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Abstract This study is focused on multistable slip of earthquakes based on a 12 

one-degree-of-freedom slider-slider model in the presence of thermal-pressurized 13 

slip-weakening friction and viscosity by using the normalized equation of motion of 14 

the model. The major model parameters are the normalized characteristic 15 

displacement, Uc, of the friction law and the normalized viscosity coeficient, η, 16 

between the slider and background plate. Analytic results at small slip suggest that 17 

there is a solution regime for η and γ (=1/Uc) to make the slider slip steadily. 18 

Numerical simulations exhibit that the time variation in normalized velocity, V/Vmax 19 

(Vmax is the maximum velocity), obviously depends on Uc and η. The effect on the 20 

amplitude is stronger due to η than due to Uc. In the phase portrait of V/Vmax versus 21 

the normalized displacement, U/Umax (Umax is the maximum displacement), there are 22 

two fixed points. The one at large V/Vmax and large U/Umax is not an attractor; while 23 

that at small V/Vmax and small U/Umax can be an attractor for some values of η and Uc. 24 

When Uc<0.55, unstable slip does not exist. When Uc≥0.55, Uc and η divide the 25 

solution domain into three regimes: stable, intermittent, and unstable (or chaotic) 26 

regimes. For a certain Uc, the three regimes are controlled by a lower bound, ηl, and 27 

an upper bound, ηu, of η. The values of η l, ηu, and ηu-ηl all decrease with increasing 28 

Uc, thus suggesting that it is easier to yield unstable slip for larger Uc than for smaller 29 

Uc or for larger η than for smaller η. When Uc<1, the Fourier spectra calculated from 30 

simulation velocity waveforms exhibit several peaks, thus suggesting the existence of 31 

nonlinear behavior of the system. When Uc>1, the related Fourier spectra show only 32 
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one peak, thus suggesting linear behavior of the system. 33 

 34 
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1. Introduction 39 

The earthquake ruptures consist of three steps: nucleation, dynamical 40 

propagation, and arrest. Due to the lack of a comprehensive model, a set of equations 41 

to completely describe fault dynamics has not yet been established, because 42 

earthquake ruptures are very complicated. Nevertheless, some models, for instance 43 

the crack model and dynamical lattice model, have been developed to approach fault 44 

dynamics. Several factors will control earthquake ruptures (see Wang, 2016b; and 45 

cited references herein), including at least brittle-ductile fracture rheology, normal 46 

stress, re-distribution of stresses after fracture, fault geometry, friction, seismic 47 

coupling, pore fluid pressure, elastohydromechanic lubrication, thermal effect, 48 

thermal pressurization, and metamorphic dehydration. A general review can be seen in 49 

Bizzarri (2009). Among the factors, friction and viscosity are two important ones in 50 

controlling faulting.  51 

Burridge and Knopoff (1967) proposed a one-dimensional spring-slider model 52 

(abbreviated as the 1-D BK model henceforth) to approach fault dynamics. Wang 53 

(2000, 2012) extended this model to a two-dimensional version. The two models and 54 

their modified versions have been long and widely applied to simulate the occurrences 55 

of earthquakes (see Wang, 2008, 2012; and cited references therein). In the followings, 56 

the one-, two-, three-, few-, and many-body models are used to represent the one-, 57 

two-, three-, few-, and many-degree-of-freedom spring-slider models, respectively. 58 

The few-body models have been long and widely used to approach faults (Turcotte, 59 

1992) 60 

Since the commonly-used friction laws are nonlinear, the dynamical model itself 61 

could behave nonlinearly. A nonlinear dynamical system can exhibit chaotic 62 

behaviour under some conditions (Thompson and Stewart, 1986; Turcotte, 1992). 63 

This means that the system is highly sensitive to initial conditions (SIC) and thus a 64 

small difference in initial conditions, including those caused by rounding errors in 65 

numerical computation, yields widely diverging outcomes. This indicates that 66 
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long-term prediction is impossible in general, even though the system is deterministic, 67 

meaning that its future behavior is fully determined by their initial conditions, without 68 

random elements. This behavior is known as (deterministic) chaos (Lorenz, 1963). 69 

An interesting question is: Can a simple few-body model with total symmetry 70 

make significant predictions for fault behavior? Gu et al. (1984) first found some 71 

chaotically bounded oscillations based on a one-body model with rate- and state- 72 

dependent friction. Perez Pascual and Lomnitz-Adler (1988) studied the chaotic 73 

motions of coupled relaxation oscillators. Related studies have been made based on 74 

different spring-slider models: (1) a one-body model with rate- and state-dependent 75 

friction (e.g., Gu et al., 1984; Belardinelli and Belardinelli, 1996; Ryabov and Ito, 76 

2001; Erickson et al., 2008, 2011; Kostić et al., 2013); (2) a one-body model with 77 

velocity-weakening friction (e.g., Brun and Gomez, 1994); (3) a one-body model with 78 

slip-weakening friction (e.g., Wang, 2016a,b); (4) a two-slider model with simple 79 

static/dynamic friction (e.g., Nussbaum and Ruina, 1987; Huang and Turcotte, 1990); 80 

(5) a two-body model with velocity-dependent friction (e.g., Huang and Turcotte, 81 

1992; de Sousa Vieira, 1999; Galvanetto, 2002); (6) a two-body model with rate- and 82 

state-dependent friction (e.g., Abe and Kato, 2013); (7) a two-body model with 83 

velocity-weakening friction (Brun and Gomez, 1994); (8) a two-body model with 84 

slip-weakening friction (e.g., Wang, 2017); (9) many-body model with velocity- 85 

weakening friction (e.g., Carlson and Langer, 1989; Wang, 1995, 1996); and (10) 86 

one-body quasi-static model with rate- and state-dependent friction (e.g., Shkoller and 87 

