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Abstract. Spatial distributions of the main properties of the mode function and kinematic and nonlinear parameters of 10 

internal waves of the second mode are derived for the South China Sea for typical summer conditions in July. The 

calculations are based on the Generalized Digital Environmental Model (GDEM) climatology of hydrological variables, 

from which the local stratification is evaluated. The focus is on the phase speed of long internal waves and the coefficients at 

the dispersive, quadratic and cubic terms of the weakly nonlinear Gardner model. Spatial distributions of these parameters, 

except for the coefficient at the cubic term, are qualitatively similar for waves of both modes. The dispersive term of 15 

Gardner‟s equation and phase speed for internal waves of the second mode are about a quarter and half, respectively, of 

those for waves of the first mode. Similarly to the waves of the first mode, the coefficients at the quadratic and cubic terms 

of Gardner‟s equation are practically independent of water depth. In contrast to the waves of the first mode, for waves of the 

second mode the quadratic term is mostly negative. The results can serve as a basis for express estimates of the expected 

parameters of internal waves for the South China Sea. 20 
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1 Introduction 

The South China Sea is an example of shelf seas where highly energetic internal solitary waves often generate up to 100–

200 m vertical displacements of water masses. These powerful disturbances are usually excited by tide-topography 25 

interaction in the Luzon Strait where the Kuroshio Current serves as a background current that may greatly modify the 

generating conditions but it does not affect the coefficients of the Gardner model in the South China Sea. The resulting 

internal waves are further modified by numerous islands, seamounts and other bathymetric features in the Luzon Strait (Liu 

et al., 1998, 2004, 2006; Cai et al., 2002; Rump et al., 2004, 2015). Many such structures with amplitudes up to 100 m 

propagate as solitary waves. Their impact on water masses has been observed in the vicinity of two underwater elevations in 30 
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an area of the Luzon Strait where the water depth is only about 300 m (Liu et al. 2006). These waves propagate into deeper 

regions of the South China Sea, cross this water body and exert conspicuous transformations along the continental shelf at 

depths of 400–200 m. The associated displacements of isopycnals may reach 100 m. The appearance of such waves often 

matches well theoretical shapes of internal solitons (Klymak et al., 2006). 

While most such waves represent internal waves of the first mode, numerous recordings suggest that internal waves of the 5 

second and sometimes even third mode are regularly present in the South China Sea (Fig. 1; see also Guo et al., 2006; Yang 

et al., 2009; Vlasenko et al., 2010; Liu et al., 2013). It is likely that higher modes of long internal waves are often generated 

in the World Ocean. They are frequently excited, for example, as result of interaction of nonlinear waves of the first mode 

with topography (Ramp et al., 2010, 2015; Shroyer et al., 2010; Vlasenko et al., 2010, 2014; Vlasenko and Stashchuk, 2015). 

Alternatively, internal waves of any mode may be created in micro-tidal stratified semi-sheltered basins by an intense 10 

outflow or inflow (Vlasenko et al., 2009), strong atmospheric disturbances (Ivanov et al., 1987), indirect and/or delayed 

impact of such disturbances (e.g., release of storm surges) and other phenomena. 

Most of studies of internal waves focus on waves of the first mode. This approach apparently mirrors the abundance of 

records of various properties of water masses in the uppermost layers of the ocean compared to profiles of the entire water 

column. Namely, profiles of motions and other hydrophysical properties of the upper sections of water masses usually do not 15 

provide enough information about the full vertical structure of internal waves. Separation of the internal wave field into 

components representing different modes is extremely complicated in the vicinity of their generation regions and in areas 

where the waves interact with one another and with the bottom. Such analysis, however, is feasible in regions remote from 

the generation and interaction areas because small-amplitude internal waves of different modes propagate with different 

velocities and become separated after some time. 20 

Solitary internal waves of the first mode may be waves of elevation or waves of depression. The structure of higher-mode 

internal solitary waves is more complicated (Fig. 2). For example, vertical displacements of the upper and lower jump layers 

created by an internal solitary wave of the second mode have different polarities. For this reason the notion of internal waves 

is based on certain topologic features of the instantaneous appearance of the intermediate layer. Waves that create convex 

modifications of this layer are said to have positive polarity. Such waves are called convex or positive waves in what 25 

follows. Waves that create a concave shape of the intermediate layer are said to have negative polarity and are called 

concave or negative waves. 

Internal solitary waves of the second mode with both polarities have been regularly observed on the north-western 

continental shelf of the South China Sea (Yang et al., 2010; Ramp et al., 2015). Such waves may be generated during 

interactions of solitary waves of the first mode with various bathymetric features (Vlasenko and Hutter, 2001). Positive 30 

(convex) solitary waves of this kind appear substantially (by about 20 times) more frequently in the records than negative 

(concave) waves (Yang et al., 2010). 

The dynamics of long internal waves of the second mode can be described with reasonable accuracy using weakly nonlinear 

evolution equations of the Korteweg–de Vries (KdV) family. In particular, Gardner‟s equation is commonly used as the 
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classic model of internal waves of the first mode (Holloway et al., 1999; Grimshaw et al., 2004; Talipova et al., 2014, 2015). 

