of a white noise is flat. We observed that

the weighted periodogram is often very close to the amplitude periodogram, like in the example presented in Fig. 10. We thus

recommend the use of the weighted WOSA periodogram in most analyses.

When filtering is to be performed, the amplitude periodogram must be computed as well. This is the topic of the next section.
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8 Filtering

We want to reconstruct the deterministic periodic part, Âω|cω〉+ B̂ω|sω〉 of our model (13) evaluated at Ω = ω. From Eq.

(132), we can extract Âω = Φ̂ω(m+ 2) and B̂ω = Φ̂ω(m+ 3), and reconstruction at a single frequency is therefore direct.

Reconstruction on a frequency range can be done by summing Âω|cω〉+ B̂ω|sω〉 over ω.

Note that, in theory, reconstruction could be done segment by segment, using the WOSA method. But, in practice, we observe5

that it does not give good results with stationary signals. Of course, if the signal is not stationary, reconstruction segment by

segment is a clever choice, but, with such signals, it is better to use more appropriate tools such as the wavelet transform. See

the second part of this study (Lenoir and Crucifix, 2017), in which some examples of filtering are given.

9 Application on paleoceanographic data

The time series we use to illustrate the theoretical results is the benthic foraminiferal δ18O record from Jian et al. (2003) that10

holds 608 data points with distinct ages and covers the last 6 million years. An example of frequency analysis is described

below.

9.1 Preliminary analysis

We first look at the sampling. ∆tGCD = 1 kyr, and rt = 10.13 %. Following the recommendation of Sect. 4.4, we therefore use

the default rectangular window taper. The sampling and its distribution are drawn on Fig. 5. We then choose the degree of15

the polynomial trend to be m= 7, see Fig. 6. This choice for m is justified by a sensitivity analysis performed in Sect. 9.4.

We remind that the time series is not detrended before estimating the spectral power of the data, but it is detrended before

estimating the confidence levels.
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Figure 5. The age step, (tk − tk−1) ∀k ∈ 2, ...,N , and its distribution.
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Figure 6. The time series and its 7th degree polynomial trend.

9.2 CARMA(p,q) background noise analysis

We choose the order of the background noise CARMA process. We opt for the traditional red noise background (Hasselmann,

1976), p= 1 and q = 0. Note that we observe similar confidence levels with other choices (see the sensitivity analysis in Sect.

9.5). We then estimate the parameters of the stationary CARMA process (here, a red noise) on the detrended data. This is

done with the algorithm provided by Kelly et al. (2014) (see Sect. 5.2.3). Quality of the fit is analyzed on Fig. 7a, 7c and 7e.5

Fig. 7a analyzes the residuals. If the detrended data are a Gaussian red noise, the residuals must be distributed as a Gaussian

white noise. We see that the distribution is indeed close to a Gaussian. Fig. 7c shows the autocorrelation function (ACF) of

the residuals. If the residuals are a Gaussian white noise sequence, they must be uncorrelated at any lag. We can therefore

arrange the residuals on a regular grid with a unit step and then take the classical ACF, which can only be applied to regularly

sampled data. Fig. 7c is consistent with the assumption that the residuals are uncorrelated. Fig. 7e shows the ACF of the squared10

residuals. If the residuals are a Gaussian white noise sequence, the squared residuals are a white noise sequence (which is not

Gaussian anymore) and must therefore be uncorrelated at any lag. Deviations from the confidence grey zone indicate that the

variance is changing with time and the signal is therefore not stationary. This is actually what is happening with our time series.

Changes in variance are already visible on the raw time series (Fig. 6). Remember that, at this stage, we are within the world

of the null hypothesis, Eq. (76), and slight violation of the goodness of fit may be due to the presence of additive periodic15

deterministic components, that is the alternative hypothesis.

