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Author's Response to Review Comments, 24 October 2017 
 
 
 
Point-by-Point Response to Review by Anonymous Referee #1 
 
Referee Comment 1. The manuscript presents order selection in optimal heavy tail 
estimation, which is interesting. The subject addressed is within the scope of the journal. 
2. However, the manuscript, in its present form, contains several weaknesses. Appropriate 
revisions to the following points should be undertaken in order to justify recommendation 
for publication. 3. For readers to quickly catch your contribution, it would be better to 
highlight major difficulties and challenges, and your original achievements to overcome 
them, in a clearer way in abstract and introduction. 
 
Author's Response We first note that Anonymous Referee #2 has not raised these points. 
We think that we clearly highlighted the major methodological challenge (the selection of 
the order) and our original contribution to overcome this (the introduction of a brute-
force order selector) in the Abstract (p. 1, l. 3 to 7), the Introduction (p. 1, l. 14 to 
27)―and the title. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 4. It is shown in the reference list that the authors have several 
publications in this field. This raises some concerns regarding the potential overlap with 
their previous works. The authors should explicitly state the novel contribution of this 
work, the similarities and the differences of this work with their previous publications. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
We publish on climate and statistics since the year 1989 and think that since that year we 
have been rather careful to avoid dual publications and hidden overlap with previous own 
work, and we think that also this NPGD contribution is fine is this regard. The main 
novel contribution is the order selector (see Review by Anonymous Referee #1, Author's 
Response to Comments 1 to 3, above). We cite previous work on other issues needed in the 
paper: statistics (Mudelsee, 2014), river Elbe floods (Mudelsee et al. 2003) and long memory 
of river runoff (Mudelsee 2007). 
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Author's Changes in Manuscript None. 
 
Referee Comment 5. It is mentioned in p.1 that a data-adaptive order selector is adopted 
for optimal heavy tail estimation. What are the other feasible alternatives? What are the 
advantages of adopting this particular approach over others in this case? How will this 
affect the results? More details should be furnished. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
Other feasible selectors have already been mentioned in the manuscript (p. 5, l. 1 to 13). 
The advantage of our new approach over the other approaches is that it gives more 
accurate estimation results of the heavy-tail index parameter. This is shown in the Monte 
Carlo experiment (Section 3). We think that all this is clear and detailed. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 6. It is mentioned in p.1 that the river Elbe is adopted as the case 
study. What are other feasible alternatives? What are the advantages of adopting this 
particular case study over others in this case? How will this affect the results? The authors 
should provide more details on this. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
Feasible alternatives would include other rivers. The advantage of utilizing the Elbe: here 
are available very long, high-quality runoff data. Results for the Elbe are likely at least as 
accurate as for many other rivers. Please bear in mind that this is a methodological paper, 
the case of the Elbe serves to illustrate the method. We think what is in the manuscript is 
already detailed enough. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 7. It is mentioned in p.2 that the Hill estimator is adopted for statistical 
estimation of the heavy tail index. What are other feasible alternatives? What are the 
advantages of adopting this particular estimator over others in this case? How will this 
affect the results? The authors should provide more details on this. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
The Hill estimator of the heavy-tail index parameter is one of the most widely employed 
estimators. We also have the intuition that is it is a rather accurate estimator. There exist 
alternative estimators, we mention (p. 10, l. 32) Pickands estimator. The cited book 
(Resnick, 2007) lists more estimators. We think that this paper is not the place to study 
more estimators. As already said in the paper (p. 10, l. 29 to 32), we plan to study other 
estimators (to test our intuition), the results of which we plan to publish in a sequel to this 
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paper. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 8. It is mentioned in p.2 that a first-order autoregressive process is 
adopted in this study. What are the other feasible alternatives? What are the advantages of 
adopting this particular process over others in this case? How will this affect the results? 
More details should be furnished. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
In our view on climate and hydrology, the first-order autoregressive (AR1) process is by 
far the most important model of persistence. One of the reasons is its simplicity, while it 
still is able to capture in many situations to a good degree the serial dependence of the 
data-generating system. Another reason is that it avoids the so-called embedding problem 
and can therefore be readily used for unevenly spaced paleoclimate time series (from 
natural archives). Our book (Mudelsee, 2014), cited in the manuscript (p. 3, l. 10) gives 
the mathematical details and presents many applications. We do mention (p. 9, l. 5 to 9) 
the long-memory model as an alternative to the AR1 process. We think that this treatment 
of persistence in the manuscript is adequate. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 9. It is mentioned in p.4 that the algorithm by Nolan (1997) is adopted 
to generate random values from a stable distribution. What are the other feasible 
alternatives? What are the advantages of adopting this particular algorithm over others in 
this case? How will this affect the results? More details should be furnished. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
However, this is an excellent point raised by Anonymous Referee #1! There are other 
distributions than s stable with a heavy-tail index, and our plan (communicated in the 
manuscript on p. 10, l. 30 to 31) is indeed to study alternatives. As regards the algorithm 
by Nolan (1997) to generate stable distributions, we have not performed an extensive 
research into alternative algorithms since we had it at hand and after we made some 
changes for implementation in Fortran 90, it worked well. We are convinced that using 
other algorithms would not affect the results significantly (within error bars). We think 
that more algorithmic work is beyond the scope of this manuscript. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 10. It is mentioned in p.4 that asymptotic and bootstrap order 
selectors are adopted as benchmarks for comparison. What are the other feasible 
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alternatives? What are the advantages of adopting these particular order selectors over 
others in this case? How will this affect the results? More details should be furnished. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
This point has already been treated above (Review by Anonymous Referee #1, Author's 
Response to Comment 5). 
 
Author's Changes in Manuscript None. 
 