This model has been applied inter alia to explain and replicate a polarity switch of internal solitons propagating along the 

north-eastern continental shelf in the South China Sea (Liu et al., 1998; Orr and Mingerey, 2003; Zhao et al., 2004; 

Grimshaw et al., 2010). 

The models of this kind are correct only asymptotically. Their core advantage is that a small set of parameters governs the 5 

appearance and properties of internal solitary waves. This feature makes it possible to use these models to isolate and 

identify principally new features of the dynamics of internal waves even if some details of the system are not reproduced. 

For example, a new kind of quasi-steady nonlinear internal waves (so-called breathers) has been predicted using the 

framework of Gardner‟s equation. The possibility of generation of such phenomena by solitary waves of the second mode 

and the basic properties of its long-term propagation have been obtained in a numerical “wave tank” using Euler‟s equations 10 

(Lamb et al., 2007; Terletska et al., 2016). Several features of the process of generation of table-top solitary waves were also 

extracted based on Gardner‟s equation (Kurkina et al., 2016). The effect of a change in the polarity of solitary waves 

predicted by the asymptotic theory has been repeatedly observed in various areas including the South China Sea (see above). 

It is however inevitable that many specific features and details (e.g. radiation of short waves, properties of strongly nonlinear 

disturbances or breaking of solitonic structures) cannot be reproduced using equations for weakly nonlinear waves and 15 

specific configurations of stratification may require the use of higher-order analysis and equations. 

The parameters selected for the model have a significant effect on many features of internal solitary waves. In other words, 

the appearance and core qualities of the propagation and transformation of such waves are governed by spatial variations in 

the coefficients of Gardner‟s equation along the propagation path of the waves in question. The associated variations have 

been thoroughly studied for internal solitary waves of the first mode using common data bases of the vertical structure of 20 

temperature and salinity (Levitus, 1982; Сarnes, 2009). This approach made it possible to construct climatologically valid 

maps of spatio-temporal variations in various coefficients of Gardner‟s equation for internal waves of the first mode in 

different regions of the World Ocean. These maps depict the values of phase speed of long waves (also called wave speed 

because for long waves it is also equal to group speed) and coefficients of various terms (linear, quadratic and cubic term) in 

the relevant Gardner‟s equation (Pelinovsky et al., 1995; Talipova and Polukhin, 2001; Polukhin et al., 2003, 2004; Kurkina 25 

et al., 2011, 2017). Similar maps have been also calculated for the South China Sea (Grimshaw et al., 2010; Liao et al., 

2014). 

As many regions of the World Ocean support propagation of internal waves of higher modes, it is important to expand this 

kind of „climatology‟ of internal wave propagation regimes to cover, to a first approximation, the properties of large-

amplitude internal waves of the second mode. Such maps of the kinematic parameters (wave speed and the coefficient at the 30 

linear term) and coefficients at the nonlinear terms of the relevant evolution equation make it possible to rapidly evaluate 

several core properties of the dynamics and impact of internal waves, build pathways of the propagation of waves from their 

typical areas of generation and identify which regions are possibly affected by hydrodynamic loads created by large internal 

waves. 
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For example, the polarity of solitons is governed by the sign of the coefficient at the quadratic term of Gardner‟s equation 

(Grimshaw et al., 2007). The values of this coefficient as well as other kinematic parameters of waves can be calculated in a 

straightforward manner from the so-called mode function and its derivatives. The lines where the coefficient at the quadratic 

term vanishes or changes its sign mark the regions of a switch of the polarity of internal solitons. This switch may be 

accompanied by radical changes in the further behaviour of waves or the region may even be a location of the onset of wave 5 

breaking. This feature is valid for solitons of the first and second modes. Similar maps of the values of the coefficient at the 

cubic term specify, e.g., the regions where modulational instability of internal wave trains may modify wave properties or 

where a specific type of solitons – internal breather – may exist (Talipova et al, 2011). 

This paper focuses on the construction of maps of phase speed and coefficients at various terms of Gardner‟s equation. These 

quantities are often called kinematic and nonlinear parameters of long internal waves of the second mode. The target area is 10 

the South China Sea where such maps are useful to better evaluate the core properties of internal waves and their 

propagation. We start with a short description of the setup of the problem of internal wave propagation. An asymptotic 

solution to this problem can be provided by an evolution equation for such internal waves – Gardner‟s equation. To properly 

evaluate the values of its coefficients that govern the appearance and dynamics of internal waves of the second mode, it is 

necessary to adequately describe the structure of the mode function. A relevant nonlinear correction to this function is 15 

derived using an asymptotic procedure, which is discussed in Section 2 together with the main features of the appearance of 

internal solitary waves of the second mode. Section 3 describes the resulting maps of phase speed and various coefficients at 

the nonlinear terms of the Gardner model for internal waves of the second mode and the applicability of the entire model for 

the conditions of the continental shelf of the South China Sea. The main conclusions of the study are formulated in Section 