The marginal posterior distributions of the CARMA parameters are shown on Fig. 7b, 7d and 7f, jointly with the ACF of the

MCMC samples. Each distribution is unimodal, and we may therefore use the analytical approach of Sect. 5.3.3 to estimate the

confidence levels. Based on the ACFs of the MCMC samples of the three parameters, we skim off the initial joint distribution

of the parameters to make their samples almost uncorrelated. In this example, we pick up 1231 samples among the 1600020
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initial ones. This number of 1231 samples results from the fact that we impose an ACF which is less than 0.2 for each marginal

distribution8.
8As explained in Sect. 9.3, these 1231 samples are then used to compute the median parameters, producing the analytical confidence levels of Fig. 8c and

8d and the MCMC confidence levels of Fig. 8c. The MCMC confidence levels of Fig. 8d are computed from 50000 samples of the parameters, after skimming

off a distribution with much more samples.
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Figure 7. CARMA(1,0) background noise analysis. (a), (c) and (e) assess the fit. (a) Standardized residuals. (c) ACF of the residuals. (e) ACF of the squared

residuals. The lag refers to an arbitrary scale on which the data are regularly spaced with a unit step. The grey portion is the 95 % confidence region. (b), (d)

and (f) show the samples of the MCMC and the posterior marginal distributions (top panel), jointly with the ACF of the MCMC samples (bottom panel). (b)

Mean. (d) Standard deviation of the white noise term. (f) log(α), where α is defined in Sect. 3.2.3.
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9.3 Frequency analysis

We compute the weighted WOSA periodogram of Sect. 7. The frequency range is automatically determined from the results

of Sect. 4.5.4. The length of the WOSA segments depends on the required frequency resolution. Here we choose segments of

about 600 kyr and a 75 % overlapping. The WOSA segmentation is presented on Fig. 8a.

The weighted WOSA periodogram and its 95 % and 99.9 % confidence levels are presented on Fig. 8c and 8d. Both figures5

display the analytical confidence levels, which are computed with the median parameters of the red noise process (that is the

median of 1231 samples of the distributions shown on Fig. 7b, 7d and 7f) and a 12-moment gamma-polynomial approximation

(Sect. 5.3.3). We can check for the convergence of the gamma-polynomial approximation, at some frequencies. This is pre-

sented on Fig. 9. Figure 8c also shows the MCMC confidence levels, computed from 50000 red noise time series, all generated

with the median red noise parameters. As we can see on Fig. 8c, the matching between the analytical and MCMC confidence10

levels is excellent, also in the very tail of the distribution, at the 99.9 % confidence level. We can go a step further and take

into account the uncertainty on the CARMA parameters, as explained in Sect. 5.3.2. Figure 8d presents the MCMC confidence

levels that are computed from 50000 red noise time series, generated with stochastic parameters, that are taken from the joint

posterior distribution of the parameters of the red noise process. The number of WOSA segments per frequency, denoted by

Q(f) in Sect. 4 to 7, is on Fig. 8b, and provides an indication of the noise damping per frequency. Indeed, the variability due15

to the background noise is increasingly damped as the number of WOSA segments grows.

We also compute the amplitude periodogram, Eq. (134), which is actually very close to the weighted periodogram, as shown

on Fig. 10. Similar results are obtained using other tapers (not shown). This illustrates the quality of the approximations made

in Sect. 6.2.2. Note that the estimation of the amplitude Eω of the model (13) is always biased by the background noise (we

observe on Fig. 10 that the peaks emerge from a baseline which is well above zero).20
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Figure 8. Frequency analysis. (a) The time series, in blue, and the WOSA segments, in red. (b) Number of WOSA segments per frequency. (c) and (d):

Weighted WOSA periodogram and the confidence levels (CL) at 95 % and 99.9 %. Analytical CL (Anal. CL) are computed with the median parameters of

the red noise process. In (c), the MCMC CL are computed from the MCMC red noise time series, all generated with the median red noise parameters. In (d),

the MCMC CL are computed from the MCMC red noise time series, generated with stochastic parameters, that are taken from the joint posterior distribution

of the parameters of the red noise process.
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Figure 9. At six particular frequencies, check for the convergence of the analytical percentiles.
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Figure 10. Comparison between the amplitude periodogram (= squared amplitude) and the weighted periodogram. The green curve is the same as the black

curve of Fig. 8c and 8d

9.4 Sensitivity analysis for the degree of the polynomial trend

We show on Fig. 11 that the degree m of the polynomial trend, taken between 5 and 10, does not influence substantially the

WOSA periodogram. Below m= 5, the trend no longer fits the data correctly (from a mere visual inspection), while above

m= 10, spurious oscillations may appear.

