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Abstract. Existence of a self-affine long range persistence in the seismic noise time series evidences that the current state of 

system is not in the pure diffused regime and transition from coherent to incoherent motion is still on progress. Rate of this 15 

evolving transition can be indirectly linked to the degree of heterogeneity of medium, thus in this paper we tried to gain an 

insight into the heterogeneity of the medium by analyzing the width, extreme and asymmetrical trend of multifractal 

spectrum of seismic records. Nonetheless, toward high frequency ranges a seismic signal itself loses its stationarity short 

while after its recording onset time. Experimentally, the long-range correlation of a stationary time series (with 0 < ℎ(2) <

1) can be discerned from a non-stationary process (with ℎ(2) > 1) by examining the values of scaling exponent ℎ(2), 20 

however, changing in the fractal properties in the crossover time scales in time series don’t permit us to ascribe a single 

amount for ℎ(2) and without executing additional analysis on the stationarity length of signals, direct calculation of such 

long range correlation and fractal dimensions might be biased. Hence, in this paper we examined the inherent stationarity of 

a signal relative to the different observation scales in the stochastic contexts before feeding the signal into the cycle of DFA. 

This method is based on the comparison between global and local features of the original signal and its synthesized time-25 

frequency surrogates; therefor it can effectively improve the accuracy of results. Our approach proves the existence of a 

high-velocity anomalous feature in the right flank of Sahand inactive volcano where it is surrounded by heterogeneous low-

velocity structures and extended to the shallower than ~3 km depth beneath this region at the northwestern of Iran. 
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1 Introduction 30 

Typically, each seismic wavefield is composed of two different coherent and incoherent parts, which may also be termed as 

the ballistic and the scattered waves, respectively. Ballistic waves carry mostly information about the signature of its 
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generating source and an ample image of the subsurface, nonetheless, trapped incoherent waves, arisen from randomly 

distributed scatterers or from a finite medium with an irregular bounding surface, due to the repeatedly sampling of medium, 

can be used in both imaging and monitoring purposes (Snieder, 2006). For propagation distances typically less than the mean 

free path, defined as the distance between two successive scattering anomalies, the coherent part is dominance over the 

incoherent part, while for times more than the mean free time, waves bounce on several heterogeneities and enter into the 5 

multiple scattering regime (Hillers et al., 2012, 2013; Galluzzo et al., 2015). Thereafter scattering sequences gradually 

distort the phase and amplitude of the incident plane wave front and also gain stability by temporal stabilization of the S-to-P 

deformation energy ratio, known as equipartitioning (Hillers et al., 2012). For a weaker heterogeneous medium, the 

propagating wavefield will have the longer scattering mean free path or equally longer mean-free time, so a subtle difference 

in the mean-free time of wavefields indirectly provides the detailed knowledge about the heterogeneity level of the medium 10 

that they passed through. Since the emergence of seismic interferometry, about two decades ago, reconstructing Green’s 

response of earth by the aids of equipartitioned source of energy has increasingly received much attentions with the 

seismological communities (Campillo and Paul, 2003; Shapiro and Campillo 2004). To come up with another fresh solution 

for learning the geological features of subsurface of earth, Caserta et al., (2007) looked at this issue with different prospects. 

They utilized the concept of fractality to monitor the evolutionary motion of soil’s particles against incoherent scattered 15 

excitations and compared it with a random walk Brownian motion. Leverage on such process they found that the average 

squared displacement of soil motion has an anomalous scaling-invariance feature i.e. a long range persistence fractional 

Brownian motion (Sornette, 2006). Padhy (2016) demonstrated that the coherent phase of seismic signals possesses the 

multifractal nature and the degree of multiractality toward higher frequencies and scattered phases decreases. This 

multiractality also evidences by Matcharashvili et al., (2012) who explored the behavior of ambient noise in a calm day and 20 

the day perturbed by occurrence of earthquakes. They concluded that processes related to the preparation of local 

earthquakes generates coherent foreshocks therefore, they have a great influence on the multiractality of noise wavefield. 

Telesca et al., (2015) studied the multifractal spectra of the seismic ambient noise during eruption of volcano and they found 

out this multifractality almost identical and much wider than that of the signal frame measured before the onset of the 

eruption. The capability of the Fractal Fluctuation Analysis (FFA) for discerning the incoherent wavefield from coherent part 25 

opened up a new road for Pilz and Parolai (2014) to investigate the fractality essence of particle motion in the near surface 

soil materials against random stationary excitation and they analyzed the spatial variation of mean free time of medium by 

determining the crossover between anomalous ballistic motion and normal diffusion.  

In all of these studies, the background seismic noise itself is generally assumed to be a locally reproducible quasi-periodic 

and temporarily-stationary process with certain second-order statistical properties e.g., mean value, variance and 30 

autocorrelation functions, at all moments and over different realizations (Bormann and Wielandt, 2002) and other source of 

non-stationarity are mostly viewed as superimposed transient effects e.g. earthquakes. Multifractal Detrended Fluctuation 

Analysis (MF-DFA) is recently suggested to alleviate the effects of these non-stationarities, however, this method can just 

get a better handle on the detrimental effects of simple types of intermittent non-stationarities, associating with exterior long 
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period trends, e.g. polynomial, sinusoidal, and power-law functions (Kantelhardt et al., 2002; Kantelhardt, 2012). 