Minster, 1997). Results suggest that predictions for fault behaviour are questionable 88 

due to the possible presence of chaotic slip. 89 

The frictional effect on earthquake ruptures has been widely studied as 90 

mentioned above. However, the studies of viscous effect on earthquake ruptures are 91 

rare. The viscous effect mentioned in Rice et al. (2001) was just an implicit factor 92 

which is included in the evolution effect of friction law. In this work, I will investigate 93 

the effects of thermal pressurized slip-weakening friction and viscosity on earthquake 94 

ruptures and the generation of unstable (or chaotic) slip based on a one-body model. 95 

 96 

2. MODEL 97 

2.1 One-body Model 98 

Fig. 1 shows the one-body model whose equation of motion is: 99 

 100 
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md2u/dt2=-K(u-uo)-F(u,v)-Φ(v),                            (1) 101 

 102 

where m is the mass of the slider, u and v (=du/dt) are, respectively, the displacement 103 

and velocity of the slider, uo is the equilibrium location of the slider, K is the spring 104 

constant, F is the frictional force between the slider and the background and a 105 

function of u or v, and Φ is the viscous force between the slider and the background 106 

and a function of v. The slider is pulled by a driving force FD due to the moving plate 107 

with a constant driving velocity, vp, through a leaf spring of strength, K. Hence, the 108 

driving force is FD=Kvpt and thus uo=vpt. When FD is slightly larger than the static 109 

frictional force, Fo, friction changes from static friction strength to dynamic one and 110 

thus the slider moves.  111 

2.2 Viscosity 112 

Jeffreys (1942) first emphasized the importance of viscosity on faulting. 113 

Frictional melts in faults depend on temperature, pressure, water content, and etc. 114 

(Turcotte and Schubert, 1982) and can yield viscosity on the fault plane (Byerlee, 115 

1968). Rice et al. (2001) discussed that rate- and state-dependent friction in thermally 116 

activated processes allows creep slippage at asperity contacts on the fault plane. 117 

Scholz (1990) suggested that the friction melts would present significant viscous 118 

resistance to shear and thus inhibit continued slip. However, Spray (1993, 1995, 2005) 119 

stressed that the frictional melts possessing low viscosity could generate a sufficient 120 

melt volume to reduce the effective normal stress and thus act as fault lubricants 121 

during co-seismic slip. His results show that viscosity remarkably decreases with 122 

increasing temperature. For example, Wang (2011) assumed that quartz plasticity 123 

could be formed in the fault zone when T>300 oC after faulting and it would lubricate 124 

the fault plane at higher T and yield viscous stresses to resist slip at lower T. From 125 

numerical simulations, Wang (2007, 2016b, 2017) stressed the viscous effect on 126 

faulting. Noted that several researchers (Knopoff et al., 1973; Cohen, 1979; Xu and 127 

Knopoff, 1994; Knopoff and Ni, 2001; Dragoni and Santini, 2015) took viscosity as a 128 

factor in causing seismic radiation to reduce energy during faulting.  129 

The viscosity coefficient, υ, of rocks is mainly controlled by temperature, T. An 130 

increase in T will yield partial melting of rocks and thus the viscosity coefficient, υ, 131 

first is increased, then reaches the largest value at a particular T, and finally decreases 132 

with increasing T The relation between υ and T can be described by the following 133 
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equation (e.g., Turcotte and Schubert, 1982): υ=υoexp[(Eo+pVa/RT)] where υo is the 134 

largest viscosity at low ambient T of an area, Eo is the activation energy per mole, p is 135 

the pressure, Va is the activation volume per mole, and R is the universal gas constant 136 

(Eo/R≈3×104 K). Obviously, υ decreases with increasing T. This is particularly 137 

remarkable in regions of high confining pressure. On the other hand, Diniega et al. 138 

(2013) assume that υ exponentially depends on temperature: υ~eβ(1-T*), where β is a 139 

constant and T*= (T-TC)/(TH-TC) is a dimensionless temperature within a 140 

temperature range of TC to TH. The value of υ increases with T* when T*<1 and 141 

decreases with increasing T* when T*>1. Wang (2011) inferred that in the major slip 142 

zone<0.01 m of the 1999 Ms7.6 Chi-Chi, Taiwan, earthquake, T(t) in the fault zone at 143 

a depth of 1111 m increased from ambient temperature Ta≈45 oC at t=0 s to peak 144 

temperature Tpeak=1135.1 oC at t=~2.5 s. T(t) began to decrease after t=2.5 s and 145 

dropped to 160 oC at t=195 s. This yields a change of viscosity in the fault zone. 146 

The description about the physical models of viscosity can be found in several 147 

articles (Jaeger and Cook, 1977; Cohen, 1979; Hudson, 1980; Wang, 2016b). A brief 148 

description is given below. For many deformed materials, there are elastic and viscous 149 

components. The viscous component can be modeled as a dashpot such that the 150 

stress–strain rate relationship is: σ=υ(dε/dt) where σ and ε are the stress and the strain, 151 

respectively. Two simple models (shown in Fig. 2) commonly used to describe the 152 

viscous materials are the Maxwell model and the Kelvin-Voigt model (or the Voigt 153 

model). The first one can be represented by a purely viscous damper (denoted by "D") 154 

and a purely elastic spring (denoted by "S") connected in series,. Its constitution 155 

equation is: dε/dt=dεD/dt+dεS/dt=σ/υ+E-1dσ/dt where E is the elastic modulus and 156 

σ=Eε. The constitutive relation of the second model is: σ(t)=Eε(t)+υdε(t)/dt.  157 