Note that we do not apply here the Akaike Information criterion (AIC) (Akaike, 1974). Indeed, defining a stochastic model for5

the trend and estimating its likelihood is quite tedious in our case, since we work with CARMA stochastic processes. Moreover,

at this stage, we do not want to choose yet between the orders of the CARMA process.
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9.5 Sensitivity analysis for the order of the CARMA process

Fig. 12 displays the confidence levels for various orders of the CARMA process: (p,q) = (0,0), (p,q) = (1,0), (p,q) = (2,0)

and (p,q) = (2,1). It is clear that the CARMA(0,0) (= white noise) does not capture enough spectral variability to perform

significance testing and that using a CARMA(2,0) or a CARMA(2,1) is basically equivalent to using a red noise.
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Figure 11. (a) Trends of different degrees for the time series. (b) Weighted WOSA periodograms for different degrees of the trend. Each periodogram is

normalized like in Eq. (58), in order to make a meaningful comparison.
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Figure 12. The weighted WOSA periodogram and its 95 % confidence levels for different orders (p,q) of the CARMA process. Note that the marginal

posterior distributions of some parameters of the CARMA(2,0) and CARMA(2,1) processes are multimodal, so the analytical approach cannot be applied, and

MCMC confidence levels must therefore be used.
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10 WAVEPAL Python package

WAVEPAL is a package, written in Python 2.X, that performs frequency and time-frequency analyses of irregularly sampled

time series, significance testing against a stationary Gaussian CARMA(p,q) process, and filtering. Frequency analysis is based

on the theory developed in this article, and time-frequency analysis relies on the theory developed in part II of this study (Lenoir

and Crucifix, 2017). It is available at https://github.com/guillaumelenoir/WAVEPAL.5

11 Conclusions

We proposed a general theory for the detection of the periodicities of irregularly sampled time series. This is based on a

general model for the data, which is the sum of a polynomial trend, a periodic component and a Gaussian CARMA stochastic

process. In order to perform the frequency analysis, we designed new algebraic operators that match the structure of our

model, as extensions of the Lomb-Scargle periodogram and the WOSA method. A test of significance for the spectral peaks10

was designed as a hypothesis testing and we investigated in detail the estimation of the percentiles of the distribution of our

algebraic operators under the null hypothesis. Finally, we shown that the least squares estimation of the squared amplitude of

the periodic component and the periodogram are no longer proportional if the time series is irregularly sampled. Approximate

proportionality relations were proposed and are at the basis of the weighted WOSA periodogram, which is the analysis tool

that we recommend for most frequency analyses. The general approach presented in this paper allows an extension to the15

continuous wavelet transform, which is developed in part II of this study (Lenoir and Crucifix, 2017).

Code availability. The Python code generating the figures of this article is available in the supplementary material.

Appendix A: Some properties of the Lomb-Scargle periodogram

We present some properties of the LS periodogram, defined in Sect. 4.1.

A1 Periodicity of the periodogram20

The LS periodogram and all its generalizations (e.g. Eq. (64)) exhibit a periodicity similar to the DFT of regularly sampled

real processes: The periodogram over the frequency range ]− 1/2∆tGCD,1/2∆tGCD] repeats itself periodically. Moreover,

the periodogram at frequency −f is equal to the periodogram at frequency +f . Consequently, we must work at most on the

frequency range [0,1/2∆tGCD[ to avoid aliasing.

A2 Total reconstruction25

Integrating the orthogonal projection Psp{|cω〉,|sω〉} between frequency 0 and 1/2∆tGCD does not give the identity operator.

We only have an approximate equality. Using Lomb’s approximation, given in Eq. (115), and no extra approximation, some
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algebra gives

π/∆tGCD∫
0

dω (|c]ω〉〈c]ω|+ |s]ω〉〈s]ω|)≈
2π

N∆tGCD
I. (A1)

It is interesting to compare it with the integration of complex exponentials, which gives exactly the identity operator:

