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Abstract. The tail probability, P , of the distribution of a variable is important for risk analysis of extremes. Many variables

in complex geophysical systems show heavy tails, where P decreases with the value, x, of a variable as a power law with

characteristic exponent, α. Accurate estimation of α on the basis of data is currently hindered by the problem of the selection

of the order, that is, the number of largest x-values to utilize for the estimation. This paper presents a new, widely applicable,

data-adaptive order selector, which is based on computer simulations and brute force search. It is the first in a set of papers on5

optimal heavy tail estimation. The new selector outperforms competitors in a Monte Carlo experiment, where simulated data

are generated from stable distributions and AR(1) serial dependence. We calculate error bars for the estimated α by means of

simulations. We illustrate the method on an artificial time series. We apply it to an observed, hydrological time series from the

river Elbe and find an estimated characteristic exponent of 1.48±0.13. This result indicates finite mean but infinite variance of

the statistical distribution of river runoff.10

1 Introduction

Not all geophysical variables obey a Gaussian (normal) distribution. This is true not only for the central part but also for the

extremal part (tail) of a distribution. Instead of a Gaussian exponential behaviour, we often observe a Pareto tail (power law)

with a distribution function, F , of a variable, X ,

F (x) = P (X > x)∝ x−α, (1)15

that holds above some threshold, x > u≥ 0. The characteristic exponent or heavy tail index parameter, α > 0, determines the

probability, P , of observing extreme values. Its knowledge is of crucial importance in applied risk analysis, for example, of

floods (Jongman et al., 2014).

Theoretical explanations of the heavy tail behaviour rest on multiplicative or nonlinear interaction of variables in complex

geophysical systems. Such derivations exist, for example, for the variables rainfall (Wilson and Toumi, 2005) and air pressure20

(Sardeshmukh and Sura, 2009). Other complex systems, such as finance (Malevergne and Sornette, 2006) or society (Barabási,

2005; Helbing, 2013), may as well exhibit heavy tail phenomena.

Many statistical distributions have heavy tails. A particularly useful class of those are the stable distributions (Nolan, 2003),

for which the distribution of the sum has the same shape (up to scale and shift) as each of the independent, identically distributed

stable summands. Stable distributions have a heavy tail index between 0 and 2. They include Gaussian (α= 2), Cauchy (α= 1)25
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and Lévy (α= 1/2) distributions. The fact that for other α-values no analytical expression of the distribution exists, does not

reduce the usefulness for analysing extremes. A more serious point is that heavy tail distributions in general, not only stable

distributions, may have infinite statistical moments: of first order (mean) for α < 1 and of second order (variance) for α < 2.

Therefore, in the analytical practice, research questions arise such as: (1) How realistic are infinite moments for the studied

geophysical variable? (2) How serious are the consequences of heavy tails and the resulting inflated estimation accuracy of5

geophysical system parameters? (3) Does the heavy tail law (Eq. 1) hold not over the full but just a restricted x-range, which

may then be compatible with finite moments (Mantegna and Stanley, 1995)?

The accurate statistical estimation of the heavy tail index on the basis of a set of data, {x(i)}ni=1, of size n, is therefore

important. An estimator, α̂, which may be called “classic,” was devised by Hill (1975). Let x′ denote the x-values sorted

according to descending size, x′(1)≥ x′(2)≥ ·· · ≥ x′(n). We assume zero sample mean (via mean subtraction). Without loss10

of generality we consider the right tail (positive values). Let there be K ≥ 2 positive x′-values. The Hill estimator is

α̂k = k

[
k∑
i=1

log
x′(i)

x′(k+ 1)

]−1

, (2)

where k ≤K−1 is denoted as order parameter. IfK < 2, then the Hill estimator cannot be applied. The selection of k completes

the estimation. Order selection has a decisive influence on α̂. However, it is yet unclear how best to achieve this, and order

selection has been called the “Achilles’ heel” of heavy tail index estimation (Resnick, 2007).15

Order selection constitutes a statistical trade-off problem (Hill, 1975). Large k leads to usage of many data points and a

small estimation variance. However, the risk then is that points are included for which Eq. (1) does not hold (i.e., bias). On the

other hand, small k leads to a small estimation bias and a large variance.