4. 20 

2 Vertical structure of long internal waves of the second mode 

Similarly to the treatment of internal waves of the first mode, the dynamics of long internal waves of the second mode in the 

ocean can be adequately described using a classic evolution equation – Gardner‟s equation (Holloway et al, 1999; Grimshaw 

et al, 2004, 2007). This model equation, presented here in the nondimensional form: 
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is valid for internal waves of any mode. Here x denotes distance along the propagation direction of the wave, t is time, η is 

the vertical deviation of the isopycnals from their equilibrium position at a selected vertical location z
*
, с is the phase speed 

of internal waves, α and α1 are the coefficients at the quadratic and cubic nonlinear terms, respectively (sometimes also 

called the quadratic and cubic nonlinear parameters), and β is the coefficient at the linear dispersive term (often called the 

dispersion coefficient). The quantities c, α, α1, and β represent the major kinematic characteristics of the internal wave field. 30 
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The mode function Ф is an eigenfunction of the Sturm–Liouville problem: 
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where g is acceleration due to gravity, (z) is the undisturbed density profile, and H is the total water depth. The boundary 

conditions for Eq. (3) usually include the requirement of the vanishing of Ф at the bottom and at the sea surface. We chose 

the common approximation of the so-called rigid lid at the surface, for which these conditions reduce to Ф(0) = Ф(Н) = 0. 

The phase speed c of long internal waves is an eigenvalue of the described Sturm–Liouville problem. The vertical location z
*
 

is, theoretically, arbitrary but the resulting numerical values of the coefficients of Gardner‟s equation (1) obviously depend 10 

on the choice of z
*
. 

We follow the tradition to select z
*
 at the location zmax, which corresponds to the maximum value Фmax of the mode function 

Ф (Holloway et al., 1999). This function is normalised as Ф(z
*
) = 1. Details of the spatio-temporal structure of internal 

waves are described in this model as 

)()(),(),,( 2 zFztxtzx   .           (4) 15 

Here F(z) has the meaning of a second-order nonlinear correction to the mode function. It is defined as a solution of the 

following inhomogeneous boundary problem: 
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A unique solution for Eq. (5) can be obtained using an additional normalising condition F(z
*
) = 0. Even though the location 

z
*
 can be chosen arbitrarily, the resulting vertical structure of motions and displacements of different water parcels do not 20 

depend on the particular choice of z
*
 (Holloway et al., 1999, 2001). The coefficients of Eq. (1) can be expressed explicitly 

for any stratification in terms of the mode function, its derivatives and integrals: 
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The impact of stratification and mode correction on the value and sign of the coefficient at the cubic term in Gardner‟s 

equation is analysed in detail in (Grimshaw et al, 1997; Kurkina et al., 2015). Consequently, for the specifying of the 

coefficients of Gardner‟s equation it is necessary to evaluate the mode function from Eq. (2) and its nonlinear correction 

from Eq. (5). 

The vertical structure of internal waves of the second mode is more complicated than the same structure for the classic 5 

internal waves of the first mode. The core difference between these structures can be illustrated on the example of a simple 

model of quasi-two-layer stratification (Fig. 3a). The water masses described by such a model have one jump layer of 

density. The Brunt–Väisälä frequency (Fig. 3b) has one maximum along each vertical cross-section. The maximum is 

located in the region of the fastest variation in density. Similarly, the mode function for the waves of the first mode has one 

extremum (maximum or minimum depending on the normalisation) along each vertical cross-section. Importantly, the mode 10 

function for the waves of the first mode exhibits no sign change within the entire water column. 

In contrast, the mode function for the waves of the second mode changes its sign. It has the maximum positive value near the 

upper boundary of the jump layer and the minimum (negative) value near the lower boundary of the jump layer (Fig. 4a). 

This means that two more intrinsic quantities are present in the system: the locations of zero-crossing z0 and minimum zmin of 

the mode function. If some function Ф satisfies Eq. (2) with Ф(0) = Ф(Н) = 0, the function –Ф is also a valid solution to this 15 

boundary problem. Therefore, it is not clear beforehand whether zmax or zmin should be chosen to normalise the mode function 

and to specify the unique mode function from the family described by Eq. (2) and the relevant boundary conditions. 

There are different approaches in the literature. Liu and Wang (2012) rely on the values of the mode function at its minimum 

zmin, where the absolute value of Ф is usually the largest. This approach, in essence, follows the logic of addressing the 

dynamics of internal waves of the first mode where the absolute maximum of the mode function is chosen as the scale for the 20 

normalisation of this function. 

Other recent studies of internal solitons of the second mode in the South China Sea address the situation on the continental 

shelf where the largest absolute values of Ф are located at zmax relatively close to the sea surface (Yang et al, 2009, 2010). In 

such situations it is natural to choose the maximum of Ф in a location above the jump layer (main pycnocline) as the basis 

for normalisation. The quality and resolution of measurements above the main pycnocline are often better than in deeper 25 

layers and thus the vertical structure of the mode function is more reliably represented. 