Referee Comment 11. It is mentioned in p.4 that a Monte Carlo simulation experiment is 
adopted to compare the optimal order selector. What are the other feasible alternatives? 
What are the advantages of adopting this particular experiment over others in this case? 
How will this affect the results? More details should be furnished. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
Owing to the complexity of the data-generating process (heavy tails, serial dependence, 
and uneven spacing) and the estimation (order selection, Hill estimator), it is 
unfortunately not possible to use paper and pencil and derive and write down an 
analytical result on the properties (e.g., standard error, distributional shape) of the 
proposed method (brute-force order selection). Therefore one has to resort to numerical 
Monte Carlo computer simulations: there are no alternatives. (Let us point out that this is 
a ubiquitous situation in today's applied statistical research; a recent, very well written 
book on that matter is: Efron B, Hastie T (2016) Computer Age Statistical Inference: 
Algorithms, Evidence, and Data Science. Cambridge University Press, New York, 475 
pp.)  Please note that the Monte Carlo design parameters (Figure 1 of the manuscript) do 
already cover a certain range of possible settings. We therefore think that the results 
(superiority of the brute-force order selector) are robust in that sense, and we thus 
conclude that our treatment is detailed enough. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 12. It is mentioned in p.4 that a gamma distribution is adopted to 
draw the prescribed uneven spacing. What are the other feasible alternatives? What are 
the advantages of adopting this particular distribution over others in this case? How will 
this affect the results? More details should be furnished. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
The selection of the gamma distribution for the spacing is based on the observation that 
this is a useful descriptive model; and we cite in the manuscript (p. 4, l. 11) our book 
(Mudelsee, 2014) as a reference for that. We believe that the selection of the 
distributional model for the time spacing may be an interesting thing to study for 
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persistence time estimation, but it is hardly relevant here in the manuscript (which deals 
with heavy-tail index parameter estimation). 
 
Author's Changes in Manuscript None. 
 
Referee Comment 13. It is mentioned in p.8 that a quasi-brute force, two-step search 
method is adopted to find the optimal order. What are the other feasible alternatives? 
What are the advantages of adopting this particular method over others in this case? How 
will this affect the results? More details should be furnished. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
The quasi-brute force, two-step search method is used to avoid excessive computational 
costs associated with pure brute-force search. The quasi-brute force method has been 
attested to work well on artificial time series, as described in the software manual 
(manuscript p. 11, line 5). The manual was attached to the submission to NPGD and is 
available to Referees. It will be made publicly available with the software once the 
manuscript is accepted. We think that this treatment is detailed enough. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 14. It is mentioned in p.8 that “. . .Although the observed time series 
has clearly more points (n = 38272) than the artificial (n = 5000), the error bar for the 
heavy tail index estimate is larger (RMSE_b = 0.13) than for the artificial (RMSE_b = 
0.06). The reason is that the estimated.. . .” More justification should be furnished on this 
issue. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
The reason, explanation and justification has already been given in the manuscript (p. 8, l. 
30 to p. 9, l. 2): persistence means a larger "equivalent autocorrelation coefficient" (as 
compared to a persistence-free situation), it reduces the effective data size (Mudelsee, 
2014) and leads to larger error bars. We think that by writing this piece of text and citing 
our book for this (p. 8, l. 31), we did already enough to explain the error bars. Please note 
that the software manual (manual p. 15) shows more Monte Carlo results on the influence 
of persistence on estimation error bars. We think that this treatment is sufficient. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 15. It is mentioned in p.10 that “. . .the study of the runoff series from 
the river Salt (Anderson and Meerschaert, 1998), which found.. . .(i.e., finite variance), in 
contrast to our finding.. . .” More justification should be furnished on this issue. 
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Author's Response We first note that Anonymous Referee #2 has not raised this point. 
At this point of the analysis, we can only report what other researcher found on other 
river runoff time series. We are not yet in a position to refute other findings. We therefore 
plan, as communicated in the paper (p. 10, l. 5 to 9) to do more studies on heavy-tails in 
river runoff series, involving (1) summer/winter comparisons, (2) sensitivity of removing 
the annual cycle, (3) comparisons among different stations along the Elbe and, finally, (4) 
a comparison with other rivers. The results we plan to publish in a sequel paper. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 16. Some key parameters are not mentioned. The rationale on the 
choice of the particular set of parameters should be explained with more details. Have the 
authors experimented with other sets of values? What are the sensitivities of these 
parameters on the results? 17. Some assumptions are stated in various sections. 
Justifications should be provided on these assumptions. Evaluation on how they will 
affect the results should be made. 18. The discussion section in the present form is 
relatively weak and should be strengthened with more details and justifications. 
 
Author's Response We first note that Anonymous Referee #2 has not raised these points. 
We are, however, not aware of unmentioned parameters or assumptions. We further think 
that we cannot agree that the discussion section in the present form is relatively weak. We 
would clearly have welcomed more accurate descriptions of those points 16 to 18 by 
Anonymous Referee #1. 
 
Author's Changes in Manuscript None. 
 
Referee Comment 19.  Moreover, the manuscript could be substantially improved by 
relying and citing more on recent literatures about real-life case studies of contemporary 
optimization techniques in hydrologic engineering such as the followings: 
 
Gholami, V., et al., “Modeling of groundwater level fluctuations using dendrochronology 
in alluvial aquifers”, Journal of Hydrology 529 (3): 1060-1069 2015. 
 
Taormina, R., et al., “Data-driven input variable selection for rainfall-runoff modeling 
using binary-coded particle swarm optimization and Extreme Learning Machines”, 
Journal of Hydrology 529 (3): 1617-1632 2015. 
 
Wu, C.L., et al., “Prediction of rainfall time series using modular artificial neural 
networks coupled with data-preprocessing techniques”, Journal of Hydrology 389 (1-2): 
146-167 2010. 
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Wang, W.C., et al., “Improving forecasting accuracy of annual runoff time series using 
ARIMA based on EEMD decomposition,” Water Resources Management 29 (8): 2655-
2675 2015. 
 
Chen, X.Y., et al., “A comparative study of population-based optimization algorithms for 
downstream river flow forecasting by a hybrid neural network model,” Engineering 
Applications of Artificial Intelligence 46 (A): 258-268 2015. 
 
Chau, K.W., et al., “A Hybrid Model Coupled with Singular Spectrum Analysis for Daily 
Rainfall Prediction,” Journal of Hydroinformatics 12 (4): 458-473 2010. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
Let us first copy the paper title together with the abstracts of the suggested new citations. 
 
Gholami, V., et al., “Modeling of groundwater level fluctuations using dendrochronology in alluvial aquifers”, Journal of Hydrology 
529 (3): 1060-1069 2015. 
Abstract. Groundwater is the most important water resource in semi-arid and arid regions such as Iran. It is necessary to study 
groundwater level fluctuations to manage disasters (such as droughts) and water resources. Dendrochronology, which uses tree-rings 
to reconstruct past events such as hydrologic and climatologic events, can be used to evaluate groundwater level fluctuations. In this 
study, groundwater level fluctuations are simulated using dendrochronology (tree-rings) and an artificial neural network (ANN) for the 
period from 1912 to 2013. The present study was undertaken using the Quercus Castaneifolia species, which is present in an alluvial 
aquifer of the Caspian southern coasts, Iran. A multilayer percepetron (MLP) network was adopted for the ANN. Tree-ring diameter 
and precipitation were the input parameters for the study, and groundwater levels were the outputs. After the training process, the 
model was validated. The validated network and tree-rings were used to simulate groundwater level fluctuations during the past 
century. The results showed that an integration of dendrochronology and an ANN renders a high degree of accuracy and efficiency in 
the simulation of groundwater levels. The simulated groundwater levels by dendrochronology can be used for drought evaluation, 
drought period prediction and water resources management. 
 