π/∆tGCD∫
−π/∆tGCD

dω |e]ω〉〈e]ω|=
2π

N∆tGCD
I, (A2)

where |e]ω〉= 1√
N

exp(iω|t〉) = 1√
N

(|cω〉+i|sω〉). The above formula may be interpreted as a form of Parseval’s identity. That5

property of exact reconstruction is, incidentally, at the basis of the multitaper method (Lenoir, 2017). With that property and

the no less interesting mathematical properties of the complex exponentials, it is legitimate to ask why we would not work with

the projection on a complex exponential instead of a projection on cosine and sine. The main disadvantage of working with

exponentials is the loss of power in the negative frequencies. Indeed, the trendless model (13) at Ω = ω can be rewritten as

|X〉= Eω
exp(i(ω|t〉+φω)) + exp(−i(ω|t〉+φω))

2
+ |Noise〉10

= Cω|eω〉+Dω|e−ω〉+ |Noise〉, (A3)

where |eω〉= exp(iω|t〉). In the case of irregularly sampled time series, we no longer have, in general, 〈eω |e−ω 〉= 0, so

that some power is lost in the negative frequencies when projecting on sp{|eω〉}. We could then think about performing the

projection on sp{|eω〉, |e−ω〉}, but this does not lead to the identity operator when integrating from frequency −1/2∆tGCD to

+1/2∆tGCD.15

A3 Invariance under time translation

As stated in Scargle (1982), the LS periodogram is invariant under time translation. Psp{|cω〉,|sω〉} is of course invariant un-

der such a transformation. The result can be generalized to more evolved projections. Indeed, [Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉}−
Psp{|t0〉,|t1〉,...,|tm〉}] is also invariant under time translation, provided all the powers of |t〉 from 0 to m are taken into account.

That projection is also invariant under time dilatation if the frequency is contracted accordingly.20

Appendix B: Periodogram and mean: Equivalence between published formulas

We show here the equivalence between some published formulas, with notations that are a mix between those of the cited

articles and those of the present one, in order to facilitate the reading.

Brockwell and Davis (1991, p. 335) work with

||(Psp{|t0〉,|cω〉,|sω〉}−Psp{|t0〉})|X〉||2. (B1)25
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It is defined for regularly sampled time series, and is suitable for irregularly sampled time series as well. That formula is the

same as Eq. (47).

Ferraz-Mello (1981) considers irregularly sampled time series and defines the intensity (p. 620) by

I(ω) = c21 + c22, (B2)

where c1 = 〈f |h1 〉 and c2 = 〈f |h2 〉. |f〉 contains the measurements (this is |X〉 in the present article) and |h1〉 and |h2〉 are5

exactly the same as in Eq. (53). I(ω) is thus equal to Eq. (55).

Heck et al. (1985) deal with irregularly sampled time series and define (Eq. (1) p. 65):

SP(ν) = 〈X|F1,0(ν)|X〉= 〈X|A(ν)[A(ν)′A(ν)]−1A(ν)′|X〉, (B3)

where ν denotes the frequency (ν = ω/2π) and A(ν) is a (N,2) matrix whose first column is |cω〉− |t0〉〈 t0 |cω 〉/N and

second column is |sω〉− |t0〉〈 t0 |sω 〉/N . Equation (B3) is nothing but the squared norm of the orthogonal projection of10

the data |X〉 onto the span of those two vectors. By a Gram-Schmidt orthonormalization, it is easy to see that sp{|cω〉−
|t0〉〈 t0 |cω 〉/N , |sω〉− |t0〉〈 t0 |sω 〉/N}= sp{|h1〉, |h2〉}, where |h1〉 and |h2〉 are defined in Eq. (53). We thus have the peri-

odogram defined in Eq. (55).

Appendix C: On the pseudo-spectrum

We define the pseudo-spectrum as the expected value of the WOSA periodogram under the null hypothesis (see Sect. 5.1):15

Ŝ(ω) = E
{
||PWOSA(ω)|X〉||2

}
, (C1)

where |X〉= |Trend〉+ |Noise〉, in which |Noise〉 is a zero-mean stationary Gaussian CARMA process sampled at the times

of |t〉, and the expectation is taken on the samples of the CARMA noise. With what we have seen in Sect. 5.3.2 and 5.3.3, the

periodogram is either obtained with Monte-Carlo methods or analytically with some approximations. In the former case, Ŝ(ω)

is estimated by taking the numerical average of the periodogram at each frequency. In the latter case, an analytical formula20

for the pseudo-spectrum is available. Indeed, the process under the null hypothesis is |X〉=K|Z〉+
∑m
k=0 γk|tk〉, where K is

defined in Eq. (20) or (38), and we have

Ŝ(ω) =

2Q(ω)∑
k=1

λk(ω) = tr(M ′ωKK
′Mω), (C2)

where the different terms are defined in theorem 1.