In such environments it is convenient to adjust Gardner‟s equation so that it describes the deviations of the isopycnals that 

correspond to z
*
 = zmax. Similarly to the analysis of internal waves of the first mode, the entire mode function Ф is then 

normalised so that the global maximum of its absolute values is 1. Also, in this case the zero-crossing point of the nonlinear 

correction F (Eq. (5)) is linked to zmax. In this framework the function η expresses deviations of the isopycnal ζ(x,z,t) in Eq. 30 

(4) at z = zmax from its undisturbed location. 

Importantly, with this choice of normalisation the polarity of the internal solitons of the second mode matches the sign of the 

coefficient at the quadratic term of Eq. (1). In other words, positive (convex) solitons correspond to positive values of the 

coefficient α. This match follows the usual interpretation of the coefficients and the appearance of solutions of the family of 
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generalisations of the KdV equation. This choice, however, may be problematic in the analysis of wave motions of deeper 

parts of the World Ocean and the South China Sea. The problem becomes evident when both the seasonal and the main 

pycnocline are located relatively close to the surface. In such cases the absolute value |Ф(zmin)| may by several times exceed 

the maximum of the mode function Ф(zmax). Consequently, the largest negative values of the normalised mode function may 

reach values well beyond –1. 5 

This feature may lead to certain problems in the analysis of the dynamics of internal waves of this kind. However, the 

normalisation is, in essence, arbitrary and the vertical structure of motions is independent of the chosen normalisation. 

Therefore, the relevant issues are purely technical and do not impact on the results of the analysis. Thus, we decided to meet 

the possible technical implications but still follow the more logical and straightforward normalisation using the maximum of 

the absolute values of the mode function at the upper boundary of the jump layer. 10 

3 Kinematic parameters of long internal waves of the second mode 

The South China Sea is a large (surface area about 3.5 million km
2
) semi-sheltered water body bordered by China from the 

north, Vietnam and Cambodia from the west and the Philippines from the south-east (Fig. 5a). The water depth of this sea 

varies greatly (Fig. 5b). About half of the sea is located on the continental shelf and has water depths just a few 100‟s of 

metres while another half has depths comparable with those of the open ocean. This variability together with extensive 15 

variations in the hydrological fields in this sea gives rise to large spatial variations in the coefficients of the underlying 

nonlinear evolution equations and, consequently in the kinematic parameters of internal waves in the area. 

To construct spatial maps of these parameters, we followed the approach implemented for the calculation of similar 

parameters of internal waves of the first mode and the coefficients of Gardner‟s equation for this basin (Grimshaw et al., 

2010; Liao et al., 2014). We employed generalised climatologic information about long-term mean temperature and salinity 20 

profiles. This information was extracted from the Generalized Digital Environment Model (GDEM) (Teague et al., 1990; 

Carnes et al., 2009). The GDEM https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:9600094 provides coefficients of 

mathematical expressions describing the vertical profiles of temperature and salinity with a horizontal resolution ranging 

from 30 in the deep ocean to 10 in selected coastal regions (incl. the South China Sea) at 77 vertical levels. The relevant 

database integrates over three million observations since 1975. 25 

The maps in this paper were calculated for the stratification that is characteristic in July. Seasonal variations in these maps 

are discussed shortly at the end of Section 3.2. The field of large-scale currents was ignored because there is no detailed 

information about the currents in this area in the existing databases. We stress that both large-scale currents and mesoscale 

structures may considerably affect the local stratification and greatly impact the values of coefficients of Gardner‟s equation. 

However, their impact is highly variable in space and time and it is likely that it becomes evident via limited variations of the 30 

seasonal values of the coefficients in question.  

https://data.nodc.noaa.gov/cgi-bin/iso?id=gov.noaa.nodc:9600094
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Mean density profiles were computed for each horizontal pixel of the GDEM database from temperature and salinity profiles 

using the International Equation for State of Sea Water (Fofonoff and Millard, 1983). With these density profiles, we 

evaluated the mode function (z) for the second mode as the normalised eigenfunction of the boundary problem (2) 

similarly to the procedure employed in Kurkina et al. (2017). The field of large-scale currents was ignored. The eigenvalue 

problem (2) was solved numerically at each pixel of the GDEM for the first and the second eigenvalue c (phase speed of 5 

long linear internal waves of the first and second vertical mode) and for the first and second eigenfunction Ф(z) (vertical 

structure of the wave). Further, the boundary-value problem (5) for the nonlinear correction F(z) was solved numerically by 

the method of variation of parameters. Finally, the coefficients at the linear, quadratic and cubic nonlinear terms were 

evaluated from Eqs. (6,7). 

3.1 Spatial variations in the parameters of the mode function 10 

As described above, the calculations of various parameters and coefficients rely on the values of maxima zmax, minima zmin 

and zero-crossings z0 of the mode function (Fig. 4a). Figures 6–8 present spatial distributions of these quantities (normalised 

against the total depth of the sea) and frequency histograms of the occurrence of their different values. 