Taormina, R., et al., “Data-driven input variable selection for rainfall-runoff modeling using binary-coded particle swarm optimization 
and Extreme Learning Machines”, Journal of Hydrology 529 (3): 1617-1632 2015. 
Abstract. Selecting an adequate set of inputs is a critical step for successful data-driven streamflow prediction. In this study, we 
present a novel approach for Input Variable Selection (IVS) that employs Binary-coded discrete Fully Informed Particle Swarm 
optimization (BFIPS) and Extreme Learning Machines (ELM) to develop fast and accurate IVS algorithms. A scheme is employed to 
encode the subset of selected inputs and ELM specifications into the binary particles, which are evolved using single objective and 
multi-objective BFIPS optimization (MBFIPS). The performances of these ELM-based methods are assessed using the evaluation 
criteria and the datasets included in the comprehensive IVS evaluation framework proposed by Galelli et al. (2014). From a 
comparison with 4 major IVS techniques used in their original study it emerges that the proposed methods compare very well in terms 
of selection accuracy. The best performers were found to be (1) a MBFIPS–ELM algorithm based on the concurrent minimization of 
an error function and the number of selected inputs, and (2) a BFIPS–ELM algorithm based on the minimization of a variant of the 
Akaike Information Criterion (AIC). The first technique is arguably the most accurate overall, and is able to reach an almost perfect 
specification of the optimal input subset for a partially synthetic rainfall–runoff experiment devised for the Kentucky River basin. In 
addition, MBFIPS–ELM allows for the determination of the relative importance of the selected inputs. On the other hand, the BFIPS–
ELM is found to consistently reach high accuracy scores while being considerably faster. By extrapolating the results obtained on the 
IVS test-bed, it can be concluded that the proposed techniques are particularly suited for rainfall–runoff modeling applications 
characterized by high nonlinearity in the catchment dynamics. 
 
Wu, C.L., et al., “Prediction of rainfall time series using modular artificial neural networks coupled with data-preprocessing 
techniques”, Journal of Hydrology 389 (1-2): 146-167 2010. 
Abstract. This study is an attempt to seek a relatively optimal data-driven model for rainfall forecasting from three aspects: model 
inputs, modeling methods, and data-preprocessing techniques. Four rain data records from different regions, namely two monthly and 
two daily series, are examined. A comparison of seven input techniques, either linear or nonlinear, indicates that linear correlation 
analysis (LCA) is capable of identifying model inputs reasonably. A proposed model, modular artificial neural network (MANN), is 
compared with three benchmark models, viz. artificial neural network (ANN), K-nearest-neighbors (K-NN), and linear regression 
(LR). Prediction is performed in the context of two modes including normal mode (viz., without data preprocessing) and data 
preprocessing mode. Results from the normal mode indicate that MANN performs the best among all four models, but the advantage 
of MANN over ANN is not significant in monthly rainfall series forecasting. Under the data preprocessing mode, each of LR, K-NN 
and ANN is respectively coupled with three data-preprocessing techniques including moving average (MA), principal component 
analysis (PCA), and singular spectrum analysis (SSA). Results indicate that the improvement of model performance generated by SSA 
is considerable whereas those of MA or PCA are slight. Moreover, when MANN is coupled with SSA, results show that advantages of 
MANN over other models are quite noticeable, particularly for daily rainfall forecasting. Therefore, the proposed optimal rainfall 
forecasting model can be derived from MANN coupled with SSA. 
 
Wang, W.C., et al., “Improving forecasting accuracy of annual runoff time series using ARIMA based on EEMD decomposition,” 
Water Resources Management 29 (8): 2655-2675 2015. 
Abstract. Hydrological time series forecasting is one of the most important applications in modern hydrology, especially for effective 
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reservoir management. In this research, the auto-regressive integrated moving average (ARIMA) model coupled with the ensemble 
empirical mode decomposition (EEMD) is presented for forecasting annual runoff time series. First, the original annual runoff time 
series is decomposed into a finite and often small number of intrinsic mode functions (IMFs) and one residual series using EEMD 
technique for a deep insight into the data characteristics. Then each IMF component and residue is forecasted, respectively, through an 
appropriate ARIMA model. Finally, the forecasted results of the modeled IMFs and residual series are summed to formulate an 
ensemble forecast for the original annual runoff series. Three annual runoff series from Biuliuhe reservoir, Dahuofang reservoir and 
Mopanshan reservoir, in China, are investigated using developed model based on the four standard statistical performance evaluation 
measures (RMSE, MAPE, R and NSEC). The results obtained in this work indicate that EEMD can effectively enhance forecasting 
accuracy and that the proposed EEMD-ARIMA model can significantly improve ARIMA time series approaches for annual runoff 
time series forecasting. 
 
Chen, X.Y., et al., “A comparative study of population-based optimization algorithms for downstream river flow forecasting by a 
hybrid neural network model,” Engineering Applications of Artificial Intelligence 46 (A): 258-268 2015. 
Abstract. Population-based optimization algorithms have been successfully applied to hydrological forecasting recently owing to their 
powerful ability of global optimization. This paper investigates three algorithms,i.e. differential evolution (DE), artificial bee colony 
(ABC) and ant colony optimization (ACO), to deter-mine the optimal one for forecasting downstream river flow. A hybrid neural 
network (HNN) model,which incorporates fuzzy pattern-recognition and a continuity equation into the artificial neural net-work, is 
proposed to forecast downstream river flow based on upstream river flows and areal precipitation. The optimization algorithm is 
employed to determine the premise parameters of the HNNmodel. Daily data from the Altamaha River basin of Georgia is applied in 
the forecasting analysis. Discussions on the forecasting performances, convergence speed and stability of various algorithms are 
presented. For completeness' sake, particle swarm optimization (PSO) is included as a benchmark case for the comparison of 
forecasting performances. Results show that the DE algorithm attains the best performance in generalization and forecasting. The 
forecasting accuracy of the DE algorithm is comparable to that of the PSO, and yet presents weak superiority over the ABC and ACO. 
The Diebold–Mariano (DM) test indicates that each pair of algorithms has no difference under the null hypothesis of equal forecasting 
accuracy. The DE and ACO algorithms are both favorable for searching parameters of the HNN model, including the recession 
coefficient and initial storage. Further analysis reveals the drawback of slow convergence and time-consumption of the ABC 
algorithm. The three algorithms pre-sent stability and reliability with respect to their control parameters on the whole. It can be 
concluded that the DE and ACO algorithms are considerably more adaptive in optimizing the forecasting problem for the HNN model. 
 