Under a constant tensile stress, the strain will increase, without a upper limit, 158 

with time for the Maxwell model; while the strain will increases, with a upper limit, 159 

with time for the Kelvin-Voigt model. Wang (2016b) assumed that the latter is more 160 

appropriate than the former to be applied to the seismological problems as suggested 161 

by Hudson (1980). Hence, the Kelvin-Voigt model is taken in this study. To simplify 162 

the problem, only a constant viscosity coefficient is considered in a numerical 163 

simulation as given below. The viscous stress at the slider is represented by -υv.  164 

However, it is not easy to directly implement viscosity in a dynamical system as 165 

used in this study. Wang (2016b) represented the viscosity coefficient in an alternative 166 
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way. Viscosity leads to the damping of oscillations of a body in viscous fluids. The 167 

damping coefficient, η, depends on the viscosity coefficient, υ, and the linear 168 

dimension, R, of the body in a viscous fluid. According to Stokes’ law, the η of a 169 

sphere of radius R in a viscous fluid of υ is η=6πRυ (cf. Kittel et al., 1968). In order 170 

to simplify the problem, the damping coefficient is taken in this study. Hence, the 171 

viscous force is Φ=ηv. Noted that the unit of η is N(m/s)-1. 172 

2.3 Friction caused by thermal pressurization 173 

Numerous factors can affect friction (see Wang, 2009, 2016b; and cited 174 

references herein). When fluids are present and temperature changes in faults, thermal 175 

pressurization will yield resistance on the fault plane and thus play a significant role 176 

on earthquake rupture (Sibson, 1973; Lachenbruch, 1980; Chester and Higgs, 1992; 177 

Fialko, 2004; Fialko and Khzan, 2005; Bizzari and Cocco, 2006a,b; Rice, 2006; Wang, 178 

2000, 2006, 2009, 2011, 2013, 2016b, 017; Bizzarri, 2010; Bizzarri, 2011a,b). 179 

Rice (2006) proposed two end-members models for thermal pressurization: the 180 

adiabatic-undrained-deformation (AUD) model and slip-on-a-plane (SOP) model. He 181 

also obtained the shear stress-slip functions caused by the two models. The first model 182 

corresponds to a homogeneous simple shear strain ε at a constant normal stress σn on 183 

a spatial scale of the sheared layer that is broad enough to effectively preclude heat or 184 

fluid transfer. The second model shows that all sliding is on the plane with τ(0)= 185 

f(σn-po) where po is the pore fluid pressure on the sliding plane (y=0). For this second 186 

model, heat is transferred outwards from the fault plane. Although the stress τsop(u) 187 

also shows slip-weakening (Wang, 2009), the SOP model is not appropriate in this 188 

study because of the request of a constant velocity for this model. 189 

The shear stress-slip functions, τ(u), caused by the AUD model is: 190 

 191 

τaud(u)= f(σn-po)exp(-u/uc).                                    (3) 192 

 193 

The parameters uc is the characteristic displacements associated with the thickness 194 

and some physical properties of fault zone. The stress τaud(u) displays exponentially 195 

with u and thus exhibits slip-weakening friction. Based on the AUD model, Wang 196 

(2009) proposed a simplified slip-weakening friction law (denoted by the TP law 197 

hereafter): F(u)=Foexp(-u/uc), where Fo is the static frictional force, to study seismic 198 

efficiency. Wang (2016b, 2017) applied the law to simulate slip of one-body and 199 
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two-body spring-slider models. Fig. 3 exhibits F(u) versus u for five values of uc, i.e., 200 

0.1, 0.3, 0.5, 0.7, and 0.9 m. The friction force decreases with increasing u and it 201 

decreases faster for smaller uc than for larger uc. Meanwhile, the force drop decreases 202 

with increasing uc. For small u, exp(-u/uc) can be approximated by 1-u/uc (Wang, 203 

2016a,b, 2017). The parameter uc
-1 is almost the decreasing rate, γ, of friction force 204 

with slip at small u. Small (large) uc is related to large (small) γ. 205 

2.4. Predominant Frequency and Period of the System 206 

To conduct marginal analyses of slip of one-body model with friction, Wang 207 

(2016b) used the friction law: F(u)=Fo-γu. His results show that the natural periods 208 

are To=2π/(K/m)1/2 when friction and viscosity are excluded and  209 

 210 

Tn=To/[1-To
2(η2+4mγ)/(4πm)2]1/2.                          (4) 211 

 212 

when friction and viscosity are included. Clearly, Tn is longer than Τo. Eq. (4) shows 213 

that Tn increases with η and γ, thus indicating that friction and viscosity both lengthen 214 

the natural period of the system.  215 

 216 

3. Normalization of Equation of Motion 217 

Substituting the TP law and the linear viscous law into Eq. (1) leads to 218 
 219 

md2u/dt2=-K(u-uo)-Foexp(-u/uc)-ηv.                         (5) 220 

 221 

To simplify numerical computations, Eq. (5) is normalized based on the following 222 

normalization parameters: Do=Fo/K, ωo=(K/m)1/2, τ=ωot, U=u/Do, Uc=uc/Do, and 223 

ΓD=FD/K. This gives du/dt=[Fo/(mK)1/2] dU/dτ,d2u/dt2=(Fo/mK)d2U/dτ2. The driving 224 

velocity becomes Vp=vp/Doωo Hence, the normalized acceleration and velocity are, 225 

respectively, A=d2U/dτ2and V=dU/dτ. The phase ωt is replaced by Ωτ, where 226 

Ω=ω/ωo is the dimensionless angular frequency. Note that η/(mK)1/2 is simply 227 

denoted by η below. Clearly, all normalization parameters are dimensionless. Hence, 228 