The fact that the Hill estimator is not translation invariant (to shifts in x) (Resnick, 2007), we assess as minor since there is a

natural choice in the form of zero sample mean. In geophysical analyses, such as the estimation of trend parameters on climate20

time series (Mudelsee, 2014), a by-product is the series of residuals (data minus fit). These values are realizations of the noise

process, and they are subjected to various forms of residual tests regarding distributional shape and persistence. By virtue of

their construction, the residuals have zero sample mean.

There exist other estimators of α (Resnick, 2007), but here we consider Hill and focus on order selection. We introduce an

order selector that is optimal in the sense that, for a given estimation problem, it minimizes a root mean squared error (RMSE)25

measure for α̂ in an internal (i.e., within the algorithm) simulation loop. In our approach, the search for optimal k is performed

in a brute force manner and adaptively for a data set. Hence, the approach is computationally intensive.

Processes in complex geophysical systems may exhibit not only heavy tail behaviour but also persistence in the time domain.

Let t(i) denote a time value and {t(i),x(i)}ni=1 a time series, that is, a sample of the dynamics of a system. Many geophysical

time series have an uneven time spacing (e.g., proxy series of paleoclimate obtained from natural archives). Therefore we30

model the persistence in its simplest form as a first-order autoregressive or AR(1) process on an unevenly spaced time grid
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(Mudelsee, 2014),

X(1) = E(1),

X(i) = exp[−(T (i)−T (i− 1))/τ ] ·X(i− 1)

+{1− exp[−2(T (i)−T (i− 1))/τ ]}1/2 · E(i), i= 2, . . . ,n. (3)

T (i) is the discrete time variable, assumed to increase strictly monotonically; E is an independent, identically distributed5

random innovation with zero mean and variance σ2; the parameter τ > 0 is called persistence time. In the case of even spacing

(T (i)−T (i− 1) = d(i) = d = const.), Eq. (3) corresponds to the more familiar formulation with an AR(1) parameter a=

exp(−d/τ). The heteroscedasticity in Eq. (3) ensures stationarity of the AR(1) process for σ2 <∞. It is thought of no harm

in the case E is heavy tailed with infinite variance. The persistence time can be estimated using a least-squares criterion and

numerical techniques. See Mudelsee (2014) for more details.10

We here aim for a heavy tail parameter estimation that is accurate, widely applicable and robust (i.e., reliable even when

some underlying assumptions are nor met). The selection 0≤ α≤ 2 and k ≤K − 1 allows a wide range of possible distribu-

tions of the data-generating process. Not the full distribution needs to follow Eq. (1), just the extremal part (“distributional

robustness”). The adoption of an AR(1) model for uneven spacing (Eq. 3) ensures that for many time series, the persistence

dynamics is captured at least to first order (“persistence robustness”). Notably included is the persistence-free case, where time15

is irrelevant and only the observed values are required. This analytical design and the presented method are therefore applicable

to many different types of data from geophysics and disciplines beyond. We detail the new order selector (Sect. 2) and show

its superiority in a Monte Carlo simulation experiment (Sect. 3). Simulation is also the approach to construct error bars for α̂

(Sect. 4). We illustrate the method via applications to an artificial (Sect. 5) and an observed, hydrological time series (Sect. 6).

The conclusions (Sect. 7) address practitioners of risk analysis.20

2 Order selection

To repeat the ingredients of the statistical problem, let {t(i),x(i)}ni=1 be a time series, where the time values, t(i), increase

strictly monotonically and the x-values have zero mean (via mean subtraction). Let x′ denote the x-values sorted according to

descending size. Let there be K ≥ 2 positive x′-values.