Chau, K.W., et al., “A Hybrid Model Coupled with Singular Spectrum Analysis for Daily Rainfall Prediction,” Journal of 
Hydroinformatics 12 (4): 458-473 2010. 
Abstract. A hybrid model integrating artificial neural networks and support vector regression was developed for daily rainfall 
prediction. In the modeling process, singular spectrum analysis was first adopted to decompose the raw rainfall data. Fuzzy C-means 
clustering was then used to split the training set into three crisp subsets which may be associated with low-, medium- and high-
intensity rainfall. Two local artificial neural network models were involved in training and predicting low- and medium-intensity 
subsets whereas a local support vector regression model was applied to the high-intensity subset. A conventional artificial neural 
network model was selected as the benchmark. The artificial neural network with the singular spectrum analysis was developed for the 
purpose of examining the singular spectrum analysis technique. The models were applied to two daily rainfall series from China at 1-
day-, 2-day- and 3-day-ahead forecasting horizons. Results showed that the hybrid support vector regression model performed the 
best. The singular spectrum analysis model also exhibited considerable accuracy in rainfall forecasting. Also, two methods to filter 
reconstructed components of singular spectrum analysis, supervised and unsupervised approaches, were compared. The unsupervised 
method appeared more effective where nonlinear dependence between model inputs and output can be considered. 
 
Next, let us make a text search through the abstracts for the expressions "heavy", "tail", 
"distribut*" and "density". The results are zero. When browsing through the abstracts, 
this confirms the exercise from the text search, namely that none of these papers 
(certainly respectful work) deals with heavy-tail distributions, which, however, is the 
target of our present manuscript with NPGD. Instead the papers seem to focus on 
prediction and neural networks applied to runoff time series from various stations. Thus, 
the only study object common with the NPGD manuscript seems to be river runoff. With 
all due apologies, we think that this does not warrant inclusion of all of the suggested 
citations. However, we think that a paragraph on the "wider impacts" of our study should 
be added to the Conclusions section of our manuscript; this paragraph should include 
paleoclimatology, paleohydrology and dendrochronology; and we cite the first 
suggestion, Gholami et al. (2015) in that paragraph, together with other work. 
 
Author's Changes in Manuscript Section 7 (Conclusions), at the very end of the 
manuscript (p. 10, after line 32, p. 11, after line 4) we add the following short paragraph 
(italicized). 
 
The wider impact of optimal heavy tail estimation may be not only on the application to 
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the area of instrumental environmental measurements, but also to reconstructed 
variables from the areas of paleoclimatology (Cronin, 2010), paleohydrology (Gasse, 
2009) and dendrochronology (D'Arrigo et al., 2011; Gholami, 2015). Furthermore, since 
extreme events in hydrology and related fields may also show the duration aspect (e.g., 
droughts, heatwaves), the estimation should not be restricted to measured or 
reconstructed variables. Rather, heavy tail index estimation should be a useful tool also 
for the analysis of index variables (Kürbis et al., 2009). 
 
Additional references: 
 
Cronin, T. M.: Paleoclimates: Understanding Climate Change Past and 
Present. Columbia University Press, New York, 441 pp., 2010. 
 
D'Arrigo, R., Abram, N., Ummenhofer, C., Palmer, J., and Mudelsee, M.: 
Reconstructed streamflow for Citarum river, Java, Indonesia: Linkages to 
tropical climate dynamics, Clim. Dynam., 36, 451–462, 2011. 
 
Gasse, F.: Paleohydrology, in: Encyclopedia of Paleoclimatology and Ancient 
Environments, edited by: Gornitz, V., Springer, Dordrecht, 733–738, 2009. 
 
Gholami, V., Chau, K. W., Fadaee, F., Torkaman, J., and Ghaffari, A.: Modeling 
of groundwater level fluctuations using dendrochronology in alluvial aquifers, 
J. Hydrol., 529, 1060–1069, 2015. 
 
Kürbis, K., Mudelsee, M., Tetzlaff, G., and Brázdil, R.: Trends in extremes of 
temperature, dew point, and precipitation from long instrumental series from 
central Europe, Theor. Appl. Climatol., 98, 187–195, 2009. 
 
Referee Comment 20. In the conclusion section, the limitations of this study and 
suggested improvements of this work should be highlighted. 
 
Author's Response We first note that Anonymous Referee #2 has not raised this point. 
Please note that the present manuscript already achieves what is requested here by 
Anonymous Referee #1. First, we stress the need to do more studies of measured river 
runoff series (p. 10, l. 5 to 9), see also Review by Anonymous Referee #1, Author's 
Response to Comment 15, above). Second, we stress the need to do more studies on other 
methodical aspects (p. 10, l. 29 to 32). However, we stand by our manuscript that it tackles 
the most important methodical problem for heavy-tail estimation, namely order selection. And 
we show that our paper successfully solves that problem. 
 
Author's Changes in Manuscript None. 
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Point-by-Point Response to Review by Anonymous Referee #2 
 
Referee Comment This is an excellent manuscript and I thoroughly enjoyed reading it. I 
have one minor comment, which the authors may clarify. How do the authors consider 
duration of an extreme event, as that is a very important characteristic for hydrologic 
variable. 
 
Author's Response Thanks a lot for the compliment, and thanks a lot for the interesting 
question! Anonymous Referee #2 is right that we have in our manuscript not dealt with 
the duration of an extreme event. Instead we have (Section 6 of the manuscript) analysed 
the daily runoff values (river Elbe, station Dresden). We completely agree that the 
duration aspect is an important characteristic index for a hydrological variable, for 
example, in the definition of droughts. The manuscript already stresses the need to do 
more studies of measured river runoff series (p. 10, l. 5 to 9), see also Review by 
Anonymous Referee #1, Author's Response to Comment 15, above)―and exactly here one 
should add a further study direction: droughts, and the various forms to define it (e.g., via the 
duration). Another field, for which the hint by Anonymous Referee #2 is helpful, is the 
climate variable temperature, which, together with duration of an extreme warm event, may 
be used to define heatwaves. We think it is worth to mention droughts and heatwaves as index 
variables, which can also be analysed by means of optimal heavy tail index estimation. 
 