A large part of the values of zmax/H are concentrated around zmax/H = 0.97 (Fig. 6b). This relatively wide peak in the 

histogram indicates that in a substantial part of the sea the location of the maximum of the mode function is found relatively 15 

close to the sea surface. The pixels with such values evidently belong to the deep-water region of the study area. Another, 

minor and narrow peak is located at zmax/H = 0.75. This peak apparently reflects a more or less horizontal sub-region of the 

sea on the continental shelf. The histogram of z0/H (Fig. 7b) has a similar shape. The main and secondary peaks in this 

histogram are concentrated around slightly smaller values z0/H = 0.9 and z0/H = 0.5, respectively. In contrast, the 

distribution of zmin/H (Fig. 8b) is much flatter but still contains distinct peaks at zmin/H = 0.25, 0.45 and 0.65, and a narrow 20 

peak at zmin/H = 0.2. These features suggest that interrelations between the vertical locations of the maximum, zero-crossing 

and minimum of the mode function are greatly different. 

The locations of zero-crossings of the mode function largely follow the relevant locations of the maximum. Therefore, both 

zero-crossings and maxima of the mode function roughly reflect the core variations in the water depth. In contrast, the 

minima of the mode function are only weakly, if at all, correlated with zmax and z0. It is therefore likely that the quantity zmin 25 

reflects some other features of the bathymetry and hydrography of the sea. This conjecture once more supports the choice of 

the maximum of the mode function for the normalisation of this function. 

Another view of the nature of the distributions of the quantities zmax/H, z0/H and zmin/H can be provided using a scatter-plot of 

their values against the physical water depth (Fig. 9). The plots of all three quantities exhibit a cluster with extensive 

variation in their values for relatively small depths. This feature indicates that very large variability in kinematic properties 30 

of internal waves of the second mode is an intrinsic feature of relatively shallow regions of the study area. For depths larger 

than 500 m all three quantities show a clear, almost rigorous dependence on water depth. Consistently with the above, zmax/H 

and z0/H are concentrated in a narrow range close to 1. Interestingly, zmin/H exhibits an almost linear relationship with water 
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depth. This feature signals that the structure of the mode function of the second mode may have a certain systematic pattern 

of changes along the propagation of internal waves from their generation area over the deep-water region of the South China 

Sea towards the continental shelf. This pattern does not become visible in the behaviour of the quantities zmax/H and z0/H. 

As discussed above, it is debatable whether the maximum or minimum values of the mode function should be used for 

normalising this function. The spatial distribution of the values of min/max indicates that the maximum of  exceeds the 5 

absolute value of the relevant minimum in most of the relatively shallow-water part of the study area whereas in the deeper 

regions |min| is systematically larger than max (Fig. 10). A histogram of the normalised values of min contains two peaks 

of comparable height and width. The peak at min/max = –1 evidently reflects the typical values of this ratio in the shallow 

areas whereas another peak at –2 is characteristic of this ratio in deeper regions. The values of |min| do not exceed 2.5 in the 

interior of the South China Sea but reach levels >3 in the Sulu Sea. 10 

3.2 Distributions of kinematic parameters of internal waves of the second mode 

Spatial distributions of phase speeds of long linear internal waves of the first and second modes are very similar to each 

other in the South China Sea (Fig. 11). The phase speeds for internal waves of the second mode are mostly below 1.5 m/s in 

this water body in typical conditions of July. Internal waves of the first mode propagate much faster. The phase speeds of 

waves from the first and second modes usually differ by a factor of 1.5–2. As expected, the phase speed of waves of both 15 

modes largely depends on the water depth (Таlipova and Polukhin, 2001; Polukhin et al., 2003). The presence of two 

subregions of the study area with different characteristic phase speeds appears in the scatter-plot of phase speeds and water 

depth (Fig. 12a). This feature becomes distinctly evident as a two-peak distribution of the empirical distribution of different 

phase speeds (Fig. 12b). Most internal waves of the second mode propagate with speeds around 0.2 m/s or around 1.4 m/s in 

the South China Sea. 20 

Even though water depth is one of the most important factors governing the propagation speed of internal waves, 

stratification of water masses equally contributes to the properties of the propagation of internal waves. Its impact is 

apparently complemented by variations in the amount of incoming radiation from the Sun. These variations may be one of 

the reasons of the presence of the meridional pattern of the phase speed of internal waves of the second mode. This 

meridional pattern is well known for internal waves of the first mode (Talipova and Polukhin, 2001). Its presence is a likely 25 

reason why the dependence of the phase speed on water depth shows substantial scatter in the study area (Fig. 12а). The 

level of scatter is, however, fairly moderate and the relationship between the water depth and phase speed can be reasonably 

approximated using a power function 

a
cHqc               (8) 

For water depths less than 500 m an appropriate approximation of the coefficient in Eq. (8) is qс = 0.0078 m
0.25

s
–1

 (Fig. 12a). 30 

The 95% confidence interval of this estimate is [0.0075, 0.0081]. The estimate for the power in Eq. (8) is а = 0.75 whereas 
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the relevant 95% confidence interval is [0.743, 0.757]. For water depths exceeding 500 m (Fig 12а) respective estimates are 

qс = 0.1901 m
0.756

s
–1

 (95% confidence interval [0.1802, 0.2]) and а = 0.244 (95% confidence interval [0.237, 0.251]). 