Eq. (5) becomes: 229 
 230 

d2U/dτ2=-U-ηdU/dτ-exp(-U/Uc)+ΓD.                   (6) 231 
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 232 

When FD=vpt or ΓD=Vpτ, Eq. (6) is transformed to a set of three first-order 233 

differential equations by defining x=U/Uc, y=V/Vp, and z=-U+Vpτ-ηVpyτ 234 

(yt=dy/dτ): 235 

 236 

xτ=(Vp/Uc)y                                       (7a) 237 

 238 

yτ=(z-e-x)/Vp,                                      (7b) 239 

 240 

zτ=Vp(1-y-ηyτ).                                    (7c) 241 

 242 

As x<<1, e-x≈1-x and thus Eq. (7b) can be approximated by yτ≈(z-1+x)/Vp. The 243 

condition of x<<1 shows U/Uc<<1. Differential of this equation leads to yττ≈ 244 

(zτ+xτ)/Vp, where yττ=d2y/dτ2. Substituting Eqs. (7a) and (7b) into this equation gives  245 

 246 

yττ+ηyτ+(1-1/Uc)y=1.                                (8) 247 

 248 

The homogeneous equation of Eq. (8) is 249 

 250 

yττ+ηyτ+(1-1/Uc)y=0.                                (9) 251 

 252 

Let the general solution be y～eλτ. This leads to [λ2+ηλ+(1-/Uc)]y=0 or 253 

 254 

λ2+ηλ+(1-/Uc)=0.                                   (10) 255 

 256 

The solutions of Eq. (10) are 257 

 258 

λ±=-η/2±[η2-4(1-1/Uc)]1/2/2.                           (11) 259 

 260 

The term -η/2 of Eq. (11) leads to e-λ/2 which yields attenuation of y. Define D(η,1/Uc) 261 

to be η2-4(1-1/Uc). As mentioned above, Uc
-1 is the normalized decreasing rate of 262 

friction, Γ, at U=0. Fig. 4 shows the plot of η versus 1/Uc and thus exhibits the root 263 
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structure of the system. Because η>0 and Uc>0, only the plot in the first quadrant is 264 

present in Fig. 4. The solid line displays the function: D(η,1/Uc)=η2-4(1-1/Uc)=0. 265 

Along the line, we have η2=4(1-1/Uc), and thus λ±=-η/2. In other word, the roots are 266 

equal and real, and thus the solution is a stable inflected node displayed by a solid 267 

circle in Fig. 4. As D(η,1/Uc)>0 or η2>4(1-1/Uc), the roots are both real and negative. 268 

The solution shows no oscillation and thus is a stable node shown by a solid square in 269 

Fig. 4. As D(η,1/Uc)<0 or η2<4(1-1/Uc), the roots are complex with negative real part. 270 

This results in oscillations of exponentially decaying amplitude. The solution is a 271 

stable spiral or a stable focus shown by an open circle in Fig. 4. 272 

 273 

4. Numerical Simulations 274 

Let y1=U and thus y2=dU/dτ. Eq. (6) can be re-written as two first-order 275 

differential equations:  276 
 277 

dy1/dτ=y2                                          (12a) 278 

 279 

dy2/dτ=-y1-ηy2-exp(-y1/Uc)+ΓD.                        (12b) 280 

 281 

Eq. (12) will be numerically solved using the fourth-order Runge-Kutta method (Press 282 

et al., 1986). To simplify the following computations, the value of ΓD is set to be a 283 

small constant of 10-5, which can continuously enforce the slider to move. 284 

A phase portrait, denoted by y=f(x), is a plot of a physical quantity versus 285 

another of an object in a dynamical system (Thompson and Stewart, 1986). The 286 

intersection point of the bisection line, i.e., y=x, and f(x) is called the fixed point, that 287 

is, f(x)=x. If the function f(x) is continuously differentiable in an open domain near a 288 

fixed point xf and |f’(xf)|<1, attraction is generated. In other words, an attractive fixed 289 

point is a fixed point xf of a function f(x) such that for any value of x in the domain 290 

that is close enough to xf, the iterated function sequences, i.e., x, f(x), f2(x), f3(x),…, 291 

converges to xf. An attractive fixed point is a special case of a wider mathematical 292 

concept of attractors. Chaos can be generated at some attractors. The details can be 293 

seen in Thompson and Stewart (1986) or other nonlinear literature. In the following 294 

plots, the intersection points of the bisection line (denoted by a thin solid line) with 295 

the phase portrait of V/Vmax versus U/Umax are the fixed points. To explore nonlinear 296 
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behavior of a system, the Fourier spectrum F[V(Ωk)], where Ωk=k/δτ is the 297 

dimensionless angular frequency at k=0, ..., N-1, is calculated for the simulation 298 

velocity waveform through the fast Fourier transform (Press et al., 1986). The 299 

bifurcation from a predominant period to others will be seen in the Fourier spectra. 300 

Numerical simulations for the time variation in V/Vmax, the phase portrait of 301 

V/Vmax versus U/Umax, and Fourier spectrum based on different values of model 302 

parameters are displayed in Figs. 5–12. In the figures, Vmax and Umax are, respectively, 303 

the maximum velocity and displacement for case (a) of each figure, because the 304 

maximum values of U and V decrease from case (a) to case (d) in this study.  305 

First, the cases excluding viscosity, i.e., η=0, are explored. Fig. 5 is numerically 306 

made for four values of Uc: (a) for Uc=0.1; (b) for Uc=0.4; (c) for Uc=0.7; and (d) for 307 

Uc=0.9 when η=0. Fig. 6 is numerically made for four values of Uc: (a) for Uc=1.00; 308 