Author's Changes in Manuscript Section 7 (Conclusions), at the very end of the 
manuscript (p. 10, after line 32, p. 11, after line 4) we add a short paragraph; please see 
Review by Anonymous Referee #1, Author's Changes in Manuscript in response to comments 
19 (above). 
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Abstract. The tail probability, P , of the distribution of a variable is important for risk analysis of extremes. Many variables

in complex geophysical systems show heavy tails, where P decreases with the value, x, of a variable as a power law with

characteristic exponent, α. Accurate estimation of α on the basis of data is currently hindered by the problem of the selection

of the order, that is, the number of largest x-values to utilize for the estimation. This paper presents a new, widely applicable,

data-adaptive order selector, which is based on computer simulations and brute force search. It is the first in a set of papers on5

optimal heavy tail estimation. The new selector outperforms competitors in a Monte Carlo experiment, where simulated data

are generated from stable distributions and AR(1) serial dependence. We calculate error bars for the estimated α by means of

simulations. We illustrate the method on an artificial time series. We apply it to an observed, hydrological time series from the

river Elbe and find an estimated characteristic exponent of 1.48±0.13. This result indicates finite mean but infinite variance of

the statistical distribution of river runoff.10

1 Introduction

Not all geophysical variables obey a Gaussian (normal) distribution. This is true not only for the central part but also for the

extremal part (tail) of a distribution. Instead of a Gaussian exponential behaviour, we often observe a Pareto tail (power law)

with a distribution function, F , of a variable, X ,

F (x) = P (X > x)∝ x−α, (1)15

that holds above some threshold, x > u≥ 0. The characteristic exponent or heavy tail index parameter, α > 0, determines the

probability, P , of observing extreme values. Its knowledge is of crucial importance in applied risk analysis, for example, of

floods (Jongman et al., 2014).

Theoretical explanations of the heavy tail behaviour rest on multiplicative or nonlinear interaction of variables in complex

geophysical systems. Such derivations exist, for example, for the variables rainfall (Wilson and Toumi, 2005) and air pressure20

(Sardeshmukh and Sura, 2009). Other complex systems, such as finance (Malevergne and Sornette, 2006) or society (Barabási,

2005; Helbing, 2013), may as well exhibit heavy tail phenomena.

Many statistical distributions have heavy tails. A particularly useful class of those are the stable distributions (Nolan, 2003),

for which the distribution of the sum has the same shape (up to scale and shift) as each of the independent, identically distributed

stable summands. Stable distributions have a heavy tail index between 0 and 2. They include Gaussian (α= 2), Cauchy (α= 1)25
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and Lévy (α= 1/2) distributions. The fact that for other α-values no analytical expression of the distribution exists, does not

reduce the usefulness for analysing extremes. A more serious point is that heavy tail distributions in general, not only stable

distributions, may have infinite statistical moments: of first order (mean) for α < 1 and of second order (variance) for α < 2.

Therefore, in the analytical practice, research questions arise such as: (1) How realistic are infinite moments for the studied

geophysical variable? (2) How serious are the consequences of heavy tails and the resulting inflated estimation accuracy of5

geophysical system parameters? (3) Does the heavy tail law (Eq. 1) hold not over the full but just a restricted x-range, which

may then be compatible with finite moments (Mantegna and Stanley, 1995)?

The accurate statistical estimation of the heavy tail index on the basis of a set of data, {x(i)}ni=1, of size n, is therefore

important. An estimator, α̂, which may be called “classic,” was devised by Hill (1975). Let x′ denote the x-values sorted

according to descending size, x′(1)≥ x′(2)≥ ·· · ≥ x′(n). We assume zero sample mean (via mean subtraction). Without loss10

of generality we consider the right tail (positive values). Let there be K ≥ 2 positive x′-values. The Hill estimator is

α̂k = k

[
k∑
i=1

log
x′(i)

x′(k+ 1)

]−1

, (2)

where k ≤K−1 is denoted as order parameter. IfK < 2, then the Hill estimator cannot be applied. The selection of k completes

the estimation. Order selection has a decisive influence on α̂. However, it is yet unclear how best to achieve this, and order

selection has been called the “Achilles’ heel” of heavy tail index estimation (Resnick, 2007).15

Order selection constitutes a statistical trade-off problem (Hill, 1975). Large k leads to usage of many data points and a

small estimation variance. However, the risk then is that points are included for which Eq. (1) does not hold (i.e., bias). On the

other hand, small k leads to a small estimation bias and a large variance.

The fact that the Hill estimator is not translation invariant (to shifts in x) (Resnick, 2007), we assess as minor since there is a

natural choice in the form of zero sample mean. In geophysical analyses, such as the estimation of trend parameters on climate20

time series (Mudelsee, 2014), a by-product is the series of residuals (data minus fit). These values are realizations of the noise

process, and they are subjected to various forms of residual tests regarding distributional shape and persistence. By virtue of

their construction, the residuals have zero sample mean.

There exist other estimators of α (Resnick, 2007), but here we consider Hill and focus on order selection. We introduce an

order selector that is optimal in the sense that, for a given estimation problem, it minimizes a root mean squared error (RMSE)25

measure for α̂ in an internal (i.e., within the algorithm) simulation loop. In our approach, the search for optimal k is performed

in a brute force manner and adaptively for a data set. Hence, the approach is computationally intensive.

Processes in complex geophysical systems may exhibit not only heavy tail behaviour but also persistence in the time domain.