Algorithm 1 gives the solution of the problem of order (k) selection for the Hill estimator of the heavy tail parameter (α).25
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Algorithm 1 Optimal order selection for the Hill estimator
1: for k = 1 to K − 1 do

2: calculate α̂k (Eq. 2) on the data, {x′(i)}ni=1

3: calculate τ̂ using a least-squares criterion (Mudelsee, 2014)

4: for j = 1 to Ninner do

5: generate n random values from a stable distribution with prescribed α= α̂k using the algorithm by Nolan (1997)

6: generate {x∗(i)}ni=1 from an AR(1) process (Eq. 3) on the time grid, {t(i)}ni=1, with prescribed τ = τ̂ and the n

random values (line 5) as innovations, E(i)

7: calculate {x∗′(i)}ni=1 from {x∗(i)}ni=1 via sorting and mean subtraction

8: calculate α̂k,j (Eq. 2) on the data, {x∗′(i)}ni=1

9: end for

10: calculate the measure, RMSE(k) = [
∑Ninner
j=1 (α̂k,j − α̂k)2/Ninner]1/2

11: end for

12: select arg min[RMSE(k)] as optimal order

Algorithm 1 is an illustration of the concept of optimal estimation (Mudelsee, 2014). This concept roughly states that when

confronted with a complex estimation problem on given data, then the first task is to explore the various estimation techniques

to find out the optimal technique. Optimality is meant in a certain sense (e.g., RMSE). The second task is then to apply the

optimal technique to the given data. Optimal estimation becomes feasible with increasing computing power.

In the context of heavy tail index estimation, Algorithm 1 attacks the “Achilles’ heel” problem of order selection via brute5

force. The extension to other estimators is straightforward.

3 Monte Carlo experiment

We compare the optimal order selector for the Hill estimator (Algorithm 1) with two other selectors in a Monte Carlo simulation

experiment (Algorithm 2). This involves many time series generated in a computer by means of a random number generator

(Fishman, 1996). The prescribed uneven spacing is drawn from a gamma distribution, which may be a realistic model for many10

paleoclimate time series (Mudelsee, 2014).
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Algorithm 2 Monte Carlo experiment on order selection for the Hill estimator, nsim = 10000
1: prescribe n,τ,α and order selector (asymptotic, bootstrap or optimal)

2: draw spacing, {d(i)}n−1
i=1 , from a gamma distribution with order parameter 3

3: scale {d(i)}n−1
i=1 such that the average, d̄, equals unity

4: set t(1) = 1 and t(i) = t(i− 1) + d(i− 1) for i= 2, . . . ,n

5: for j = 1 to nsim do

6: generate {x(i)}ni=1 from an AR(1) process (Eq. 3) on the time grid, {t(i)}ni=1, with stable distributed (Nolan, 1997)

innovations and prescribed values for τ and α

7: select order, k

8: calculate α̂j = α̂k (Eq. 2) on the sorted and mean-subtracted data, {x′(i)}ni=1

9: end for

10: calculate RMSEα̂ = [
∑nsim
j=1(α̂j −α)2/nsim]1/2

The first competitor as order selector is based on the asymptotic normality of α̂k (Eq. 2). Hall (1982) showed that for n→∞
and under further conditions, the expression k1/2(α̂k −α) approaches a normal distribution with mean zero and variance α2.

This allows the construction of an order selector based on the theoretical minimal asymptotic mean squared error (AMSE). A

caveat against any asymptotic normality argument is that it is difficult to check in practice whether the underlying conditions

are fulfilled, in particular, how wide n is away from infinity.5

The second competitor aims to improve the selector based on asymptotic normality by estimating the AMSE via a computing-

intensive bootstrap resampling procedure (Danielsson et al., 2001). This data-adaptive order selector possesses stronger robust-

ness than the one based on theoretical AMSE because it makes less restrictive assumptions. The adaptation to the data at hand

makes the selector based on the bootstrap relevant for practical applications.

There exists also the suggestion to look for a plateau of the sequence α̂k against k as an indication of a suitable order10

(Resnick, 2007). Evidently, it is not straightforward to objectively define a plateau and implement that definition in a Monte

Carlo experiment. Of higher relevance is the finding (Sect. 5) that the optimal order can be located in a region that does not at

all resemble a plateau.

The results (Fig. 1) show that the new optimal order selector outperforms (i.e., has a smaller RMSEα̂) the two competitors.