(b) for Uc=1.01; (c) for Uc=1.15; and (d) for Uc=2.00 when η=0. A comparison 309 

between Fig. 5 and Fig. 6 suggests that Uc=1 is a transition value of the friction law 310 

between two modes of slip as displayed in Fig. 4. Only Uc<1 is considered below. 311 

Secondly, the cases including both friction and viscosity are studied. Fig. 7 is 312 

numerically made for four values of η: (a) for η=0.20; (b) for η=0.50; (c) for η=0.87; 313 

and (d) for η=0.90 when Uc=0.20. Obviously, the time variation in V/Vmax exhibits 314 

cyclic oscillations with a particular period when η<ηl=0.86 and has intermittent slip 315 

with shorter periods when η>ηl. Such a phenomenon holds also for η<5.5. 316 

Fig. 8 is numerically made for four values of η: (a) for η=0.46; (b) for η=0.47; (c) 317 

for η=0.98; and (d) for η=0.99 when Uc=0.55. The Fourier spectrum is not calculated 318 

for case (d), because the velocity becomes an abnormally large negative value at a 319 

certain time and the phase portrait also displays unstable or chaotic slip at small V and 320 

U. This exhibits unstable slip of the system. In other words, the problem becomes 321 

ill-posed in this parameter regime. The time variation in V/Vmax exhibits cyclic 322 

oscillations specified with three main frequencies when η<ηl=0.47. There is 323 

intermittency slip with shorter periods when ηl<η<ηu=0.98. There are unstable slip 324 

when η>ηu. This phenomenon holds also when 0.55<Uc<1.  325 

Four examples for η varying from η<ηu to η>ηu for different values of Uc are 326 

displayed in Figs. 9–12. Fig. 9 is made for four values of η: (a) for η=0.39; (b) for 327 

η=0.83; (c) for η=0.84; and (d) for η=0.85 when Uc=0.6. Fig. 10 is made for four 328 
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values of η: (a) for η=0.34; (b) for η=0.71; (c) for η=0.72; and (d) for η=0.73 when 329 

Uc=0.7. Fig. 11 is made for four values of η: (a) for η=0.25; (b) for η=0.53; (c) for 330 

η=0.54; and (d) for η=0.55 when Uc=0.8. Fig. 12 is made for four values of η: (a) for 331 

η=0.14; (b) for η=0.35; (c) for η=0.36; and (d) for η=0.37 when Uc=0.9. The Fourier 332 

spectrum is not calculated for case (d) in each example, because the velocity becomes 333 

negative infinity at a certain time. 334 

Fig. 13 exhibits the data points of ηl (with a solid square) and that of ηu (with a 335 

solid circle) for several values Uc. The values of ηl and ηu for several values of Uc 336 

are given in Table 1. The figure exhibits a stable regime when η≤η l, an intermittency 337 

or transition regime when ηl<η≤ηu, and unstable regime when η>ηu. 338 

 339 

5. Discussion 340 

As mentioned above, the natural period of the one-body system at low 341 

displacements is To=2π/ωo=2π(m/K)1/2 in the absence of friction and viscosity and 342 

Τn=2π/ωn=To/[1-To
2(η2+4mγ)/(4πm)2]1/2 in the presence of friction and viscosity. 343 

Due to γ=1/uc at u=0, Tn increases with decreasing uc. Obviously, Tn is longer than 344 

Τo and increases with η and γ, thus indicating that friction and viscosity both lengthen 345 

the natural period of the system. 346 

Based on the marginal analysis of the normalized equation of motion, i.e., Eq. 347 

(11), the plot of η versus 1/Uc is displayed in Fig. 4 which exhibits the phase portrait 348 

and root structure of the system. Since η and Uc are both positive, only the plot of η 349 

versu 1/Uc in the first quadrant is displayed. In Fig. 4, the solid line displays the 350 

function: D(η,1/Uc)=η2-4(1-1/Uc)=0. Along the line, the solution λ±=-η/2 and thus 351 

exp(λt)=exp(-η/2). In other words, the roots are equal and real, and, thus, the phase 352 

portrait is a stable inflected node displayed by a solid circle in Fig. 4. Because of η≥0, 353 

we have 1/Uc≤1. As D(η,1/Uc)>0 or η2>4(1-1/Uc), the roots are both real and 354 

negative. The solution shows no oscillation and thus phase portrait is a stable node 355 

shown by a solid square in Fig. 4. Because of η≥0, we have 1/Uc≤1. As D(η,1/Uc)<0 356 

or η2<4(1-1/Uc), the roots are complex with a negative real part. This results in 357 

oscillations with exponentially decaying amplitude. The phase portrait is a stable 358 

spiral or a stable focus shown by an open circle in Fig. 4. 359 

Fig. 5 exhibits the time variation in V/Vmax, the phase portrait of V/Vmax versus 360 
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U/Umax, and Fourier spectrum for four values of Uc: (a) for Uc=0.1; (b) for Uc=0.4; (c) 361 

for Uc=0.7; and (d) for Uc=0.9 when η=0. In the first panels, the time variation in 362 

V/Vmax exhibits cyclic behavior and the amplitude of V/Vmax decreases and the 363 

predominant period of signal increases with increasing Uc. This is consistent with Eq. 364 