Let t(i) denote a time value and {t(i),x(i)}ni=1 a time series, that is, a sample of the dynamics of a system. Many geophysical

time series have an uneven time spacing (e.g., proxy series of paleoclimate obtained from natural archives). Therefore we30

model the persistence in its simplest form as a first-order autoregressive or AR(1) process on an unevenly spaced time grid
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(Mudelsee, 2014),

X(1) = E(1),

X(i) = exp[−(T (i)−T (i− 1))/τ ] ·X(i− 1)

+{1− exp[−2(T (i)−T (i− 1))/τ ]}1/2 · E(i), i= 2, . . . ,n. (3)

T (i) is the discrete time variable, assumed to increase strictly monotonically; E is an independent, identically distributed5

random innovation with zero mean and variance σ2; the parameter τ > 0 is called persistence time. In the case of even spacing

(T (i)−T (i− 1) = d(i) = d = const.), Eq. (3) corresponds to the more familiar formulation with an AR(1) parameter a=

exp(−d/τ). The heteroscedasticity in Eq. (3) ensures stationarity of the AR(1) process for σ2 <∞. It is thought of no harm

in the case E is heavy tailed with infinite variance. The persistence time can be estimated using a least-squares criterion and

numerical techniques. See Mudelsee (2014) for more details.10

We here aim for a heavy tail parameter estimation that is accurate, widely applicable and robust (i.e., reliable even when

some underlying assumptions are nor met). The selection 0≤ α≤ 2 and k ≤K − 1 allows a wide range of possible distribu-

tions of the data-generating process. Not the full distribution needs to follow Eq. (1), just the extremal part (“distributional

robustness”). The adoption of an AR(1) model for uneven spacing (Eq. 3) ensures that for many time series, the persistence

dynamics is captured at least to first order (“persistence robustness”). Notably included is the persistence-free case, where time15

is irrelevant and only the observed values are required. This analytical design and the presented method are therefore applicable

to many different types of data from geophysics and disciplines beyond. We detail the new order selector (Sect. 2) and show

its superiority in a Monte Carlo simulation experiment (Sect. 3). Simulation is also the approach to construct error bars for α̂

(Sect. 4). We illustrate the method via applications to an artificial (Sect. 5) and an observed, hydrological time series (Sect. 6).

The conclusions (Sect. 7) address practitioners of risk analysis.20

2 Order selection

To repeat the ingredients of the statistical problem, let {t(i),x(i)}ni=1 be a time series, where the time values, t(i), increase

strictly monotonically and the x-values have zero mean (via mean subtraction). Let x′ denote the x-values sorted according to

descending size. Let there be K ≥ 2 positive x′-values.

Algorithm 1 gives the solution of the problem of order (k) selection for the Hill estimator of the heavy tail parameter (α).25
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Algorithm 1 Optimal order selection for the Hill estimator
1: for k = 1 to K − 1 do

2: calculate α̂k (Eq. 2) on the data, {x′(i)}ni=1

3: calculate τ̂ using a least-squares criterion (Mudelsee, 2014)

4: for j = 1 to Ninner do

5: generate n random values from a stable distribution with prescribed α= α̂k using the algorithm by Nolan (1997)

6: generate {x∗(i)}ni=1 from an AR(1) process (Eq. 3) on the time grid, {t(i)}ni=1, with prescribed τ = τ̂ and the n

random values (line 5) as innovations, E(i)

7: calculate {x∗′(i)}ni=1 from {x∗(i)}ni=1 via sorting and mean subtraction

8: calculate α̂k,j (Eq. 2) on the data, {x∗′(i)}ni=1

9: end for

10: calculate the measure, RMSE(k) = [
∑Ninner
j=1 (α̂k,j − α̂k)2/Ninner]1/2

11: end for

12: select arg min[RMSE(k)] as optimal order

Algorithm 1 is an illustration of the concept of optimal estimation (Mudelsee, 2014). This concept roughly states that when

confronted with a complex estimation problem on given data, then the first task is to explore the various estimation techniques

to find out the optimal technique. Optimality is meant in a certain sense (e.g., RMSE). The second task is then to apply the

optimal technique to the given data. Optimal estimation becomes feasible with increasing computing power.

In the context of heavy tail index estimation, Algorithm 1 attacks the “Achilles’ heel” problem of order selection via brute5

force. The extension to other estimators is straightforward.

3 Monte Carlo experiment

We compare the optimal order selector for the Hill estimator (Algorithm 1) with two other selectors in a Monte Carlo simulation

experiment (Algorithm 2). This involves many time series generated in a computer by means of a random number generator

(Fishman, 1996). The prescribed uneven spacing is drawn from a gamma distribution, which may be a realistic model for many10

paleoclimate time series (Mudelsee, 2014).
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Algorithm 2 Monte Carlo experiment on order selection for the Hill estimator, nsim = 10000
1: prescribe n,τ,α and order selector (asymptotic, bootstrap or optimal)

2: draw spacing, {d(i)}n−1
i=1 , from a gamma distribution with order parameter 3

3: scale {d(i)}n−1
i=1 such that the average, d̄, equals unity

4: set t(1) = 1 and t(i) = t(i− 1) + d(i− 1) for i= 2, . . . ,n

5: for j = 1 to nsim do

6: generate {x(i)}ni=1 from an AR(1) process (Eq. 3) on the time grid, {t(i)}ni=1, with stable distributed (Nolan, 1997)

innovations and prescribed values for τ and α

7: select order, k

8: calculate α̂j = α̂k (Eq. 2) on the sorted and mean-subtracted data, {x′(i)}ni=1

9: end for

10: calculate RMSEα̂ = [
∑nsim
j=1(α̂j −α)2/nsim]1/2

The first competitor as order selector is based on the asymptotic normality of α̂k (Eq. 2). Hall (1982) showed that for n→∞
and under further conditions, the expression k1/2(α̂k −α) approaches a normal distribution with mean zero and variance α2.

This allows the construction of an order selector based on the theoretical minimal asymptotic mean squared error (AMSE). A

caveat against any asymptotic normality argument is that it is difficult to check in practice whether the underlying conditions

are fulfilled, in particular, how wide n is away from infinity.5

The second competitor aims to improve the selector based on asymptotic normality by estimating the AMSE via a computing-

intensive bootstrap resampling procedure (Danielsson et al., 2001). This data-adaptive order selector possesses stronger robust-

ness than the one based on theoretical AMSE because it makes less restrictive assumptions. The adaptation to the data at hand

makes the selector based on the bootstrap relevant for practical applications.

There exists also the suggestion to look for a plateau of the sequence α̂k against k as an indication of a suitable order10

(Resnick, 2007). Evidently, it is not straightforward to objectively define a plateau and implement that definition in a Monte

Carlo experiment. Of higher relevance is the finding (Sect. 5) that the optimal order can be located in a region that does not at

all resemble a plateau.

The results (Fig. 1) show that the new optimal order selector outperforms (i.e., has a smaller RMSEα̂) the two competitors.