Nonetheless, recent findings indicate that sometimes seismic wavefield itself loses its stationarity within short time intervals. 

This interval, in the long period bandwidth (0.1-1 Hz) and high frequency range (1-4 Hz), might be in the order of 1–1.5 h 

and 3–24 s long, respectively (Gorbatikov and Stepanova, 2008; Wang et al., 2014; Zhong et al., 2015a, b). This 

characteristic is substantially important. When the time series is stationary its behavior can be considered as a fractal 5 

Gaussian noise (fGn), while for a no-stationary signal the concept of fractal Brownian motion (fBn) should be used (Qian, 

2003; Ge and Leung, 2013). So for the reliable detection of correlations, existing non-stationary of seismic signals can cause 

a misleading interpretation about its fractaltiy, therefore, the effect of non-stationarity and fractality of time series should be 

carefully analyzed (Chen et al., 2002; Eke, et al., 2002; Movahed et al., 2006). In this paper, we have geared toward to 

quantify statistical significance of stationarity by comparing its local and global features, e.g. time-varying spectrum 10 

(Borgnant et al., 2010). By means of this approach, we can quantitatively decide about the stationary interval of signals 

before feeding them into the cycle of MF-DFA process.  

The structure of this paper is organized as follows. At first we will describe the underlying rationale behind the measuring 

the degree of mutifractality of a time series by MF-DFA. Then, we will delineate how the stationarity of signal can be 

assessed with time-frequency surrogates (Xiao et al., 2007; Borgnat et al., 2010). Finally, we will show how these 15 

observations provide compelling evidence for a direct causal link between diffusivity of wavefield and the degree of 

heterogeneity of medium. Thereby, the obtained results allow developing a deeper understanding of the mechanisms of noise 

wavefield in our studying region. 

2 Datasets and Region of Study 

The study area, shown in Fig. (1), is located on the Turkish–Iranian plateau where 15-20 mm/year ongoing NNW oblique 20 

motion of the Arabian plate relative to Eurasian plate is accommodated through slip partitioning on the WNW-ESE striking 

right lateral strike slip faults (e.g., the North Tabriz Fault, NTF) and also by the thrust faults (Jackson, 1992; McClusky et al., 

2000; 2003; McQuarrie et al., 2003; Vernant 2004; Copley and Jackson, 2006; Reilinger et al., 2006; Djamour et al., 2011). 

Fig. (1) shows the simplified geological map of northwestern of Iran, modified from Solaymani et al., (2011). Existence of 

Marine limestones and marls of the Lower Miocene Tethyan Qom Formation in the northwestern and east of Tabriz city and 25 

on the islands of Lake Urmia indicates that the present day Tabriz Basin was part of the Tethys up to the Early Miocene 

(Rieben, 1935; Stöcklin, 1977; Davoudzadeh et al., 1997), however, subsequent regression of the Qom Sea was followed by 

a period of continental sedimentation in northwestern and central Iran and Azerbaijan happened, by then the North Tabriz 

Fault (NTF) led to the formation of the Tabriz Basin at the Late Miocene (Kelts and Shahrabi, 1986). Azad et al., (2015) 

determined the amount of maximum Pliocene-Quaternary cumulative dextral offset range from ~300 m and ~800 m for the 30 

east and west central sectors of Tabriz fault, respectively. They concluded that the horizontal component of displacements 

along the NW and SE segments of the NTF are absorbed within the Mishu and Bozghush ranges as two terminations of fault 

(Fig. (1)). We tend to understand the difference of shallow structure in the vicinity of NTF by comparing multifractal 
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characteristics of recorded seismic data. Noise records have been recorded by 1 broad-band (TABZ) and 8 short period 

stations of Iranian Seismic Telemetry Network (ISTN) data, operated by the Iranian Seismological Center (IRSC, 

irsc.ut.ac.ir). We removed the mean and the trend of all different-length fragments of seismic time-series, obtained from raw 

Nanometrics Y-File and GCF format datasets. Thereafter, they were corrected to the ground displacement by removing 

instrumental response. At last, these different-length fragments are merged for all three-component. All data-logger-induced 5 

spikes and glitches zeroed out by the Seismic Analysis Code. To handle the effects of gaps, stemmed from the zeroed out 

spikes and overlaps, we tried to fill them with linearly interpolated values with the help of free software package ObsPy 

(Krischer, et al., 2015).  