(5) in which Tn increases with Uc. Although the four phase portraits are almost similar, 365 

their size decreases with increasing Uc. The second panels exhibit two fixed points: 366 

one at V=0 and U=0 and the second one at larger V and larger V. The slope values at 367 

the first fixed points decrease with increasing Uc, thus suggesting that the fixed point 368 

is not an attractor for small Uc and can be an attractor for larger Uc. The slope values 369 

at the fixed points for smaller Uc are greater than 1 and thus they cannot be an 370 

attractor. The third panel for each case displays the Fourier spectrum. Fourier spectra 371 

show that, in addition to the peak related to the predominant frequency, there are 372 

numerous peaks associated with higher frequencies. This shows nonlinear behavior 373 

caused by nonlinear friction. The frequency related to the first peak decreases with 374 

increasing Uc. The amplitude of a peak decreases with increasing Uc. The amplitude 375 

of a peak decreases with increasing Ω for small Uc; while it first increases up to the 376 

maximum and then decreases with increasing Ω for large Uc. The amplitude of a peak 377 

becomes very small when Ω>0.25. 378 

Fig. 6 exhibits the time variation in V/Vmax, the phase portrait of V/Vmax versus 379 

U/Umax, and Fourier spectrum for four values of Uc: (a) for Uc=1.00; (b) for Uc=1.01; 380 

(c) for Uc=1.15; and (d) for Uc=2.0 when η=0. In the first panels, the time variation in 381 

V/Vmax exhibits cyclic behavior and the amplitude of V/Vmax remarkably decreases 382 

with increasing Uc when Uc>1. In the second panels, the size of phase portrait 383 

decreases with increasing Uc and there are two fixed points: the first one at V=0 and 384 

U=0 and the second one at larger V and larger V. With comparison to the phase 385 

portrait of Uc=1.0, the phase portrait becomes very small when Uc≥1.15. In contrast 386 

to Fig. 5, the absolute values of slope at the fixed points in Fig. 6 increase with Uc. 387 

Hence, the fixed points cannot be an attractor for Uc≥1. In the third panels, Fourier 388 

spectra exhibit that except for Uc=1, there is only one peak and the predominant 389 

frequency increases or the predominant period decreases with increasing Uc. This is 390 

consistent with Eq. (5). Results show that nonlinear behavior disappears when Uc>1. 391 

In addition, the amplitude of a peak decreases with increasing Uc when Uc>1. 392 

Obviously, Uc=1 is the critical value of the friction law as displayed in Fig. 4. 393 



 13 

Fig. 7 exhibits the time variation in V/Vmax, the phase portrait of V/Vmax versus 394 

U/Umax, and Fourier spectrum for four values of η: (a) for η=0.20; (b) for η=0.50; (c) 395 

for η=0.87; and (d) for η=0.90 when Uc=0.20. In the first panels, the time variation in 396 

V/Vmax exhibits cyclic behavior and the amplitude of V/Vmax decreases with 397 

increasing η. The predominant period of signal only slightly increases with increasing 398 

η, because η changes in a small range. In the second panels, the size of phase portrait 399 

decreases with increasing Uc and there are two fixed points: the first one at V=0 and 400 

U=0 and the second one at larger V and larger V. Since the slope values of fixed 401 

points are clearly all higher than 1, they are not an attractor. In the third panels, the 402 

Fourier spectra exhibit that in addition to the peak related to the predominant 403 

frequency, there are numerous peaks associated with higher Ω. This shows nonlinear 404 

behavior, mainly caused by nonlinear friction, of the model. The highest peak for case 405 

(a) appears at the second frequency. When η<0.9, the amplitude of a peak decreases 406 

with increasing η. The frequencies related to the peaks do not change remarkably, 407 

because η varies in a small range. Except for case (a), the amplitude of a peak 408 

decreases with increasing Ω. The third peak amplitude disappears when η>0.5. The 409 

amplitude of a peak becomes very small when Ω>0.25. Except for Uc=0.1, the 410 

frequencies related to the peaks in Fig. 7 are different from and slightly smaller than 411 

those in Fig. 5. Note that when Uc<0.55 the simulation results in Fig. 5 are similar to 412 

those in Fig. 6. 413 

Fig. 8 shows the time variation in V/Vmax, the phase portrait of V/Vmax versus 414 

U/Umax, and Fourier spectrum for four values of η: (a) for η=0.46; (b) for η=0.47; (c) 415 

for η=0.98; and (d) for η=0.99 when Uc=0.55. When η≤0.47, the time variation in 416 

V/Vmax exhibits cyclic oscillations specified with different main angular frequencies. 417 

When η>0.47 (for example η=0.98 in the figure), in addition to cyclic behavior there 418 

is small intermittent slip with shorter periods. This phenomenon also exists when 419 

ηl<η<ηu=0.98. There are unstable (or chaotic) slip when η>ηu. Hence, the phase 420 

portraits in the second panels display unstable slip at small V and U when 421 

ηl<η≤ηu=0.98. When η=0.99, the velocity becomes an abnormally large negative 422 

value at a certain time and the phase portrait also displays unstable or chaotic slip at 423 

small V and U. This exhibits unstable slip of the system. In other words, the problem 424 

becomes ill-posed in this parameter regime. Since the slope values of fixed points at 425 

large V and U are clearly higher than 1, they are not an attractor. Due to the 426 
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appearance of infinity velocity when η=0.99, the Fourier spectrum is not calculated 427 

for η=0.99. The Fourier spectra exhibit that when η<0.47, in addition to the peak 428 

related to the predominant frequency, there are numerous peaks associated with higher 429 

Ω. This shows nonlinear behavior of the model caused by nonlinear friction. The 430 

amplitude of a peak decreases with increasing Uc and the peak amplitude decreases 431 

with increasing Ω. When η=0.98, the amplitude of the highest peak is much larger 432 

than others. For the first three cases, the amplitude of a peak becomes very small 433 

when Ω>0.25. The frequencies related to the peaks in Fig. 8 are different from and 434 

slightly smaller than those in Fig. 7. 435 

Figs. 9–12 show a variation from stable slip to intermittent slip and then to 436 

unstable or chaotic slip when η increases from a smaller value to a larger one for 437 

