
Comments from Referees, 

The author would indeed prefer to answer these three questions together. 

Q (1) It is not clear (in the worst case, not correct) that the long-range correlation of a 
stationary time series (with 0 < h(2) < 1) can be discerned from a non-stationary process. 
Stationarity and non-stationarity are different characteristics and such relationship that 
makes one to be discerned from the other is obscure.  

Q (2) Moreover, the authors have not clarified, or not mentioned at all, what type of 
nonstationarities would affect their data, so that the application of the MFDFA directly 
would produce misleading results. If the nonstationarities of their data are among those 
types that MFDFA would be able to deal with, why the pre-processing is proposed in the 
next sections? 

Q (3) It is not clear the concern of the authors in selecting the stationary intervals of signals 
before using the MFDFA, if the MFDFA is already capable to deal with nonstationarities. 
Moreover, the authors have not clarified, or not mentioned at all, what type of 
nonstationarities would affect their data, so that the application of the MFDFA directly 
would produce misleading results. If the nonstationarities of their data are among those 
types that MFDFA would be able to deal with, why the pre-processing is proposed in the 
next sections? 

Answer: 

In general, there is broad agreement on the appropriateness of MFDFA in studying 
multifractal scaling behaviour of non-stationary time series, but we wish to draw your 
attention to the paragraph "III. ANALYSIS OF SUNSPOT TIME SERIES" of Movahed (et al., 
2005) which explains the reasons why further attention must be taken in the analysing the 
stationarity of signals in the pre-processing step, before feeding them into the cycle of Fractal 
analysis. In connection with this point, we MUST make it absolutely clear that inherent non-
stationarity of signals should never be confused with the concept of non-stationarity made 
by external perturbations. Regularly, fractional Gaussian noises (fGn) are involved in the 
inherently stationarity process, in contrast, fractional Brownian motions (fBm) are linked to 
the inherently non-stationarity process. The stationarity of fGn signals can be characterized 
by two parameters, σ2, the variance, and H, the Hurst coefficient, while a fBm process has a 
time dependent variance. Hence, on the basis of the class to which signals belong, different 
techniques may be required for processing. Failure to match signal class with the appropriate 
method of fractal analysis results in serious error in the estimating H. For instance 
Dispersional analysis (Disp) is recommended to the analysing the fractionality of fGn signals, 
while bridge detrended scaled windowed variance analysis (bdSWV) is suitable for fBm signals 
(Eke et al., 2000). These classes might not be a-priori known, so a preliminary interpretation 
in this regard may be available by fitting a straight line of slope –β on a log–log plot of the 
periodogram. Based on this method, signals can be categorized according to the value of β, 
but Eke et al., (2000) placed emphasis on this point that this method is only applicable if β 
falls into the category -1<β<0.38 (for an obvious stationary case) or if falls into the range of 
1.4 <β<3 (for an obvious non-stationary case), but there is no certainty that this method fully 
comply with the complicated characteristics of signals in the range of 3.8<β<1.4 where 
stationary and non-stationary mixed into each other. Based on this assumption, it is essential 
to provide another reliable framework for a regular monitoring of stationarity of signals. 