This is true over a considerable range of design parameters (n,τ,α). At least partly the success of the optimal order selector may15

be owing to the situation that the normality of α̂, on which the two competing selectors are based, has not been approached in the

simulation world. On the other hand, the prescribed stable distributional shape of the data-generating process fits particularly

well to the optimal selector (Algorithm 1). This point will be investigated in a future analysis of the optimal selector under

varied Monte Carlo designs.
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Figure 1. RMSE of the estimated heavy tail parameter in dependence on data size for the Hill estimator and various order selectors: optimal

(Algorithm 1), asymptotic normality and bootstrap. The Monte Carlo design parameters are: prescribed persistence time, τ = 0.0 (a, c, e,

g) and τ = 0.8 (b, d, f, h); prescribed heavy-tail parameter, α = 0.5 (a, b), α = 1.0 (c, d), α = 1.5 (e, f) and α = 2.0 (g, h); and number of

simulations, nsim = 10000. Note broken y-axes.

4 Error bars

To adapt the preface to our book on climate time series analysis (Mudelsee, 2014): We wish to know the truth about a geo-

physical system but have only a limited sample, {t(i),x(i)}ni=1, influenced by various sources of noise. Therefore we cannot

expect our estimate, α̂, which is based on data, to equal the truth. However, we can determine the typical size of that deviation:

an error bar. Error bars help to critically assess estimation results, they prevent us from making overstatements, they guide us5

on our way to enhance the geophysical knowledge. Estimates without error bars are useless.

The Monte Carlo experiment (Sect. 3) bears a method to construct error bars. For this purpose, Algorithm 2 may be adapted

as follows. Line 1: overtake n from the sample, set τ = τ̂ and α= α̂. Lines 2 to 4: overtake {t(i)}ni=1 from the sample. Line 5:

set nsim = 100. Report RMSEα̂ as error bar. This uncertainty measure has the advantage that it includes not only estimation

variance, but also bias. This makes it more reliable than, for example, the standard error. This error bar construction is also10

used for the persistence time (RMSEτ̂ ).

A note on the selection of nsim = 100 for error bar determination. We explored the influence of nsim on the accuracy of

RMSEα̂ in another Monte Carlo experiment. We varied nsim and analysed the coefficient of variation (CV) of RMSEα̂. The
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Figure 2. Application of heavy tail estimation with optimal order selection to artificial data; (a) time series (dark line), drawn from an

AR(1) process with even spacing unity and stable distributed innovations (n= 5000, τ = 1.5,α= 1.75); (b) sequence α̂k (solid dark line)

±RMSE(k) (shaded) for the Hill estimator (right tail); (c) measure RMSE(k); (d–f) frequency plots showing densities and histograms at

various axis scalings. The optimal order is kopt = 1071. The fitted heavy tail density function, f(x), has been scaled such that for x > x′(kopt),

the tail probability, F (x) (Eq. 1), times n equals the number of extreme events (right tail). (Note that
∫
f(x) = F (x).)

CV is given by the standard deviation ofRMSEα̂, which is calculated over a number of external (i.e., outside of the algorithm)

runs, divided by the mean calculated over the runs. One run consists in generating a series and estimating the tail index with

RMSEα̂. The number of runs was 10000. We found that for a number of nsim ≈ 100, a saturation behaviour of the CV sets

in, while for smaller nsim values, the CV decreases with nsim. Further increasing nsim had no measurable effect on the accuracy

of RMSEα̂. The value of 100 also agrees roughly with the Monte Carlo findings on the minimum number of simulations5

required for obtaining reliable results for the bootstrap standard error (Efron and Tibshirani, 1993).

5 Application to artificial time series

The application of heavy tail estimation to artificial data (Fig. 2) offers to test the new analysis method because the properties

of the data-generating process (τ,α) are prescribed and can be compared with the estimates (τ̂ , α̂). Employing a data size

(n= 5000) not untypical for ambitious nonlinear geophysical analyses and using the new order selector, yields a clearly10

expressed optimal order of kopt = 1071 (Fig. 2c). That means, about 20 percent of the data are utilized for heavy tail index

estimation.
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It is remarkable that the sequence α̂k does not at all display a plateau at around kopt (Fig. 2b). Rather, the sequence shows a

trend that decreases with k.

The resulting estimates with RMSE error bars from nsim = 100 simulations (Sect. 4) agree well with the prescribed values:

for the persistence time, τ = 1.50 and τ̂ ±RMSEτ̂ = 1.46±0.04; for the heavy tail parameter, α= 1.75 and α̂±RMSEα̂ =

1.76± 0.06.5

The good agreement between data and fit is also reflected by the good agreement between data histograms and fitted densities

(Fig. 2d–f).

One caveat to consider is the fact that the prescribed density of the process that generated the data (Fig. 2a) is a stable

distribution, which is also employed by optimal order selection (Algorithm 1). This may have, at least partly, produced the

good fit on artificial data. On the other hand, (1) not the full distribution needs to follow the distribution, just the extremal part10

and (2) stable distributions form a fairly wide class of distributions (Nolan, 2003). Still, we plan to study the relevance of this

point by means of an analysis under varied Monte Carlo designs.

6 Application to observed, hydrological time series

The application of heavy tail estimation to observed data (Fig. 3) serves to illustrate the practical work. The runoff time series

of the river Elbe at station Dresden (Fig. 3a) belongs to the longest observed hydrological records available. The data quality15

is assessed as excellent owing to the relatively constant observation situation at this station and the frequently updated runoff–

water stage calibration curves (Mudelsee et al., 2003). We analyse the hydrological summer separately (Fig. 3) because the

conditions for generating extreme floods (right tail) vary from summer to winter (Mudelsee et al., 2003). The resulting data size

is n= 38272. The clearly expressed optimal order for Hill estimation is kopt = 3732 (Fig. 3c). That means, about 10 percent of

the data are utilized for heavy tail index estimation. This decrease of the ratio kopt/n with n, which is found when the observed20

series is compared with the artificial series of size n= 5000 (Sect. 5), is compatible with theoretical recommendations (Hall,

1982).

Due to excessive computing costs associated with a brute force search for n= 38272, the optimal order is found via a quasi-

brute force, two-step search method. In the first step, we calculate the measure RMSE(k) (Algorithm 1) at k-increments

of Lk = 50. From the resulting 765 measure values, we select the Pmink = 5 percent with minimal measure, for which we25

perform in the second step a fine search with increment 1. The quasi-brute force search, Monte Carlo experiments and further

hints on the selection of Lk and Pmink are described in the manual (supplementary material).