This is true over a considerable range of design parameters (n,τ,α). At least partly the success of the optimal order selector may15

be owing to the situation that the normality of α̂, on which the two competing selectors are based, has not been approached in the

simulation world. On the other hand, the prescribed stable distributional shape of the data-generating process fits particularly

well to the optimal selector (Algorithm 1). This point will be investigated in a future analysis of the optimal selector under

varied Monte Carlo designs.
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Figure 1. RMSE of the estimated heavy tail parameter in dependence on data size for the Hill estimator and various order selectors: optimal

(Algorithm 1), asymptotic normality and bootstrap. The Monte Carlo design parameters are: prescribed persistence time, τ = 0.0 (a, c, e,

g) and τ = 0.8 (b, d, f, h); prescribed heavy-tail parameter, α = 0.5 (a, b), α = 1.0 (c, d), α = 1.5 (e, f) and α = 2.0 (g, h); and number of

simulations, nsim = 10000. Note broken y-axes.

4 Error bars

To adapt the preface to our book on climate time series analysis (Mudelsee, 2014): We wish to know the truth about a geo-

physical system but have only a limited sample, {t(i),x(i)}ni=1, influenced by various sources of noise. Therefore we cannot

expect our estimate, α̂, which is based on data, to equal the truth. However, we can determine the typical size of that deviation:

an error bar. Error bars help to critically assess estimation results, they prevent us from making overstatements, they guide us5

on our way to enhance the geophysical knowledge. Estimates without error bars are useless.

The Monte Carlo experiment (Sect. 3) bears a method to construct error bars. For this purpose, Algorithm 2 may be adapted

as follows. Line 1: overtake n from the sample, set τ = τ̂ and α= α̂. Lines 2 to 4: overtake {t(i)}ni=1 from the sample. Line 5:

set nsim = 100. Report RMSEα̂ as error bar. This uncertainty measure has the advantage that it includes not only estimation

variance, but also bias. This makes it more reliable than, for example, the standard error. This error bar construction is also10

used for the persistence time (RMSEτ̂ ).

A note on the selection of nsim = 100 for error bar determination. We explored the influence of nsim on the accuracy of

RMSEα̂ in another Monte Carlo experiment. We varied nsim and analysed the coefficient of variation (CV) of RMSEα̂. The
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Figure 2. Application of heavy tail estimation with optimal order selection to artificial data; (a) time series (dark line), drawn from an

AR(1) process with even spacing unity and stable distributed innovations (n= 5000, τ = 1.5,α= 1.75); (b) sequence α̂k (solid dark line)

±RMSE(k) (shaded) for the Hill estimator (right tail); (c) measure RMSE(k); (d–f) frequency plots showing densities and histograms at

various axis scalings. The optimal order is kopt = 1071. The fitted heavy tail density function, f(x), has been scaled such that for x > x′(kopt),

the tail probability, F (x) (Eq. 1), times n equals the number of extreme events (right tail). (Note that
∫
f(x) = F (x).)

CV is given by the standard deviation ofRMSEα̂, which is calculated over a number of external (i.e., outside of the algorithm)

runs, divided by the mean calculated over the runs. One run consists in generating a series and estimating the tail index with

RMSEα̂. The number of runs was 10000. We found that for a number of nsim ≈ 100, a saturation behaviour of the CV sets

in, while for smaller nsim values, the CV decreases with nsim. Further increasing nsim had no measurable effect on the accuracy

of RMSEα̂. The value of 100 also agrees roughly with the Monte Carlo findings on the minimum number of simulations5

required for obtaining reliable results for the bootstrap standard error (Efron and Tibshirani, 1993).

5 Application to artificial time series

The application of heavy tail estimation to artificial data (Fig. 2) offers to test the new analysis method because the properties

of the data-generating process (τ,α) are prescribed and can be compared with the estimates (τ̂ , α̂). Employing a data size

(n= 5000) not untypical for ambitious nonlinear geophysical analyses and using the new order selector, yields a clearly10

expressed optimal order of kopt = 1071 (Fig. 2c). That means, about 20 percent of the data are utilized for heavy tail index

estimation.
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It is remarkable that the sequence α̂k does not at all display a plateau at around kopt (Fig. 2b). Rather, the sequence shows a

trend that decreases with k.

The resulting estimates with RMSE error bars from nsim = 100 simulations (Sect. 4) agree well with the prescribed values:

for the persistence time, τ = 1.50 and τ̂ ±RMSEτ̂ = 1.46±0.04; for the heavy tail parameter, α= 1.75 and α̂±RMSEα̂ =

1.76± 0.06.5

The good agreement between data and fit is also reflected by the good agreement between data histograms and fitted densities

(Fig. 2d–f).