3 Methodology  

3.1 Learning the fractality of signal by MF-DFA 10 

Many complex systems are composed of constituents that mutually interact in a complex fashion and the memory of this 

evolution is registered in the recorded time series. This evolving dynamic is assigned to a persistence evolution if large 

succeeding values of time series tend to follow the large preceding ones and the small values tend to follow small ones. This 

contrasts with anti-persistence time series, where large values of a time series tend to follow small ones. Our objective from 

fractality analysis of a complex process is to identify the presence of scale-invariance of fluctuations between nearly 15 

neighboring and distantly values. If the existence of a long-term persistence fractality, 𝐹, in a feature (e.g. a fluctuation or 

spectral power) is verified, the behavior of that feature can be described in accordance with a power law equation as: 𝐹(𝑛) ∼

𝑛ℎ, in which 𝐹 means the assigned feature, and 𝑛 and ℎ are the scale parameter and the scaling exponent, respectively. In 

order to detect the fractality of time series, several tools have been developed, among which MF-DFA can effectively 

differentiate the true fractal dynamics from fake scaling behavior by removing polynomial trends in the data. The main 20 

structure of this method is as follows (Kantelhardt et al., 2002; Kantelhardt, 2012): Step1. We defined the common length 

for three components 𝛏 = 𝐱1, 𝐱2, 𝐱3. Suppose 𝑢𝑖
𝛏
, 𝑖 = 1, … , 𝑁 and 𝑌𝛏(𝑗)  show respectively these time series and integration 

of them as 

𝑌𝛏(𝑗) = ∑ 𝑢𝑘
𝛏

𝑗

𝑘=1
,       𝑗 = 1,2, … , 𝑁  , 𝛏 = 𝐱1, 𝐱2, 𝐱3                                                                                                                             (1) 

This integration is also called the profile. Then, this profile is divided into the 𝑁𝑛 = 𝑖𝑛𝑡(𝑁 𝑛⁄ ) non-overlapping segments of 25 

length 𝑛. Since the record length will not always be an integer multiple of 𝑛, a short part at the end of the time-series remains 

in the most cases, which we have ignored them from the cycle of MF-DFA. Step 2. Detrending step is done through 

estimating a polynomial of order ℓ for each segment by least square fitting. Step 3. This trend is subtracted from the original 

profile, so that the residual sequence for each segment 𝑘, 𝑘 = 1, … , 𝑁𝑠, can be obtained as 

𝐹𝛏
 2(𝑛, 𝑘) =

1

𝑛
∑ {𝑌𝛏[(𝑘 − 1)𝑛 + 𝑖] − y𝑘(𝑖)}

2
                                                                                                                                  (2)

𝑛

𝑖=1
 30 

where y𝑘(𝑖) indicates the fitting polynomial in segment 𝑘 and the 𝑞th order overall detrended fluctuation is calculated by 
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averaging over all segments and also the results for three components, 

𝐹𝑞(𝑛) = (
1

𝑁𝑛

∑ ∑ (𝐹𝛏
 2(𝑛, 𝑘))

𝑞 2⁄𝑁𝑛

𝑘=1
𝛏=𝐱1,𝐱2,𝐱3

)

1 𝑞⁄

;       𝐹𝑞(𝑛)~ 𝑛ℎ(𝑞)                                                                                                  (3) 

where ℎ(𝑞) is the generalized Hurst index, but for 𝑞 = 0 this equation is revised as  

𝐹0(𝑛) = exp {(
1

𝑁𝑛

∑ ∑ ln[𝐹2(𝑛, 𝑘)]
𝑁𝑛

𝑘=1
𝛏=𝐱1,𝐱2,𝐱3

)}                                                                                                                              (4)  

If we plot log2( 𝐹10(ℎ)) versus log10( ℎ), a straight line with the slope ℎ(𝑞) for a given value of 𝑞 is obtained. The slope 5 

ℎ(𝑞), for positive values of 𝑞, represents the scaling behavior of segments with large fluctuations, while for negative values 

of 𝑞, it describes the scaling behavior with small fluctuations. Therefore, for a mono-fractal time series, the achieved value 

for ℎ(𝑞) will be a unique amount, independent to the values of 𝑞. Using the Legendre transformation we can define the 

multi-fractal spectrum equation 𝐷𝑞(ℎ) = 𝑞ℎ(𝑞) − 𝑡(𝑞) in which 𝑡(𝑞) = 𝑞ℎ(𝑞) − 1 and ℎ(𝑞) = 𝑑𝑡(𝑞) 𝑑𝑞⁄  are respectively 

the 𝑞-order mass exponents and the 𝑞-order generalized Hurst index. While, for a mono-fractal series, ℎ(𝑞) is independent of 10 

𝑞 , 𝐷(𝑞) depends still on the 𝑞 . In that case, 𝑡(𝑞) will have a linear dependence to 𝑞  and the width of its multi-fractal 

spectrum will zero length, otherwise the 𝑡(𝑞) will depend on the 𝑞  through a non-linear relationship and multi-fractal 

spectrum will be broader in the shape. By fitting a quadratic function  

𝐷𝑞(ℎ) = 𝐴[ℎ(𝑞) − ℎ0(𝑞)]2 + 𝐵[ℎ(𝑞) − ℎ0(𝑞)] + 𝐶                                                                                                                             (5) 

around the maxima of spectrum, ℎ0(𝑞), Shimizu et al., (2002) proposed an excellent tool for experimentally visualizing 15 

the shape of multi-fractal spectrum. By extrapolating curves to zero, the width of the spectrum can be defined as    

𝑊 = ℎ𝑚𝑎𝑥 − ℎ𝑚𝑖𝑛;  with    𝐷𝑞(ℎ𝑚𝑎𝑥) = 𝐷𝑞(ℎ𝑚𝑖𝑛) = 0                                                                                                                        (6) 

where the width of the spectrum is zero for a mono-fractal series (Shimizu et al., 2002; Telesca et al., 2004; Telesca et al., 