Signal summation conversion method (SSC) is advised to use as a discriminating method (Eke 
et al., 2000). An alternative approach for distinguishing fGn signals from fBm signal was 
proposed by Movahed et al., (2005) who experimentally attempted to examine the feature 
of Sunspot Time Series by analysing the behaviour of standard deviation of its time series as 
a function of time scale. There is a growing consensus amongst researchers (Zhong, et al., 
2015; Wang et al., 2014) that Time-Frequency Surrogate Analysis (TFSA) proposed by 
Borgnat et al. (2010) can provide a complementary view for testing stationarity of seismic 
signals in an operational sense. This method is statistically characterized on the basis of a set 
of surrogates which all share the same average spectrum as the analysed signal while being 
stationarized. With this short introduction, the answers to above-mentioned question can be 
summarized briefly: We therefore agree with this statement in your question: Stationarity 
and non-stationarity are different characteristics, and this is exactly what we need. In other 
words, this difference enables us to discern a stationary fGn from non-stationary fBm. We 
want to underline the point that nonstationarities from our point of view are those 
corresponding to inherent non-stationarity which should be known at the pre-processing step 
before making our choice between fGn and fBm process. TFSA is a rigorous and sufficiently 
flexible method which not only provides an opportunity for assessing the inherent 
stationarity/non-stationarity of a signal, but also further it may bring information from their 
state of stationarity. Therefore, another strength of TFSA lies in its capability to constrain the 
length of stationary of signal by quickly and reliably validating tasks. This would be of utmost 
importance if our data encompass the microseismic range of frequency (0.1-0.3 Hz) or if data 
were acquired from the surveys at the vicinity of dome-looking topography features seismic 
signals appear mostly in the quasi-stationary state. In those cases, reproducible seismic 
signals could fall into the one of the following states: macroscale, mesoscale or microscale 
state (Fig 1), therefore, more accurate method is needed in order to properly assess the state 
of this quasi-stationarity. In this paper, we do make a point that the length of signal directly 
impacts on the reliability of Long-range autocorrelations assessment. The importance of this 
factor was previously the subject of other investigations such as Delignieres et al., (2006) and 
Warlop et al., (2017), but this point has been hidden from view in analysing the fractality of 
seismic signals. The importance of this issue is strikingly apparent for seismic signals, since 
the stationarity of seismic records at various frequency ranges or temporal length are 
different. The experimental estimates obtained by Gorbatikov & Stepanova, (2008) shows 
that, at the microseismic range of frequency, signals are mostly quasi-stationarity, but this 
stationarity may not be preserved for very long periods of time. For instance, this interval 
might be lengthen to the several day or be shorten to the 1–1.5 h , while Wang et al., (2014) 
showed that for frequencies above than 1 Hz signals, the stationarity range of signal is just in 
the range of several seconds. This is where we think we have to focus much of our attention. 
Obviously, by choosing an extreme short window length users might thereby misunderstand 
the true origin of non-stationarity, in such a way that lead to results that are non-informative, 
and potentially misleading. Accordingly, we will be able to adaptively adjust the length of 
processing in compatible with the stationarity length of signal, if we take full benefit of the 
advantages of TFSA.  



 
Fig. 1. Amplitude modulated (AM) at left and frequency modulated (FM) signal at right 
observed over different time intervals (shown at different rows) (Borgnat et al. 2010).  
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======================================================================= 

Comments from Referees 

Q (4) The authors state “Existence of a self-affine long range persistence in the seismic noise 
time series evidences that the current state of system is not in the pure diffused regime and 
transition from coherent to incoherent motion is still on progress” however not in the 
Results section nor in the Discussion section it was ever strengthened such statement on 



the base of the obtained results, leaving it suspended and without a clear connection with 
all the performed analysis. 
Answer: 

Generally speaking, a local perturbation may continuously fluctuate system over time in a 
complex manner, such that consecutive cycles of a signal exhibit an interdependency 
spanning over long time intervals. Indeed, existence of this type of long range correlation (or 
self-affine long range persistence) in the seismic noise wavefield is mostly associated with 
the existence of coherent signals (e.g. P, S, and Surface waves). Matcharashvili, et al. (2013) 
showed that the dynamical features of ambient noise undergo essential changes during 
preparation, and also after triggering the activity of strong local events. At distance far away 
from a seismic source, the generated waves bounce on several heterogeneities and gradually 
enter in the multiple scattering regime (see Fig. (2)). Therefore, the diffused scattered coda 
waves overwhelm the direct wave, gradually. In this case, the strength of persistence of signal 
diminishes through time, due to the attenuation of the coherent wave front. Therefore, the 
footprint of a perturbation should be tracked in the ambient noises and the existence of a 
self-affine long range persistence in the seismic noise time series evidences that this system 
is still in the process of transition, that is, transition from a complete coherent state to a pure 
diffusive state. In this point of view, the scattering mean free time, τ, indicates the 
characteristic time after which such transition is happing. The scattering mean free time is 
the key feature of a medium since it allows knowing in advance the degree of heterogeneity 
of that medium. A medium with low levels of heterogeneity is no longer considered as a 
candidate site for executing advanced process such as seismic interferometry (see for 
instance, see Wapenaar, 2012 a,b), since the existence of a diffusive wavefield is key 
precondition for this analysis (Pilz & Parolai 2014). With this short introduction, the answers 
to above-mentioned question can be summarized briefly:  
In short, this sentence “Existence of a self-affine long range persistence in the seismic noise 
time series evidences that the current state of system is not in the pure diffused regime and 
transition from coherent to incoherent motion is still on progress” is evident from recent 
studies not directly the conclusion of our research but we MUST give the specific reference 
for this argue. Our paper is actually the continuation of the effort made by Pilz & Parolai 
(2014), much of our focus was on improving processes, with the enhancing the quality of 
fractal analysis. 

 

Fig. (2) 
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Comments from Referees, 

Q (5) The title of subsection 3.1 seems not appropriate, since the fractality of a signal can 
be detected or identified and not learned. 
Answer: 

Thanks, we agree. This will be revised definitely.  