Spatial distributions of the coefficient at the dispersive term of Gardner‟s equation (1) for internal waves of the second (Fig. 

13a) and first (Fig. 13b) modes are also qualitatively similar. However, the numerical values of this coefficient differ 

substantially. This coefficient (and, consequently, the impact of linear dispersion on the wave propagation and dynamics) for 5 

waves of the second mode is by about 3–4 times smaller than the similar coefficient for the waves of the first mode. The 

relationship between this coefficient and water depth (Fig. 13с) is remarkably different from a similar relationship (8) for 

phase speed. Figure 13c clearly represents a quadratic relationship that graphically can be presented as a parabola 

2Hq  .             (9) 

An estimate for the coefficient in Eq. (11) is q = 0.01682 m s
–1

, with a 95% confidence interval [0.01669, 0.01695]. The 10 

scatter of the values of this coefficient for a given depth increases with the increase in the water depth. This feature 

demonstrates that deep-water stratification may have a considerable impact on the values of the coefficient at the dispersive 

term in deeper areas. 

Differently from the coefficient at the dispersive term, the values of coefficients at the nonlinear terms of Gardner‟s equation 

are mostly governed by properties of stratification and only insignificantly depend on the water depth (Talipova and 15 

Polukhin, 2001). It is therefore not surprising that the maps of these coefficients for waves of the second (Fig. 14a) and first 

(Fig. 14b) modes are qualitatively similar to each other and that the numerical values of these coefficients for the two modes 

are comparable. 

The histogram of the values of the coefficient at the quadratic term in Eq. (1) indicates that, differently from several other 

quantities addressed above, this coefficient has a clearly skewed but unimodal distribution. The values with both signs are 20 

more or less equally represented (Fig. 14с). The range of values is from –0.01 to +0.02 s
–1

. The most frequent values are 

negative, the relevant peak is located at –0.007 s
–1

, and the majority of single values are also negative. This feature 

apparently mirrors the larger extent of deep-water regions compared to relatively shallow ones in the South China Sea. 

However, the area of the shallow-water region of the sea is also significant and almost half of the values of the coefficient at 

the quadratic term are positive. 25 

Interestingly, a smaller peak exists for zero values of this coefficient. Gardner‟s equation transforms into the modified KdV 

equation in locations where the coefficient at the quadratic term vanishes and one has to use this equation in order to 

properly describe weakly nonlinear dynamics of internal waves in such regions. Importantly, the study area contains regions 

characterised by large gradients and changes in the sign of this coefficient. In general, the signs of this coefficient are 

different in deeper-water and shallower regions of the South China Sea. Interestingly, the signs of this coefficient are also 30 

different in the north-western and south-western regions of the continental shelf for both modes. 

The coefficient in question is positive in most of the northern part of the shelf; consequently, the situation is favourable for 

the existence of positive internal solitons of the second mode. This feature explains why convex solitons are predominantly 
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recorded in the north-eastern segments of the continental shelf (Yang et al., 2010). In contrast, this coefficient is generally 

negative for internal waves of the first mode whereas its positive values are found only in a few small areas of the South 

China Sea. Further, this coefficient for waves of the second mode is predominantly positive in the southern relatively 

shallow part of the South China Sea whereas for waves of the first mode the sign of this coefficient is highly variable. 

It is well known that the values of the coefficient of the quadratic term of Eq. (2) for internal waves of the first mode are 5 

practically independent of the water depth (Talipova and Polukhin, 2001). This property is also true for internal waves of the 

second mode in the South China Sea (Fig. 15). The largest absolute values of this coefficient (corresponding to both negative 

and positive values) occur in relatively shallow areas. The range of its values in deeper parts (depths >1000 m) of the study 

area extends from –0.008 s
–1

 to 0.008 s
–1

, with the majority between –0.007 s
–1

 and 0.002 s
–1

.   Several negative outliers  (<–

0.01 s
–1

) become evident at very large depths (4–5 km). 10 

The coefficient at the cubic nonlinear term of Eq. (1) has relatively small (but positive) values for waves of the first mode in 

the entire deep-water region of the South China Sea (Fig. 16b). This coefficient for waves of the second mode has also small 

absolute values in this area. It is positive only on the continental slope and turns negative in the entire eastern part of the sea. 

This coefficient for waves of the second mode has large positive values in selected locations of the Sulu Sea. The north-

eastern shelf of the South China Sea is characterised by intermittent variations in the sign of this coefficient for both modes 15 

of internal waves. This area also shows the largest absolute values of this coefficient (0.001 m
–1

s
–1

) for both modes. 