2015). For q = 1 , 𝐷𝑞(ℎ)  can be interpreted as a fractal dimension, while q = 2  and q = 3  represents the information 

dimension and the correlation dimension of a time series, respectively. The parameter 𝐵 returns the asymmetrical trend of 20 

spectrum. In particular, a left tail spectrum represents that the dynamics of time series is controlled by the large transient 

fluctuations, with positive values of 𝑞, while a right tail spectrum indicates the relative dominance of small smoothly varying 

fluctuations, with negative values of 𝑞 (Telesca et al., 2004). Hence, when spectrum has a long left tail shape it can be 

inferred that scattering is pronounced in the region, as a result, the complexity of a multifractal spectrum may provide a 

crude insight into the heterogeneity of medium. This complexity can be characterized in terms of width and shape of multi-25 

fractal spectrum by three parameters (𝑊, ℎ0, 𝐵) (Padhy, 2016).  

3.2 Testing Stationary of Signal 

As highlighted above, seismic noises can be described as superposition of signals emitted by numerous independent, time-

varying and spatially distributed sources. This conception indicates that the stationarity of seismic noises might highly be 
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questionable and it should be surveyed more precisely. When it comes to dealing with the actual implantation, for a 

stationary time series, the value of scaling exponent ℎ(𝑞) at 𝑞 = 2 is equal to that of the Hurst exponent 𝐻 and its value will 

be at the range of 0 < ℎ(2) < 1. In this case, the auto-correlation function can be characterized by a power law 𝐶(𝑠) =

〈𝑢𝑘𝑢𝑘+𝑠〉~𝑠−𝛾  relationship with exponent 𝛾 = 2 − 2𝐻  and its power spectra can be characterized by 𝑆(𝜔) = 𝜔−𝛽  with 

frequency 𝜔 and 𝛽 = 2𝐻 − 1. In contrast, for a non-stationary signal the value of ℎ(2) will be larger than one and satisfies 5 

𝐻 = ℎ(2) − 1 , 𝛾 = −2𝐻  and 𝛽 = 2𝐻 + 1 , respectively (Movahed et al., 2006). Considering these differences, the 

stationarity/non-stationarity property of signal within the length of processing should be experimentally checked, before 

drawing the inference about the fractality of a system.  

A signal is stationary over a given observation scale if its time-varying spectrum undergoes no evolution in that scale. In 

contrast, spectral characteristics of a time-varying system is time-dependent, hence due to this dependence we should study 10 

these kinds of signals by time-frequency analysis. Multitaper spectrograms, 𝓌𝑥
𝑆(𝑡, 𝑓), can assist us in the learning time-

frequency characteristics of signal (Bayram and Baraniuk, 2000)  

𝓌𝑥
𝑆(𝑡, 𝑓) =

1

𝐾
∑ |∫ 𝑥(𝜏)ℎ𝑘(𝜏 − 𝑡)𝑒−𝑗2𝜋𝑓𝜏𝑑𝜏|

2
𝐾

𝑘=0
                                                                                                                               (7) 

where {ℎ𝑘(𝜏 − 𝑡), 𝑘 = 1, … , 𝐾}  stands for the first 𝐾  Hermite functions, which are used as the short-length windows. 

Bayram and Baraniuk (2000) demonstrated that Hermite functions ℎ𝑘
𝐻(𝑡) give the best time-frequency localization and 15 

orthonormality in the time-frequency domain and they can be obtained recursively, as follows 

ℎ𝑘
𝐻(𝑡) = 𝜋

−1
4 (2𝑘𝑘!)

−1
2 𝑒

−𝑡2

2 𝐻𝑘(𝑡)                                                                                                                                                                 (8) 

where {𝐻𝑘(𝑡), t ∈ N} represents Hermite polynomials, defined by  

𝐻𝑘(𝑡) = 2𝑡𝐻𝑘−1(𝑡) − 2(𝑘 − 2)𝐻𝑘−1(𝑡)                                                                                                                                                   (9) 

in which 𝐻0(𝑡) =1 and 𝐻1(𝑡) = 2𝑡 . These families of windows are mutually orthonormal with elliptic symmetry and 20 

maximum concentration in the time-frequency domain. Global (e.g. average for all local spectra) spectrum can also be 

expressed as (Xiao et al., 2007) 

〈𝓌𝑥
𝑆(𝑡, 𝑓)〉𝑇 =

1

𝑇
∑ 𝓌𝑥

𝑆(𝑡, 𝑓)

𝑇

𝑡=0

                                                                                                                                                                  (10) 

A signal is said in a macroscale if each oscillations of which recursively repeats itself at the length of recording window, 𝑇, 

with cyclic time intervals 𝑇0  where 𝑇0 ≪ 𝑇 . If the time-varying spectrum of these oscillations undergoes no evolution 25 

throughout recording window it will be stationarity. In that case the ratio of 𝓌𝑥
𝑆(𝑡, 𝑓) at the each interval 𝑇0 and the average 

of all spectrums, 〈𝓌𝑥
𝑆(𝑡, 𝑓)〉𝑇 , in the whole of recording window length remains nearly unchanged, but in practice, 

fluctuations in this ratio is inevitable. To attain a better understanding of the significance in observed fluctuations, Borgnant 

et al., (2010) generates several surrogates from original signals and also compared the difference of ratios of 𝓌𝑥
𝑆(𝑡, 𝑓) and 