Comments from Referees 

Q (6) It is obscure at all, the summation the authors did in eq. 3; practically they sum over 
the three different time series, so instead to consider one set of fluctuation functions 
(depending on q) for each time series, they summed for each q the three fluctuation 
functions obtained for each time series. I suppose that each time series refers to one 
direction of the sensor by which the seismic noise was measured, one vertical and two 
horizontal. Actually, it would has been much more useful and informative of the underlying 
geophysical process to analyse each direction separately. Probably it would has been better 
to first calculate the total displacement combining the three time series and then apply the 
MFDFA on such total displacement.  

Answer: 

Actually, we followed a process similar to the one outlined in the "Casetra, et al., 2007" 
provided in Eq. (2). The similar approach has been taken by Pilz & Parolai (2014) in Eq. (2). 
The rationale behind this suggestion was given by Casetra, et al., (2007) as: 

"Moreover, we consider the 3D soil displacement instead of its three components because we 
are interested in studying the global soil motion under the effect of seismic noise; considering 
and comparing the motion in each component separately (H/V spectral ratio, etc.), could be 
done in a next paper (Casetra, et al., 2007, p. 259)".  

In any case, we feel that your comment is well-founded and that there needs to be reflection 
on the matter in the advanced processing. 

 Q (7) Eq (6) is not correct, because the zero-values are of the parabolic fitting function and 
not of Dq, calculated from the data.  



Answer 

We exactly do the method introduced by Eq. (9) in Padhy (2016), or by Eq. (21) in Shimizu et 
al. (2002). Maybe we don't quite understand the question of referee. We would appreciate if 
you could notify the problem of this method to us. 

Q (8) At page 7, the authors say that the “phase structure, which controls the non-
stationarity. . .” this is not correct, because the phase are responsible of the non-linearity 
of a time series. The stationarity/nonstationarity of a time series can be simply verified 
looking at the power spectrum and its powerlaw shape, which depends solely on the 
amplitude of the Fourier transform and not on the phase. 

Answer 

I appreciate for pointing out the mistakes I have made. It will be revised.  

======================================================================= 

Comments from Referees, 

Q (9) In response to questions and comments from referees concerning the TFSA, we try to 
restate the method in the clear way as follows: 
 Answer     

Maybe I was not quite clear enough in explaining the theoretical aspect of Testing Stationary 
of Signal, so was maybe not something one would want to do too 
A signal is stationary over a given observation scale if its spectrum undergoes no evolution in 
that scale. This assumption leads Bayram and Baraniuk, (2000) to use Multitaper 
Spectrograms (MS) for studying the time-dependent features of signals as  

𝓌𝑥(𝑡, 𝑓) =
1

𝐾
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where {h𝑘(𝜏 − 𝑡), 𝑘 = 1,… , 𝐾} stands for the first 𝐾 Hermite functions, which are used as 

the short-length windows. Bayram and Baraniuk (2000) used the Hermite functions h𝑘
𝐻(𝑡) as 

the sliding windows since they give the best time-frequency localization and orthonormality 
in the time-frequency domain.  Hermite functions can be obtained recursively, as follows 
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where {𝐻𝑘(𝑡), t ∈ N} represents Hermite polynomials, defined by     

𝐻𝑘(𝑡) = 2𝑡𝐻𝑘−1(𝑡) − 2(𝑘 − 2)𝐻𝑘−1(𝑡)                                                                                   (3) 

in which 𝐻0(𝑡) =1 and 𝐻1(𝑡) = 2𝑡. These family of windows are mutually orthonormal with 
elliptic symmetry and maximum concentration in the time-frequency domain. To define the 
global spectrum of signal, we should take the average of MS as (Xiao et al., 2007) 

〈𝓌𝑥(𝑡, 𝑓)〉𝑁 =
1

𝑁
∑𝓌𝑥(𝑡, 𝑓)

𝑁
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                                                                                                    (4) 

For a stationary signal 𝓌𝑥(𝑡, 𝑓) 𝓌𝑥
𝑎𝑣(𝑡, 𝑓)⁄  remains almost unchanged at the whole recording 

window, but in practice fluctuations in this ratio is inevitable. These fluctuations can be 
defined by a dissimilarity function as  

𝑐𝑡
𝑥 = 𝐷(𝓌𝑥(𝑡, 𝑓),𝓌𝑥

𝑎𝑣(𝑡, 𝑓)),  𝑡 = 0,… ,𝑁                                                                              (5) 