The histogram of different values of the coefficient at the cubic term of Eq. (2) is moderately skewed. It covers values from  

–0.001 m
–1

s
–1

 to 0.001 m
–1

s
–1

 and has a high and relatively narrow peak at zero values (Fig. 16c). The majority of the values 

of this coefficient are negative, in the range from –0.0005 m
–1

s
–1

 to zero. Positive values are scarce and small. For example, 

only 5 values are counted around 0.00025 m
–1

s
–1

 whereas some 75 negative values of the same magnitude exist at –0.00025 20 

m
–1

s
–1

. Similarly to the coefficient at the quadratic term, the values of the coefficient at the cubic term of Eq. (2) are 

practically independent of the water depth for both modes (Fig. 17). Extensive scatter and the largest absolute values of this 

coefficient are characteristic of shallow areas. For water depths >1 km this coefficient is in the range from 0.00013 m
–1

s
–1

 to 

–0.0003 m
–1

s
–1

. As an exception, a few pixels in the Sulu Sea contain much larger positive (for waves of the second mode) or 

smaller negative (for waves of the first mode) values. 25 

Even though several properties of water masses of the South China Sea exhibit extensive seasonal variations, this feature not 

necessarily becomes evident in terms of kinematic parameters of internal waves of the second mode. The maps of quantities 

that express the normalised stratification conditions zmax/H, z0/H, zmin/H, min and the linear parameters c and  for January 

(not shown) qualitatively almost coincide with similar maps for July. The match is almost perfect in the deeper area of the 

basin. The largest quantitative differences (on the order of 20%) occur in shallow areas of this sea. However, both 30 

coefficients at the nonlinear terms of Gardner‟s equation have substantial seasonal variations. The values of the coefficient  

at the quadratic term change insignificantly from July to January in deeper areas but are instead of very small values in July 

quite large (around and above 0.01 s
–1

) in shallow areas. The values of the coefficient 1 at the cubic nonlinear term vary in a 

complicated manner between January and July. 
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3.3 Applicability of the asymptotic model for long internal waves in the South China Sea 

Gardner‟s equation is, strictly speaking, only an asymptotically valid model for weakly nonlinear long internal waves. Thus, 

its applicability should be discussed for each particular environment and set of parameters of internal waves. The observed 

amplitudes of internal waves of the second mode in the shelf region of the South China Sea were in the range of 10–30 m. 

According to Yang et al. (2009, 2010), amplitudes of internal solitons of the second mode are about 20 m. We use the value 5 

А = 20 m for the evaluation of the applicability of the Gardner model (1) in the western part of the South China Sea located 

on the continental shelf together with the typical dimensional (physical) values of the coefficients of the quadratic and cubic 

nonlinear terms in Eq. (1). 

The above shows that in this region usually  = 0.01 s
–1

 and thus the typical magnitude of the quadratic term is А = 0.2 

m s
–1

. Similarly, the typical value of the coefficient at the cubic nonlinear term is 1 = 0.0005 m
–1

s
–1

 and the magnitude of 10 

this term is 1А
2
 = 0.2 m s

–1
. The case when both nonlinear terms are small is discussed in detail by Pelinovsky et al. (2007), 

Kurkina et al., 2015. The typical magnitude of the phase speed of linear long internal waves of the second mode is с ~ 0.4 

m s
–1

. Therefore, both nonlinear terms of Gardner‟s equation have an equal magnitude that is about half of the long wave 

speed of the internal waves of the second mode. In the light of estimates of Maderich et al (2009, 2010) the presented 

relationships signal that Gardner‟s equation is suitable for the description and analysis of properties, propagation and 15 

dynamics of internal waves with the amplitude of up to 20 m in the South China Sea conditions. Even though such solitary 

waves are strongly nonlinear, possible errors in the estimates of their parameters (first of all wave amplitudes) based on the 

Gardner model do not exceed 20% (Maderich et al, 2009, 2010). This conjecture is consistent with the practice of the use of 

such asymptotic models. This level of deviations of the estimates from the true values is commonly acceptable (Liu et al., 

2004; Talipova et al., 2014, 2015). As errors of this kind rapidly increase with increasing wave amplitude, the use of such 20 

models for smaller-amplitude waves is associated with much lower levels of errors. 

4 Discussion and conclusions 

The derived maps of various parameters of the governing quantities of the underlying model (such as the location of the 

maxima of the modal function) and the parameters of the weakly nonlinear models provide a new insight into qualitative 

features of the propagation and transformations of internal waves of the second mode in the South China Sea. The presented 25 

climatologically valid distributions of the phase speed and coefficients at the nonlinear terms of Gardner‟s equation (1) (or 

other equations of the family of KdV-type equations) may be used for express estimates of various parameters of internal 

waves of this kind. This includes inter alia evaluation of hydrodynamic loads on the seabed (and on offshore engineering 

structures) created by the propagation of such waves, forecasting of areas and depths strongly affected by the internal wave 

activity after intense wave generation events, and identification of regions with a very high probability that such waves will 30 

break. 
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A promising development is the possibility of evaluation of the limiting amplitude of internal solitons that correspond to 

negative values of the coefficient at the cubic nonlinear term (Kurkina et al, 2011, 2017) as well as the amplitude of 

algebraic solitons that correspond to the positive values of this coefficient. 

The main conclusions of the study are: 

 Spatial distributions of all kinematic parameters of internal waves of the second mode in the South China Sea (except 5 

for the coefficient at the cubic nonlinear term of Gardner‟s equation) are qualitatively similar to analogous distributions 

for internal waves of the first mode. 

 The dispersive term of Gardner‟s equation for internal waves of the second mode is about 3–4 times smaller than this 

term for waves of the first mode. 