〈𝓌𝑥
𝑆(𝑡, 𝑓)〉𝑇 for original signal and its surrogates. Typically, several methods have proposed to generate Surrogate data but 30 

essentially, they can be classified into two groups: (i) they are generated by outputs of a well-defined model or (ii) they are 
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created directly from original data. The latest one has a comparative advantage because they do not depend on a particular 

model, nor on any parameters, thus they are non-parametric in nature (Theiler et al., 1992). In this approach surrogate data 

are created by means of Fourier Transform through which the magnitude of the spectrum of original signal is preserved and 

then the organized phase structure, which controls the non-stationarity of signal, is destroyed with new (uniformly random) 

phases 𝜙(𝑓) over [−𝜋, 𝜋]. To construct the surrogates we have to use the inverse Fourier transform with the symmetrized 5 

phases, 𝜙(𝑓) = −𝜙(−𝑓). It makes signal a real quantity with no imaginary components. Once a collection of 𝐽 synthesized 

surrogates, {𝑠𝑗(𝑡), 𝑗 = 1, … , 𝐽}, are generated, dissimilarity between local 𝓌𝑥
𝑆(𝑡, 𝑓) and global spectra , 𝓌𝑥

𝑎𝑣𝑆(𝑡, 𝑓), for both 

original signal and its surrogates can be evaluated (Borgnant et al., 2010): 

{𝑐𝑛
𝑥 = 𝐷(𝓌𝑥

𝑆(𝑡, 𝑓), 𝓌𝑥
𝑎𝑣𝑆(𝑡, 𝑓)), 𝑡 = 0, … , 𝑇}   

and    {𝑐𝑛

𝑠𝑗
= 𝐷 (𝓌𝑠𝑗

𝑆 (𝑡, 𝑓), 𝓌𝑠𝑗
𝑎𝑣𝑆(𝑡, 𝑓)) , 𝑡 = 0, … , 𝑇, 𝑗 = 1, … , 𝐽}                                                                                         (11) 10 

where 𝑐𝑛
𝑥  and 𝑐𝑛

𝑠𝑗
 are the dissimilarities of original and surrogate signals, respectively. Statistical variance 𝛩1 =

𝑣𝑎𝑟(𝑐𝑛
𝑥)𝑛=1,….𝑁 gives a measure of how the spectra for original data distributes itself about the expected value. Similarly, for 

each one of  𝐽 synthesized surrogates it can be measured variances as 

{𝛩0(𝑗) = 𝑣𝑎𝑟(𝑐𝑛

𝑠𝑗
)

𝑛=1,….𝑁
, 𝑗 = 1, … , 𝐽}                                                                                                                                                  (12) 

As a null hypothesis original signals is supposed to be stationary but if it violates the predefined threshold γ, null hypothesis 15 

is rejected and non-stationarity is assumed  

𝑑(𝑥) = {
1     𝑖𝑓     𝛩1 > 𝛾: 𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦
0     𝑖𝑓     𝛩1 < 𝛾:             𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦

                                                                                                                                      (13) 

The criteria for determining whether stationarity significant depends on the choice of the threshold γ and also the 

functionality of 𝐷(. ). Dissimilarities function 𝐷(. ) can be chosen as a simple ℓ2-distance function (Xiao et al., 2007): 

𝐷ℓ2
(𝐴, 𝐵)=

1

𝑁
∑ (𝐴(𝑓) − 𝐵(𝑓))

2𝑁

𝑛=1
                                                                                                                                                          (14) 20 

However, Borgnat et al., (2010) proposed to constitute new dissimilarities function 𝐷(𝐴, 𝐵) though which differentiating 

both amplitude modulated or frequency modulated non-stationarity signals from a stationary signals is possible   

𝐷(𝐴, 𝐵) = 𝐷𝐾𝐿(𝐴, 𝐵). (1 + 𝐷𝐿𝑆𝐷(�̃�, �̃�))                                                                                                                                                 (15) 

In this equation 𝐴 and 𝐵 are two positive distributions and �̃� and �̃� indicate their normalized versions to the unity over the 

domain Ω, 𝐷𝐾𝐿(𝐴, 𝐵) is the Kullback-Leibler divergence 25 

𝐷𝐾𝐿(𝐴, 𝐵) = ∫ (𝐴(𝑓) − 𝐵(𝑓))
𝛺

log(𝐴(𝑓) 𝐵(𝑓)⁄ ) 𝑑𝑓                                                                                                                         (16) 

and 𝐷𝐿𝑆𝐷(𝐴, 𝐵) indicates a log-spectral divergence 

𝐷𝐿𝑆𝐷(𝐴, 𝐵) = ∫ |log (𝐴(𝑓) 𝐵(𝑓)⁄ )|
𝛺

 𝑑𝑓                                                                                                                                               (17) 
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By inserting  Eq. (15) into the Eq. (11), we can define 𝛩1 and also a set of outputs for 𝛩0. To obtain a threshold for 𝛾, these 