One caveat to consider is the fact that the prescribed density of the process that generated the data (Fig. 2a) is a stable

distribution, which is also employed by optimal order selection (Algorithm 1). This may have, at least partly, produced the

good fit on artificial data. On the other hand, (1) not the full distribution needs to follow the distribution, just the extremal part10

and (2) stable distributions form a fairly wide class of distributions (Nolan, 2003). Still, we plan to study the relevance of this

point by means of an analysis under varied Monte Carlo designs.

6 Application to observed, hydrological time series

The application of heavy tail estimation to observed data (Fig. 3) serves to illustrate the practical work. The runoff time series

of the river Elbe at station Dresden (Fig. 3a) belongs to the longest observed hydrological records available. The data quality15

is assessed as excellent owing to the relatively constant observation situation at this station and the frequently updated runoff–

water stage calibration curves (Mudelsee et al., 2003). We analyse the hydrological summer separately (Fig. 3) because the

conditions for generating extreme floods (right tail) vary from summer to winter (Mudelsee et al., 2003). The resulting data size

is n= 38272. The clearly expressed optimal order for Hill estimation is kopt = 3732 (Fig. 3c). That means, about 10 percent of

the data are utilized for heavy tail index estimation. This decrease of the ratio kopt/n with n, which is found when the observed20

series is compared with the artificial series of size n= 5000 (Sect. 5), is compatible with theoretical recommendations (Hall,

1982).

Due to excessive computing costs associated with a brute force search for n= 38272, the optimal order is found via a quasi-

brute force, two-step search method. In the first step, we calculate the measure RMSE(k) (Algorithm 1) at k-increments

of Lk = 50. From the resulting 765 measure values, we select the Pmink = 5 percent with minimal measure, for which we25

perform in the second step a fine search with increment 1. The quasi-brute force search, Monte Carlo experiments and further

hints on the selection of Lk and Pmink are described in the manual (supplementary material).

The resulting estimates with RMSE error bars from nsim = 100 simulations are: τ̂ = 0.060± 0.002 a and α̂= 1.48± 0.13.

Although the observed time series has clearly more points (n= 38272) than the artificial (n= 5000), the error bar for the

heavy tail index estimate is larger (RMSEα̂ = 0.13) than for the artificial (RMSEα̂ = 0.06). The reason is that the estimated30

“equivalent autocorrelation coefficient” (Mudelsee, 2014), given by ̂̄a= exp(−d̄/τ̂), is larger for the observed time series

(̂̄a= 0.91) than for the artificial (̂̄a= 0.51). Stronger persistence means fewer independent data points and a larger estimation
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Figure 3. Application of heavy tail estimation with optimal order selection to observed data; (a) time series (dark line), average daily

runoff of river Elbe at Dresden (Germany) during summer (May to October) from 1 May 1806 to 31 October 2013 (n= 38272), units:

m3/s; (b) sequence α̂k (solid dark line) ± RMSE(k) (shaded) for the Hill estimator (right tail); (c) measure RMSE(k); (d–f) frequency

plots showing densities and histograms at various axis scalings (cf. Fig. 2). The optimal order is kopt = 3732, it has been detected using

a quasi-brute force search (see text). Data courtesy Wasser- und Schifffahrtsverwaltung des Bundes, provided by the Bundesanstalt für

Gewässerkunde (BfG), Koblenz, Germany.

uncertainty. An additional Monte Carlo experiment revealed that for absent persistence (τ = 0), the observed, hydrological

values yield a clearly smaller error bar (RMSEα̂ = 0.03).

For the hydrological interpretation of the statistical results, not only the error bars (RMSEτ̂ and RMSEα̂) have to be

considered but also model mis-specification.

In the case of persistence estimation of runoff series, an alternative to the AR(1) model may be a long-memory model5

(Mudelsee, 2007). We think that the large estimated autocorrelation (̂̄a= 0.91) does already capture a large amount of the

serial dependence structure (Sect. 1) of the hydrological series. Therefore, an associated persistence model mis-specification

would likely have consequences (widened error bars) that are only minor. Still, it is worth to study more systematically long-

memory models with heavy tail distributed innovations.