Uc=0.6, 0.7, 0.8, and 0.9. The values of ηu for Uc=0.20–0.95 with a unit difference of 438 

0.05 are given in Table 1. Like Fig. 8, when η≤ηl, the time variation in V/Vmax 439 

exhibits only cyclic oscillations specified with different frequencies. When ηl<η≤ηu, 440 

there are small intermittent displacements appear in the cyclic oscillations. Hence, the 441 

phase portraits display that unstable slip at small V and U when η l<η≤ηu. When 442 

η>ηu, the velocity becomes an abnormally large negative value at a certain time and 443 

the phase portrait also displays unstable or chaotic slip at small V and U. This exhibits 444 

unstable slip of the system. In other words, the problem becomes ill-posed in this 445 

parameter regime. Due to the appearance of abnormally large negative velocity, the 446 

Fourier spectrum is not calculated for η>ηu. When η<η l, in addition to the peak 447 

related to the predominant frequency, there are numerous peaks related to higher Ω. 448 

This shows nonlinear behavior, mainly caused by nonlinear friction, of the model. The 449 

amplitude of a peak decreases with increasing Uc and the amplitude of a peak 450 

decreases with increasing Ω. For the first three cases, the amplitude of a peak 451 

becomes very small when Ω>0.25. Figs. 7–12 show that the frequencies related to the 452 

peaks slightly decrease with increasing Uc and the decreasing rate decreases with 453 

increasing Uc. In other word, the frequencies related to the peaks for large Uc are 454 

almost similar. The number of higher peaks and the amplitudes of peaks at higher Ω 455 

both decrease with increasing η. This indicates that viscosity makes a stronger effect 456 

on higher- frequency waves than on lower ones, and the effect increases with η. 457 

Fig. 13 exhibits the data points of ηl (with a solid square) and that of ηu (with a 458 
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solid circle) for several values Uc. The values of ηl and ηu for several values of Uc 459 

are given in Table 1. The figure exhibits a stable regime when η≤η l, an intermittency 460 

(or transition) regime when ηl<η≤ηu, and unstable (or chaotic) regime when η>ηu. 461 

When Uc<0.55, there is no ηl, in other word, unstable slip does not exist. Clearly, ηl, 462 

ηu, and their difference ηu-ηl all decrease with increasing Uc. This means that it is 463 

easier to yield unstable slip for larger Uc than for smaller Uc. Since smaller Uc is 464 

associated to larger γ of decreasing rate of friction force with slip, it is easier to yield 465 

unstable slip from smaller γ than from larger γ.  466 

Huang and Turcotte (1990, 1992) observed intermittent phases in the 467 

displacements based on a two-body model. In other word, some major events are 468 

proceeded by numerous small events. Those small events could be foreshocks. They 469 

also claimed that earthquakes are an example of deterministic chaos. Ryabov and Ito 470 

(2001) also found intermittent phase transitions in a two-dimensional one-body model 471 

with velocity-weakening friction. Their simulations exhibit that intermittent phases 472 

appear before large ruptures. From numerical simulations of earthquake ruptures 473 

using a one-body model with a rate- and state-friction law, Erickson et al. (2008) 474 

found that the system undergoes a Hopf bifurcation to a periodic orbit. This periodic 475 

orbit then undergoes a period doubling cascade into a strange attractor, recognized as 476 

broadband noise in the power spectrum. From numerical simulations of earthquake 477 

ruptures using a two-body model with a rate- and state-friction law, Abe and Kato 478 

(2013) observed various slip patterns, including the periodic recurrence of seismic and 479 

aseismic slip events, and several types of chaotic behavior. The system exhibits 480 

typical period-doubling sequences for some parameter ranges, and attains chaotic 481 

motion. Their results also suggest that the simulated slip behavior is deterministic 482 

chaos and time variations of cumulative slip in chaotic slip patterns can be well 483 

approximated by a time-predictable model. In some cases, both seismic and aseismic 484 

slip events occur at a slider, and aseismic slip events complicate the earthquake 485 

recurrence patterns. The present results seem to be comparable with those made by 486 

the previous authors, even though viscosity was not included in their studies. This 487 

suggests that nonlinear friction and viscosity play the first and second roles, 488 

respectively, on the intermittent phases. The intermittent phases could be considered 489 

as foreshocks of the mainshock which is associated with the main rupture. Simulation 490 

results exhibit that foreshocks happen for some mainshocks and not for others. 491 
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 492 

6. Conclusions 493 

In this work, the multistable slip of earthquakes caused by slip-weakening 494 

friction and viscosity has been studied based on the normalized equation of motion of 495 

a one-degree- of-freedom spring-slider model in the presence of the two factors. The 496 

friction is caused by thermal pressurization and decays exponentially with 497 

displacement. The major model parameters are the normalized characteristic distance, 498 

Uc, for friction and the normalized viscosity coefficient, η, between the slider and the 499 

background moving plate, which exerts a driving force on the former. Analytic results 500 

at small U suggest that there is a solution regime for η and γ (=1/Uc) to make the 501 

slider slip steadily. Numerical simulations lead to the time variation in V/Vmax, the 502 

phase portrait of V/Vmax versus U/Umax, and Fourier spectrum. Results show that the 503 

time variation in V/Vmax, obviously depends on Uc and η. The effect on the amplitude 504 

is stronger from η than from Uc. When Uc>1, the time variation of V/Vmax exhibits 505 

cyclic oscillations with a single period and the amplitude of V/Vmax remarkably 506 

decreases with increasing Uc. When Uc<1, slip changes from stable motion to 507 

intermittency and then to unstable motion when η increases. For a certain Uc, the 508 

three regimes are controlled by a lower bound, ηl, and an upper bound, ηu, of η. 509 