𝛩0s can assume as a set of realizations for a given probability distribution e.g. Gamma distribution 

P(x; a, b) =
1

𝑏𝑎𝜓(𝑎)
𝑥𝑎−1 exp(− 𝑥

𝑏⁄ )                                                                                                                                                  (18) 

This probability distribution enables us to define the mean of realization, that is μ. Moreover, the threshold value for 𝛾 is also 

considered as a confidence level of 95% for probability distribution under the maximum likelihood sense. By comparing 𝛩1 5 

and the estimates of 𝛩0, one can define the degree of stationarity. Quantitatively, these difference can be evaluated by index 

of non-stationarity (INS) (Xiao et al., 2007): 

INS= √
𝛩1

1

𝐽
∑ 𝛩0(𝑗)𝐽

𝑛=1

                                                                                                                                                                                        (19) 

Further, note the result of stationarity test depends on the window length of spectrogram, 𝑇𝑛 . This dependence can be 

analyzed by the scale of non-stationarity (SNS). It informs us that in the which one/ones of considered values for 𝑇𝑛 the 10 

given threshold in Eq. (13) has been exceeded (Xiao et al., 2007): 

SNS=
1

𝑇
𝑎𝑟𝑔 𝑚𝑎𝑥𝑇𝑛

{𝐼𝑁𝑆(𝑇𝑛)}                                                                                                                                                                  (20) 

4 Results 

We retrieved the average of three components for one-hour-length displacement signals at all stations. Signals have been 

recorded at 50 sample per second so each one of these signals has 𝑁 = 3600 × 50 = 180000 samples. Fig. (2a) shows a 15 

typical example of this average and its spectrum recorded by TBZ station. The magnified part of this spectrogram at the 100-

200 s interval of this time series (Fig. (2b)), clearly verifies the existence of non-stationary signals at the 1-4 Hz, but without 

using Time-Frequency analysis we cannot confidently decide about the length of stationarity in this interval (Wang, 2014; 

Zhong, 2015). Therefore, before going further, the degree of stationarity of signal should be searched in advance. In the 

range of high-frequency 1-4 Hz transient signals are dominant, while the story is completely different at 0.3-1 Hz bandwidth 20 

and the presence of higher mode surface waves might increase the probability of seeing a stationary source of energy. 

Therefore, we should analyse the stationarity of signal within the separate 1-4 Hz and 0.3-1 Hz frequency intervals. To make 

the process of fractality more trustworthy, the length of signal should be chosen in compatible with the length of stationarity 

of signal at the 1-4 Hz, before feeding it into the MF-DFA process. At the same time, the length of this curtailed window 

have to be long enough that the longer period of signal remains in its macroscale stationarity interval. To calculate the local 25 

spectrogram in the Eq.(7) we used just the first six Hermite functions and also the local window length of 𝑇𝑛 = 0.1 𝑠. We 

used the Eq.(12) for calculating the empirical distribution for 𝜃0 and its corresponding fitted thick blue curve is shown in the 

Fig. (2c). Empirical distribution is achieved based on 𝐽 = 500 surrogates. While the red line denotes the statistic 𝛩1 of the 

time series, the thin vertical dashed black line shows the upper 5% quantile of this distribution and it is used as the threshold 

for stationarity limit of signal. Within this window length, the signal evidently has lost its stationarity in the range of 1-4 Hz, 30 

while it confidently passed the test in the range of 0.3-1 Hz (Fig. (2c)). We changed the range of local spectrogram window 
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length 𝑇𝑛 from 0.01 to the 0.45 of the length of the time series. As aforementioned, a noise time series will be stationary if it 

can pass the stationarity test under all of these 𝑇𝑛  values. Comparing the INS between these results provides a physical 

interpretation in this regard and helps us in choosing the reliable interval of stationarity. Clearly, INS values, denoted by the 

dashed star red line, is more or less locates in the higher than the thresholds, shown by the dashed star blue line, at the 1-4 Hz 

and this evidences that the degree of stationarity of signal in this range of frequency have to be explored in the less than 100 5 

s time window. Our subtle searches show that in this window, the length of stationarity of signals at the 1-4 Hz bandwidth 

varies between 1-36 s and this interval is comparable with the results of Gorbatikov and Stepanova (2008). The 36 second 

length of signal, shown by two-sided white arrow in the Fig. (2b), passed the stationarity test and coincidently satisfies the 

macroscale stationarity interval for the whole range of 0.3-4 Hz frequency bandwidth (Fig. (2d)), so we have separated this 

stationary part of signal to the MF-DFA. It should be noticed that a linear filter has no significant effect on the scaling 10 

properties of signals (Chen 2005, Pilz and Parolai, 2014). Similar approach has been employed for choosing the suitable 

length of stationarity for other stations.  As the next step, we have to decide about the suitable segments ℎ for executing the 

MF-DFA. To increase the reliability of this process, we adapted the same strategy as Pilz and Parolai, (2014), by limiting 

the size of segments into the ℎ ≤ 𝑁 6⁄  samples, that is,  ℎ ≤ 6 𝑠. This constrain ensures us that the number of segments for 

averaging procedure is always sufficient since from statistical point of view violating the upper 𝑁 6⁄  threshold may cause the 15 

unreliable results (Pilz and Parolai, 2014). We have also removed a second order polynomial in the detrending step.  