In the case of heavy tail index estimation, we think that the employed stable distribution model class does already capture10

the true distribution (Fig. 3d–f) quite well owing to the wide range of the stable class (Sect. 1). Therefore, an associated

distribution model mis-specification should not widen the error bars strongly, and the true estimate should not be far away from

the estimate, α̂= 1.48.
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However, the possibility of model mis-specification prevents us at this stage of the analysis to conclude unambiguously that

with α < 2, the runoff-generating process has infinite variance (Nolan, 2003). This would have serious consequences for the

practical work since many types of statistical estimation problems (e.g., trend, spectrum) would be affected. We mention the

study of the runoff series from the river Salt (Anderson and Meerschaert, 1998), which found α̂≈ 3 (i.e., finite variance), in

contrast to our finding. Further stages of the analysis, to be pursued in a future paper, will therefore include: (1) a comparison5

between summer and winter for the runoff series from Dresden; (2) a quantification of the sensitivity to the removal of an

annual cycle; (3) a comparison among various other stations on the river Elbe and (4) a comparison with other rivers, for

which long, high-quality runoff records are available. Evidently, an accurate heavy tail estimation technique with optimal order

selection, is helpful for this purpose.

7 Conclusions10

The tail probability, P (X > x), is crucially important for practical risk analysis, for example, the calculation of the expected

losses in the reinsurance business. Instead of a Gaussian exponential behaviour (light tail), many observed variables from

complex networks show a power law (heavy tail). This law (Eq. 1), which is parameterized by means of the heavy tail index,

α, allows to extrapolate the probability into unobserved, extreme data ranges.

The accurate estimation of α on the basis of observed data is therefore also crucially important. The “Achilles’ heel” of15

tail index estimation is order selection, that is, to set how many of the largest values to utilize for the estimation. This paper

focuses on a new, optimal order selector (Algorithm 1). The superiority of the new selector is demonstrated in a Monte Carlo

simulation experiment (Fig. 1).

The new selector is claimed to utilize the data in an optimum way for performing an estimation. The resulting error bars

(RMSEα̂), which are calculated from computing-intensive simulations (Sect. 4), are comparably small. Hence, the new20

method allows to study more accurately than previously possible, various extremal behaviours, such as the spatial depen-

dence of α in geostatistical applications or the time dependence of α on long time series. The time dependence may shed light

on tipping points in complex systems. In particular, changes in α over time may possibly be used to predict the approach of a

sudden change in a geophysical variable (e.g., climate).

The data-generating process (AR(1) with stable distributed innovations) achieves “distributional robustness” because not the25

full distribution needs to follow Eq. (1), just the extremal part. It also achieves “persistence robustness” because Eq. (3) ensures

that for many time series (also unevenly spaced), the persistence dynamics is captured at least to first order. As a result, the

presented method is accurate and widely applicable, and it delivers robust results.

However, at this stage of method development, it is still useful to perform more Monte Carlo simulation studies on heavy

tail index estimation. These simulations should include varied designs, in particular, other prescribed shapes than a stable30

distribution. Furthermore, it is interesting to study other estimators than Hill (on which this paper focuses). The computer

program associated with optimal index estimation (ht) has implemented also the estimation routine after Pickands (1975).
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The application to an observed, hydrological time series (Fig. 3) delivered the intriguing result of infinite variance (but

finite mean) (α̂= 1.48) of the data-generating process. Infinite variance would have serious consequences for many types of

statistical estimation to be carried out on hydrological data. We recommend to analyse more, independent hydrological data to

corroborate or refute this finding.

The wider impact of optimal heavy tail estimation may be not only on the application to the area of instrumental environ-5

mental measurements, but also to reconstructed variables from the areas of paleoclimatology (Cronin, 2010), paleohydrology

(Gasse, 2009) and dendrochronology (D’Arrigo et al., 2011; Gholami et al., 2015). Furthermore, since extreme events in hy-

drology and related fields may also show the duration aspect (e.g., droughts, heatwaves), the estimation should not be restricted

to measured or reconstructed variables. Rather, heavy tail index estimation should be a useful tool also for the analysis of index

variables (Kürbis et al., 2009).10
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