The significance of fluctuations can also be assessed by using surrogates (Borgnant et al., 
2010). A surrogate is artificially produced in such a way that mimics statistical properties of 
real data. Isospectral surrogates have identical power spectra as the real signal but with 



randomized phases (Theiler et al., 1992). Once a collection of 𝐽 synthesized isospectral 
surrogates, {𝑠𝑗(𝑡), 𝑗 = 1,… , 𝐽}, are generated, the dissimilarity between local, 𝓌𝑠𝑗

(𝑡, 𝑓), and 

global spectra, 𝓌𝑠𝑗
𝑎𝑣(𝑡, 𝑓), for surrogates can be evaluated by (Borgnant et al., 2010)  

{𝑐𝑡
𝑠𝑗 = 𝐷 (𝓌𝑠𝑗

(𝑡, 𝑓),𝓌𝑠𝑗
𝑎𝑣(𝑡, 𝑓)) ,  𝑡 = 0,… ,𝑁,  𝑗 = 1,… , 𝐽}                                                            (6) 

Borgnat et al., (2010) merged the Kullback-Leibler distance, 

𝐷𝐾𝐿(𝐴, 𝐵) = ∫ (𝐴(𝑓) − 𝐵(𝑓))
𝛺

log(𝐴(𝑓) 𝐵(𝑓)⁄ ) 𝑑𝑓                                                           (7) 

and log-spectral distance, 𝐷𝐾𝐿(𝐴, 𝐵), 

𝐷𝐿𝑆𝐷(𝐴, 𝐵) = ∫ |log⁡(𝐴(𝑓) 𝐵(𝑓)⁄ )|
𝛺

 𝑑𝑓                                                                                (8) 

in the following combined form  

𝐷(𝐴, 𝐵) = 𝐷𝐾𝐿(𝐴, 𝐵). (1 + 𝐷𝐿𝑆𝐷(�̃�, �̃�))                                                                                   (9) 

In these equations 𝐴 and 𝐵 are two positive distributions and �̃� and �̃� indicate their 
normalized versions to the unity over the domain. The dissimilarity function 𝐷(𝐴, 𝐵) enables 
us to differentiate an amplitude-modulated or frequency-modulated non-stationary signal 
from a stationary one. Statistical variance 𝛩1 = 𝑣𝑎𝑟(𝑐𝑛

𝑥)𝑛=1,…,𝑁 gives the variance of 𝑐𝑛
𝑥s. 

Similarly, for each one of  𝐽 synthesized surrogates we can define a separate variance as  

{𝛩0(𝑗) = 𝑣𝑎𝑟(𝑐𝑛
𝑠𝑗)

𝑛=1,….𝑁
,  𝑗 = 1,… , 𝐽}                                                                                   (10) 

These 𝛩0s can be assumed as a set of realizations of Gamma probability distribution with the 
following description  

P(x; a, b) =
1

𝑏𝑎𝜓(𝑎)
𝑥𝑎−1 exp(−𝑥

𝑏⁄ )                                                                                     (11) 

As a null hypothesis original signals is supposed to be stationary but if it violates the 
predefined threshold γ, null hypothesis is rejected and non-stationarity is assumed, that is   

𝒥(𝑥) = {
1 𝑖𝑓 𝛩1 > 𝛾:  𝑛𝑜𝑛 − 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦

0 𝑖𝑓 𝛩1 < 𝛾:  𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑖𝑡𝑦 
                                                                                                 (12) 

The threshold value for 𝛾 is considered as a confidence level of 95% for probability distribution 
under the maximum likelihood sense. By comparing 𝛩1 and the estimates of 𝛩0, one can 
define the degree of stationarity. Quantitatively, these difference can be evaluated by index 
of non-stationarity (INS) (Xiao et al., 2007): 

INS= √𝛩1
1

𝐽
∑ 𝛩0(𝑗)
𝐽
𝑛=1⁄   (13) 

Further, note the result of stationarity test depends on the window length of spectrogram, 
Tn. This dependence can be analyzed by the scale of non-stationarity (SNS). It informs us that 
in which one/ones of considered values for Tn the given threshold in Eq. (10) has been 
exceeded (Xiao et al., 2007): 

SNS=
1

T
arg maxTn{INS(Tn)}                                                                                                    (14) 
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======================================================================= 

Comments from Referees 

Q (10) At page 9, N/6 samples correspond to 600 seconds and not 6 seconds. 
Answer 
Signals have been recorded at 50 sample per second so each one of these signals has N = 3600 
× 50 = 180000 samples. By limiting the size of segments into the h ≤ N ⁄ 6 samples, that is, h 
≤ 600 s. Sorry for this mistake in typing.  
 

 

We also tested the process for different time length, different seasons, different weather conditions, 

and also night and day times. All of results will be added at the final paper. We confirmed the suitability 

of this method.  

 