Generally, log10( 𝐹2(ℎ))-log10( ℎ) grows as a power-law relationship respect to the 𝑛 and we expect this increasing gives a 

feedback about the presence of scaling behavior in the signal, however, toward the samples smaller than 

(10 𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 𝑟𝑎𝑡𝑒)⁄ , the deviation from a straight line in the log-log plot of power law equation might give rise to a 

misleading interpretation so to compensate this effect, we have to modify the 𝐹𝑞(ℎ) by the help of the shuffled fluctuation 20 

𝐹𝑞
𝑠ℎ𝑢𝑓(ℎ) (Kantelhardt et al. 2002, Movahed et al., 2006)   

𝐹𝑞
𝑚𝑜𝑑(ℎ) = 𝐹𝑞(ℎ) × (〈[𝐹𝑞

𝑠ℎ𝑢𝑓
(ℎ̂)]

2
〉1 2⁄ ℎ1 2⁄ 〈[𝐹𝑞

𝑠ℎ𝑢𝑓
(ℎ)]

2
〉1 2⁄ ℎ̂1 2⁄⁄ )         (𝑓𝑜𝑟 ℎ̂ ≫ 1)                                                           (21)  

where 〈[𝐹𝑞
𝑠ℎ𝑢𝑓

(ℎ̂)]2〉1 2⁄  denotes the usual MF-DFA fluctuation function, averaged over several configurations of shuffled 

data and ℎ̂ = 𝑁 40⁄ . These shuffled data are taken from the original time series, in which the data are put into a random 

order (Kantelhardt et al. 2002).  25 

Fig. (3a) shows the plot of fluctuation functions, log10( 𝐹𝑞(ℎ)), versus log10( ℎ) (in second) for the 36 s data at the TBZ 

station with 1-step incremented 𝑞 values, ranging from -8 to 8. By taking a closer look to the slope of curves we can see that 

they are changed along the different intervals, but this changes are not identical for all values of 𝑞, so this evidences the 

multifractality of signal. We expect that the existence of different long-term correlations for small and large fluctuations in 

the noise record are most likely the reason of the observed multifractality, nonetheless it should be noted that a broad 30 

probability distribution can also produce the multifractality, so we should trace the origin of this multifractality and 

distinguish the type of multifractality in the time series by analyzing the corresponding randomly shuffled series. By 

Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2017-16, 2017
Manuscript under review for journal Nonlin. Processes Geophys.
Discussion started: 19 April 2017
c© Author(s) 2017. CC-BY 3.0 License.



10 

 

randomly shuffling strategy, any correlations due to the order of the successive samples of a time series will be destroyed, 

otherwise it can be deduced that multifractality stems from a broad probability distribution. Fig. (3b) gives a clear 

comparison between the plot of ℎ(𝑞) versus 𝑞 for TBZ station and its corresponding randomly shuffled time series. The 

shuffled series exhibits a weaker scaling behavior, so the multifractality due to correlation is dominant, although the 

multifractality due to a broad probability distribution cannot completely be ignored. The same pattern has been observed for 5 

other stations that are not shown here. 

More likely the broadness of multi-fractal spectrum and a long right-skewed trends of these spectrums, given in Table 1, 

indicates that dynamic of signal is mostly controlled by the existence of small converted and scattered fluctuations, arisen 

from the heterogeneous structure beneath of those stations, so comparing the multifractal spectrum of all stations can provide 

an ample view of heterogeneity at the studying region (Padhy, 2016). Recent studies e.g. Chiu et al. (2013) declares that the 10 

origin of obtained samples at the east part of Lake Urumieh dates back to the Late Miocene (11 Ma), but toward Sahand and 

Sabalan post-collisional volcanoes there are evidences of the younger eruptions, corresponding to the Late Miocene to 

Pliocene (6.5-4.2 Ma) and Quaternary (< 0.4 Ma). Rezaeifar et al., (2016) and Bavali et al., (2016), by the aids of regional 

and teleseismic travel-time tomography, have reported the evidence of a low-velocity region, due to the warm upper crust 

thermal anomalies, beneath the Sahand and Sabalan volcanos. They showed that, at the Sabalan neighboring area, this low-15 

velocity zone is extended to the shallower depths (<15 km) while it is continued to the just lower crustal low-velocity region 

beneath the Sabalan volcano (< 30 km). Bavali et al., (2016) also determined the existence of a high velocity anomaly in the 

upper crust, down to at least 14 km depth just at the eastern flank of Sahand. This anomalous zone is sandwiched by the 

North Tabriz Fault toward north and low-velocity regions toward eastern and western boundaries. With this assumption BST 

station locates just above this well-resolved high-velocity anomaly while SRB, TBZ, TABZ, AZR, HRS stations are inclined 20 

toward the low-velocity parts. This difference can evidently be traced by comparing the degree of stretchiness in the 

multifractal spectrums. The width of multifractal spectrum at the BST station is narrower than the others and the 

considerable part of its spectrum is distributed at the large 𝑞 values (Fig. (4)). These factors along with the right-skewed 

trends of SRB, TBZ, TABZ, AZR, HRS stations verifies the less heterogeneity in the beneath of BST station up to the ~3 km 

depth (maybe further that are out of range of our processing target.). The consistency in the shape and width of the 25 

multifractal spectrum of two nearby short-period TBZ and broad-band TABZ stations shown at the Fig. (4) verifies the 

reliability of MF-DFA since it is expected that overall structures of these nearby stations have similar characteristics.  