 The phase speed for internal waves of the second mode is about half of that for waves of the first mode. 10 

 The coefficients at the quadratic and cubic terms of Gardner‟s equation for internal waves of the second mode mainly 

depend on the stratification and much less on the total water depth. 

 In contrast to internal waves of the first mode, the quadratic term of Gardner‟s equation is mostly negative for waves of 

the second mode in the South China Sea. 

An important limitation of the current study is that the potential impact of large-scale currents and mesoscale activity is not 15 

taken into account in our analysis. Both these phenomena may substantially modify the local stratification and greatly impact 

the values of coefficients of Gardner‟s equation. To our knowledge, no detailed information is available about the currents in 

this area in the existing databases at a level that would be acceptable to quantify their impact on the local stratification on 

scales of propagation of internal waves. A feasible way forward seems to be an attempt to quantify the level of variations of 

the seasonal values of the coefficients in question using single profiles of temperature and salinity in selected sea areas. 20 

 

Data availability. The derived maps of the parameters as well as underlying data for histograms and scatter plots may be 
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Figure 1: Internal waves representing the first, second and third mode (Guo et al., 2006). Numbers at the boxes in the panel 

indicate the number of the relevant mode. 

 

Figure 2: Scheme of internal solitary waves of the second mode with positive (left) and negative (right) polarity. 5 
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Figure 3: An example of the vertical profile of the density (left) and Brunt–Väisälä frequency (right) of a quasi-two-layer marine 

environment. 

 

Figure 4: The vertical structure of the mode function Ф(z) defined in Eq. (2) (left) and its nonlinear correction F(z) defined by Eq. 5 
(5) (right) for internal solitary waves of the second mode for stratification presented in Fig. 3. 
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                                                  a                                                                                   b 

Figure 5: a) Location scheme of the South China Sea (http://www.nationsonline.org/oneworld/map/South-China-Sea-political-

map.htm), b) bathymetry of the South China Sea extracted from the GDEM database (Carnes, 2009). 

 5 

                                                  a                                                                                   b 

Figure 6: a) Map of the vertical location of the normalised depth zmax/H of the maximum of the mode function in July in the South 

China Sea; b) histogram of values of zmax/H in steps of 0.01 (n is the amount of values of zmax/H in the relevant interval). The total 

number of pixels in the map is 3446.  
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                                                  a                                                                                   b 

Figure 7: a) Map of the vertical location of the normalised zero-crossing depth z0/H of the mode function in July in the South 

China Sea; b) histogram of values of z0/H. Notations are the same as for Fig. 6. 

 5 

                                                  a                                                                                   b 

Figure 8: a) Map of the vertical location of the normalised depth zmin/H of the minimum of the mode function in July in the South 

China Sea; b) histogram of values of zmin/H. Notations are the same as for Fig. 6. 
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Figure 9: Scatter-plot of normalised values of zmax/H (red), z0/H (green), and zmin/H (blue) against the total water depth in the South 

China Sea. 

 

                                                  a                                                                                   b 5 

Figure 10: a) Map of normalised values min of the minimum of the mode function in July in the South China Sea; b) histogram of 

values of min. Notations are the same as for Fig. 6. 

c 
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                                                  a                                                                                   b 

Figure 11: Map of phase speeds of long linear internal waves of the second (a) and first (b) mode in July in the South China Sea. 

 

                                                  a                                                                                   b 5 

Figure 12: а) Scatter-plot of phase speeds of linear long internal waves of the second mode for different water depths in July in the 

South China Sea. Red curve: approximation of the relationship between the phase speed and water depth for depths below 500 m 

with a power function (8); green curve: the same approximation for depths >500 m; b) histogram of different values of the phase 

speed of linear long internal waves of the second mode. Other notations are the same as for Fig. 6. 
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                                                  a                                                                                   b 

 

c 

Figure 13: Map of coefficients at the dispersive term of Gardner equation for internal waves of the second mode (a) and first mode 5 
(b) in July in the South China Sea; c) scatter plot of this coefficient for internal waves of the second mode against water depth. 
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                                                  a                                                                                   b 

 

c 

Figure 14: Map of coefficients at the quadratic term of Gardner equation for internal waves of the second mode (a) and first mode 5 
(b) in July in the South China Sea; c) histogram of this coefficient for internal waves of the second mode. Other notations are the 

same as for Fig. 6. 
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                                                  a                                                                                   b 

Figure 15: Scatter diagram of coefficients at the quadratic term of Gardner equation against water depth for internal waves of the 

second mode (a) and the first mode (b).  

 5 

 

 

 

 

 10 
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                                                  a                                                                                   b 

 

c 

Figure 16: Map of coefficients at the cubic term of Gardner equation for internal waves of the second mode (a) and first mode (b) 5 
in July in the South China Sea; c) – histogram of this coefficient for internal waves of the second mode. Other notations are the 

same as for Fig. 6. 
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                                                  a                                                                                   b 

Figure 17: Scatter diagram of coefficients at the cubic term of Gardner equation against water depth for internal waves of the 

second mode (a) and the first mode (b).  