When dealing with a trendless signal, we can perform the WOSA on the classical tapered periodogram and the pseudo-spectrum25

becomes

Ŝ(ω) = E
{
||PWOSA(ω)|X〉||2

}
= E


Q(ω)∑
q=1

||Psp{|Gqcω,q〉,|Gqsω,q〉}|X〉||
2

 . (C3)
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In the case of regularly sampled data, Eq. (C3) converges to the spectrum S(ω) as the number of data points increases (up

to a multiplicative factor ∆t, the time step). See Walden (2000) where it is shown that ||PWOSA(ω)|X〉||2 is a mean-square-

consistent and asymptotically unbiased estimator of the spectrum. The spectrum S(ω), also called Fourier power spectrum, of

a regularly sampled zero-mean real stationary process |X〉 is defined by (see9 Sect. 10.3 of Brockwell and Davis, 1991):

S(ω) = ∆t lim
N→∞

E
{
||Psp{|cω〉,|sω〉}|X〉||

2
}
. (C4)5

Now, considering Eq. (96), we thus have, for trendless regularly sampled time series, the following 1-moment approximation:

||PWOSA(ω)|X〉||2
d
≈ 1

2Q
S(ω)χ2

2Q. (C5)

With that approximation, the spectrum S(ω), which is well known for some processes like ARMA processes, gives access to

the confidence levels. The above formula is widely used in the literature on regularly sampled time series in the case of one

WOSA segment (Q= 1), for which the one moment approximation is good enough (see, for instance, Torrence and Compo,10

1998, Eq. (17)).

In the case of irregularly sampled data, the spectrum S(ω) can be defined over the frequency range [−1/2∆tGCD,1/2∆tGCD[.

This follows from the spectral representation theorem (Priestley, 1981, Chap. 4) applied to irregularly sampled time series.

But Ŝ(ω) usually strongly differs from S(ω), except in the white noise case where the spectrum is flat. Building estimators of

the spectrum S(ω) in the case of irregularly sampled time series actually seems very challenging, as briefly discussed in Sect.15

4.5.1.

Appendix D: The generalized gamma-polynomial distribution as an approximation for the linear combination of

chi-square distributions

We extend the gamma-polynomial approximation of Sect. 5.3.3 to the generalized gamma-polynomial approximation. Both

conserve the first d moments of the distribution X . The generalized gamma-polynomial approximation is based on the gener-20

alized gamma distribution, which has three parameters, such that the prerequisite of a d-moment approximation is a 3-moment

approximation with the generalized gamma distribution.

D1 3-moment approximation

We work with the generalized gamma distribution, which has 3 parameters,

X
d
≈ γα,β,δ. (D1)25

Its PDF is

fγ(x;α,β,δ) =
δ

βαδΓ(α)
xαδ−1 exp(−(x/β)δ) α,β,δ > 0, (D2)

9In that book, the authors work with the projection on complex exponentials, |eω〉= |cω〉+ i|sω〉, instead of a projection on cosine and sine. But this is

asymptotically the same since, asymptotically, the cosine and sine are orthogonal at all the frequencies.
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where Γ is the gamma function. It reduces to the gamma distribution when δ = 1. Its moments are

µ(k) = βk
Γ(α+ k/δ)

Γ(α)
k ∈ N. (D3)

Equating the first 3 moments (k = 1,2,3) of the generalized gamma to the first 3 moments of X gives α, β and δ. But, that

requires to find the zeros of a nonlinear 3-dimensional function. We observed that root-finding algorithms may be sensitive to

the choice of the first guess, and a particular attention must therefore be dedicated to it.5

In Stacy and Mihram (1965), it is shown that, if Y follows a generalized gamma distribution, working with ln(Y ) allows to find

easily the parameters α, β, δ. Indeed, it only requires a root-finding for a monotonic unidimensional function. Unfortunately,

the distribution of the logarithm of a linear combination of chi-square distributions is not known. We thus use the 2-moment

approximation, for which we can find the moments of the logarithm of the distribution. Indeed, if we write Y d
= gχ2