5 Conclusion  

In this paper we showed that singularity spectral attributes namely, width, correlation dimension, peak and asymmetry can 

potentially provide invaluable information about the hidden long range correlation pattern in the complicated signals and its 30 

dynamical evolution from coherent to incoherent style, so these attributes should be used in conjunction with other analyzing 

techniques for enhancing our knowledge about the heterogeneous pattern of medium. We have put the emphasis on the fact 

that the accuracy of procedure is closely depends on the correct inference about the stationarity length of signal, so further 
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analysis should be pursued in order to systematically improve our concept about short-lived noise wavefield at high 

frequency ranges. We supposed that fundamental or higher mode surface waves are dominant at signal, but in more 

advanced process further study is required to evaluate the algorithm against the contents of signals. This method also gives a 

possibility to inspect about the degree of diffusivity in the signal, which is of utmost importance in the recently introduced 

techniques e.g. seismic interferometry.  5 
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Figures: 

 5 

Figure 1: The simplified geological map of network. This figure shows the network configuration that incorporates IRSC stations. All 

sensors, but broad-band TABZ seismometers, are short-period. This network of faults manifests the North Tabriz Fault that toward 

southern Sahand Volcano and toward right hand part of that Sabalan Volcano are extended.  
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Figure 2: Searching the stationary interval. a) This figure shows the average of displacement for three components of broad-band TBZ 

seismometers and its corresponding spectral amplitude distribution. b) The magnified part of this signal at the 100-200 s time and 1-4 Hz 

frequency intervals has been shown. c) Superimposes empirical distribution (histograms) based on 𝐽 = 500 surrogates and 𝑇𝑛 = 0.1 𝑠 and 

their Gamma fits (full blue curve) for different frequency bandwidth indicates that signal at the 0.3-1 Hz passes the stationarity test while it 

fails to pass this test at 1-4 Hz. Choosing different length for 𝑇𝑛 in the right-hand figures shows that signal at 0.3-1 Hz is in the macroscale 5 

interval since INS values, denoted by the dashed red star line, is more or less locates in below than the thresholds, denoted by the dashed 

blue star line, on the contrary, the INS at 1-4 Hz high-frequency bandwidth is considerably different in respect to the threshold values so 

the degree of stationarity of signal at 1-4 Hz have to be explored in the less than 100 s time window. We have separated that parts of this 

signal in which the stationarity has been persevered at the 36 s shown by two-sided white arrow at (b). INS of signal and its surrogates are 

comparable this time for whole 0.3-1 Hz that indicates signal in this range of window is in its macroscale state of stationarity.   10 
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(b) 

 

Figure 3: (a) The plot of fluctuation functions, log10( 𝐹𝑞(ℎ)), versus log10( ℎ) (in second) for the separated 36 s signal, shown in Fig. (2), 

with 1-step incremented 𝑞 values, ranging from -8 to 8.  (b) Plot of ℎ(𝑞) − 𝑞 for TBZ station and its corresponding randomly shuffled 

series. The shuffled series exhibits a weaker scaling behavior, so the multifractality due to correlation is dominant, although the 
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multifractality due to a broad probability distribution cannot completely be ignored. 
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(a) 

 

Figure 4: The multifractal spectrum of stations. Comparing the degree of stretchiness in the plots of fluctuation functions between 

stations indicates that the width of multifractal spectrum at the SRB, TBZ, TABZ, AZR, and HRS stations is wide and these spectrums 

have the right-skewed trends while multifractal spectrums of BST, MRD and SHB are tight and with negligible trends. This feature 

manifests that SRB, TBZ, TABZ, AZR, and HRS stations locates at the less heterogeneous environment. Similarity between the 

multifractal spectrum of collocated TBZ and TABZ stations verifies the accuracy of this method. 5 

 

 

Table 1. The maximum of spectrum, ℎ0, the width of the spectrum, 𝑊,  and the asymmetrical trend of spectrum, 𝐵, for all 

sites at [0.3,4] Hz interval. 

Station AZR BST HRS HSH MRD TABZ TBZ SHB SRB 

F
il

te
re

d
 

b
et

w
ee

n
 

[0
.3

,4
] 

H
z ℎ0 0.53 1.03 1.21 1.36 1.05 0.74 0.73 0.89 0.68 

𝑊 1.11 0.84 0.69 0.72 0.83 0.86 0.89 0.69 0.9 

𝐵 0.94 0.71 0.78 0.76 0.71 0.81 0.81 0.74 0.86 
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