The resulting estimates with RMSE error bars from nsim = 100 simulations are: τ̂ = 0.060± 0.002 a and α̂= 1.48± 0.13.

Although the observed time series has clearly more points (n= 38272) than the artificial (n= 5000), the error bar for the

heavy tail index estimate is larger (RMSEα̂ = 0.13) than for the artificial (RMSEα̂ = 0.06). The reason is that the estimated30

“equivalent autocorrelation coefficient” (Mudelsee, 2014), given by ̂̄a= exp(−d̄/τ̂), is larger for the observed time series

(̂̄a= 0.91) than for the artificial (̂̄a= 0.51). Stronger persistence means fewer independent data points and a larger estimation
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Figure 3. Application of heavy tail estimation with optimal order selection to observed data; (a) time series (dark line), average daily

runoff of river Elbe at Dresden (Germany) during summer (May to October) from 1 May 1806 to 31 October 2013 (n= 38272), units:

m3/s; (b) sequence α̂k (solid dark line) ± RMSE(k) (shaded) for the Hill estimator (right tail); (c) measure RMSE(k); (d–f) frequency

plots showing densities and histograms at various axis scalings (cf. Fig. 2). The optimal order is kopt = 3732, it has been detected using

a quasi-brute force search (see text). Data courtesy Wasser- und Schifffahrtsverwaltung des Bundes, provided by the Bundesanstalt für

Gewässerkunde (BfG), Koblenz, Germany.

uncertainty. An additional Monte Carlo experiment revealed that for absent persistence (τ = 0), the observed, hydrological

values yield a clearly smaller error bar (RMSEα̂ = 0.03).

For the hydrological interpretation of the statistical results, not only the error bars (RMSEτ̂ and RMSEα̂) have to be

considered but also model mis-specification.

In the case of persistence estimation of runoff series, an alternative to the AR(1) model may be a long-memory model5

(Mudelsee, 2007). We think that the large estimated autocorrelation (̂̄a= 0.91) does already capture a large amount of the

serial dependence structure (Sect. 1) of the hydrological series. Therefore, an associated persistence model mis-specification

would likely have consequences (widened error bars) that are only minor. Still, it is worth to study more systematically long-

memory models with heavy tail distributed innovations.

In the case of heavy tail index estimation, we think that the employed stable distribution model class does already capture10

the true distribution (Fig. 3d–f) quite well owing to the wide range of the stable class (Sect. 1). Therefore, an associated

distribution model mis-specification should not widen the error bars strongly, and the true estimate should not be far away from

the estimate, α̂= 1.48.
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However, the possibility of model mis-specification prevents us at this stage of the analysis to conclude unambiguously that

with α < 2, the runoff-generating process has infinite variance (Nolan, 2003). This would have serious consequences for the

practical work since many types of statistical estimation problems (e.g., trend, spectrum) would be affected. We mention the

study of the runoff series from the river Salt (Anderson and Meerschaert, 1998), which found α̂≈ 3 (i.e., finite variance), in

contrast to our finding. Further stages of the analysis, to be pursued in a future paper, will therefore include: (1) a comparison5

between summer and winter for the runoff series from Dresden; (2) a quantification of the sensitivity to the removal of an

annual cycle; (3) a comparison among various other stations on the river Elbe and (4) a comparison with other rivers, for

which long, high-quality runoff records are available. Evidently, an accurate heavy tail estimation technique with optimal order

selection, is helpful for this purpose.

7 Conclusions10

The tail probability, P (X > x), is crucially important for practical risk analysis, for example, the calculation of the expected

losses in the reinsurance business. Instead of a Gaussian exponential behaviour (light tail), many observed variables from

complex networks show a power law (heavy tail). This law (Eq. 1), which is parameterized by means of the heavy tail index,

α, allows to extrapolate the probability into unobserved, extreme data ranges.

The accurate estimation of α on the basis of observed data is therefore also crucially important. The “Achilles’ heel” of15

tail index estimation is order selection, that is, to set how many of the largest values to utilize for the estimation. This paper

focuses on a new, optimal order selector (Algorithm 1). The superiority of the new selector is demonstrated in a Monte Carlo

simulation experiment (Fig. 1).

The new selector is claimed to utilize the data in an optimum way for performing an estimation. The resulting error bars

(RMSEα̂), which are calculated from computing-intensive simulations (Sect. 4), are comparably small. Hence, the new20

method allows to study more accurately than previously possible, various extremal behaviours, such as the spatial depen-

dence of α in geostatistical applications or the time dependence of α on long time series. The time dependence may shed light

on tipping points in complex systems. In particular, changes in α over time may possibly be used to predict the approach of a

sudden change in a geophysical variable (e.g., climate).

The data-generating process (AR(1) with stable distributed innovations) achieves “distributional robustness” because not the25

full distribution needs to follow Eq. (1), just the extremal part. It also achieves “persistence robustness” because Eq. (3) ensures

that for many time series (also unevenly spaced), the persistence dynamics is captured at least to first order. As a result, the

presented method is accurate and widely applicable, and it delivers robust results.

However, at this stage of method development, it is still useful to perform more Monte Carlo simulation studies on heavy

tail index estimation. These simulations should include varied designs, in particular, other prescribed shapes than a stable30

distribution. Furthermore, it is interesting to study other estimators than Hill (on which this paper focuses). The computer

program associated with optimal index estimation (ht) has implemented also the estimation routine after Pickands (1975).
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The application to an observed, hydrological time series (Fig. 3) delivered the intriguing result of infinite variance (but

finite mean) (α̂= 1.48) of the data-generating process. Infinite variance would have serious consequences for many types of

statistical estimation to be carried out on hydrological data. We recommend to analyse more, independent hydrological data to

corroborate or refute this finding.

The wider impact of optimal heavy tail estimation may be not only on the application to the area of instrumental environ-5

mental measurements, but also to reconstructed variables from the areas of paleoclimatology (Cronin, 2010), paleohydrology

(Gasse, 2009) and dendrochronology (D’Arrigo et al., 2011; Gholami et al., 2015). Furthermore, since extreme events in hy-

drology and related fields may also show the duration aspect (e.g., droughts, heatwaves), the estimation should not be restricted

to measured or reconstructed variables. Rather, heavy tail index estimation should be a useful tool also for the analysis of index

variables (Kürbis et al., 2009).10
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