M , in which

g and M are determined from Eq. (98), and Z = ln(Y ), some calculus gives us the cumulant generating function of Z:10

K(t) = t ln(2g) + ln(Γ(M/2 + t))− ln(Γ(M/2)), (D4)

from which we obtain the cumulants. The first three are

κ(1) = ln(2g) +ψ0(M/2), (D5a)

κ(2) = ψ1(M/2), (D5b)

κ(3) = ψ2(M/2), (D5c)15

where ψi is the polygamma function (ψ0 is the digamma function). From the cumulants, we have the expected value κ(1), the

variance κ(2), and the skewness κ(3)/κ(2)3/2. Applying Eq. (21) of Stacy and Mihram (1965) gives us the parameters α0, β0,

δ0 for Y , parameters that we then use as a first guess for the generalized-gamma approximation of X .

D2 d-moment approximation

We extend here the formulas10 presented in Provost et al. (2009). Let fX be the PDF of X . fX is approximated by the PDF of20

a dth degree generalized gamma-polynomial:

fX(x)≈ γα,β,δ(x)

d∑
i=0

ξix
i, x≥ 0, (D6)

where the parameters α, β and δ are estimated with the above 3-moment approximation. ξ0, ..., ξd are the solution of Eq. (100),

where η(h) = βhΓ(α+h/δ)/Γ(α). The estimation of a confidence level for the WOSA periodogram is then the solution c0 of

25

1

Γ(α)

d∑
i=0

ξiβ
iγ(i/δ+α,(c0/β)δ)− p= 0, (D7)

for some p-value p, e.g. p= 0.95 for a 95 % confidence level. If we pose δ = 1, the generalized gamma-polynomial approxi-

mation reduces to the gamma-polynomial approximation presented in Sect. 5.3.3.
10In Provost et al. (2009), formulas are given for the gamma-polynomial, but as suggested by the authors, they can easily be generalized to the generalized

gamma-polynomial.
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Appendix E: Computing time: Analytical versus Monte-Carlo significance levels

A comparison between the computing times, for generating the WOSA periodogram, with the analytical and with the MCMC

significance levels, based on the hypothesis of a red noise background, are presented on Fig. E1. They are expressed in function

of the number of data points, which are disposed on a regular time grid, in order to make a meaningful comparison. Confidence

levels with the analytical approach are estimated with a 10-moment approximation, and the number of samples for the MCMC5

approach is 10000 for the 95th percentiles and 100000 for the 99th percentiles. The other parameters are default parameters of

WAVEPAL. All the runs were performed on the same computer11.

We see that the analytical approach is faster than the MCMC approach as long as the number of data points is below some

threshold, the latter increasing with the level of confidence. Indeed, the analytical approach delivers computing times of the

same order of magnitude whatever is the percentile (the two blue curves in Fig. E1a and E1b are in the same order of magni-10

tude), unlike the MCMC approach, which must require more samples as the level of confidence increases, in order to keep a

sufficient accuracy. The difference between both computing times therefore increases as the level of confidence increases.
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Figure E1. Computing times for generating the WOSA periodogram with analytical (blue) and MCMC (green) confidence levels, in function of the number

of data points (disposed on a regular time grid). Log-log scale. Left: 95th percentiles. Right: 99th percentiles.

Appendix F: On the F-periodogram

The formula of the F-periodogram (Eq. (104)) is based on Brockwell and Davis (1991, pp. 335-336). In that book, the authors

work with a constant trend. We have generalized the formula in order to deal with a polynomial trend.15

A slightly different formula was published in Heck et al. (1985, p. 65), again with a constant trend. The F-periodogram is

11CPU type: SandyBridge 2.3 GHz. RAM: 64GB.
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denoted by θF in their paper. In the case of a generalization to a polynomial trend, their formula becomes

(N − 2)||(Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉}−Psp{|t0〉,|t1〉,...,|tm〉})|X〉||2

2||[I− (Psp{|t0〉,|t1〉,...,|tm〉,|cω〉,|sω〉}−Psp{|t0〉,|t1〉,...,|tm〉})]|X〉||2
, (F1)

but, unlike Eq. (104), it has a denominator which is not invariant with respect to the parameters of the trend.
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