When Uc<0.55, ηu is absent and thus unstable or chaotic slip does not exist. When 510 

Uc≥0.55, the plots of ηl and ηu versus Uc exhibit a stable regime when η≤ηl, an 511 

intermittency (or transition) regime when ηl<η≤ηu, and unstable (or chaotic) regime 512 

when η>ηu. The values of ηl, ηu, and ηu-ηl all decrease with increasing Uc, thus 513 

suggesting that it is easier to yield unstable slip for larger Uc than for smaller Uc or 514 

larger η than for smaller η. The phase portraits of V/Vmax versus U/Umax exhibit that 515 

there are two fixed points: The first one at large V/Vmax and large U/Umax is not an 516 

attractor for all cases in study; while the second one at small V/Vmax and small 517 

U/Umax can be an attractor for some values of Uc and η. When Uc<1, the Fourier 518 

spectra calculated from simulation velocity waveforms exhibit several peaks rather 519 

than one, thus suggesting the existence of nonlinear behavior of the system. When 520 

Uc>1, the related Fourier spectra show only one peak, thus suggesting linear behavior 521 

of the system. 522 
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 688 
 689 
 690 
Table 1. Values of η l, ηu, and Vmax for various Uc.  691 

Uc ηl ηu Vmax 
0.20 0.87 1.00 0.4068 
0.25 0.86 1.00 0.3611 
0.30 0.86 1.00 0.3149 
0.35 0.77 1.00 0.2905 
0.40 0.69 1.00 0.2649 
0.45 0.57 1.00 0.2497 
0.50 0.51 1.00 0.2216 
0.55 0.43 0.98 0.1989 
0.60 0.39 0.84 0.1684 
0.65 0.38 0.78 0.1338 
0.70 0.34 0.72 0.1071 
0.75 0.26 0.69 0.0879 
0.80 0.25 0.55 0.0604 
0.85 0.18 0.48 0.0423 
0.90 0.14 0.37 0.0234 
0.95 0.12 0.25 0.0076 
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 698 
Figure 1. One-body spring-slider model. In the figure, u, K, η, FD, N, and F denote, 699 

respectively, the displacement, the spring constant, the viscosity coefficient, the 700 
driving force, the normal force, and the frictional force. 701 
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 704 

 705 

 706 

 707 
Figure 2. The two types of viscous materials: (a) for the Kelvin–Voigt model and (b) 708 

for the Maxwell model. (κ=spring constant and υ=coefficient of viscosity) 709 
 710 
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 714 
 715 

          716 

 717 
Figure 3. The variations in friction force with displacement for F(u)=exp(-u/uc) when 718 

uc=0.1, 0.3, 0.5, 0.7, and 0.9 m (after Wang, 2016b). 719 
 720 
  721 
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 724 

 725 
Figure 4. The plot of η versus 1/Uc exhibits the phase portrait and root structure of the 726 

system. The solid line displays the function: D(η,1/Uc)=η2-4(1-1/Uc)=0. The 727 
solid circle, open circle, and solid square represent, respectively, a stable 728 
inflected node with D=0, a stable spiral with D<0, and a stable node with D>0. 729 
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 734 

 735 
Figure 5. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 736 

and power spectrum for four values of Uc: (a) for Uc=0.1; (b) for Uc=0.4; (c) for 737 
Uc=0.7; and (d) for U =0.9 for the TP law of F(U)=exp(-U/Uc) when η=0. 738 
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 744 
Figure 6. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 745 

and power spectrum for four values of Uc: (a) for Uc=1.00; (b) for Uc=1.01; (c) 746 
for Uc=1.15; and (d) for U =2.00 for the TP law of F(U)=exp(-U/Uc) when η=0. 747 
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 752 

 753 
Figure 7. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 754 

and power spectrum for four values of η: (a) for η=0.20; (b) for η=0.50; (c) for 755 
η=0.87; and (d) for η=0.90 when Uc=0.20 for the TP law of F(U)=exp(-U/Uc). 756 
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 761 

 762 
Figure 8. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 763 

and power spectrum for four values of η: (a) for η=0.43; (b) for η=0.47; (c) for 764 
η=0.98; and (d) for η=0.99 when Uc=055 for the TP law of F(U)=exp(-U/Uc). 765 
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 770 
Figure 9. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 771 

and power spectrum for four values of η: (a) for η=0.39; (b) for η=0.83; (c) for 772 
η=0.84; and (d) for η=0.85 when Uc=0.6 for the TP law of F(U)=exp(-U/Uc). 773 
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 779 

 780 
Figure 10. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 781 

and power spectrum for four values of η: (a) for η=0.34; (b) for η=0.71; (c) for 782 
η=0.72; and (d) for η=0.73 when Uc=0.7 for the TP law of F(U)=exp(-U/Uc).  783 
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 788 
Figure 11. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 789 

and power spectrum for four values of η: (a) for η=0.25; (b) for η=0.54; (c) for 790 
η=0.55; and (d) for η=0.56 when Uc=0.8 for the TP law of F(U)=exp(-U/Uc). 791 
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 797 
Figure 12. The time variation in V/Vmax, the phase portrait of V/Vmax versus U/Umax, 798 

and power spectrum for four values of η: (a) for η=0.14; (b) for η=0.36; (c) for 799 
η=0.37; and (d) for η=0.38 when Uc=0.9 for the TP law of F(U)=exp(-U/Uc). 800 
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 806 
Figure 13. The plot of ηl (with a solid square) and ηu (with a solid circle) versus Uc. 807 


