
Responses to Reviewer 1

We would like to thank the reviewer, Peter Ditlevsen, for his careful review of our paper. We
believe we have addressed all of his comments.

Major points
1. This is a well written review of the Fractional Brownian motion (fBm) and the less well known

Matérn process. The model is applied to the case of particle dispersion in 2D turbulent flow. The

review is clear and with the relevant degree of detail to be readable by non-experts in stochastic

processes.

Thank you for these positive comments. We are especially glad you found it suitable for non-
experts in stochastic processes, as this was one of our main objectives.

2. Concepts of short and long memory and of di↵usive, sub-di↵usive and super-di↵usive processes

are well described as is the whole concept of di↵usivity for stochastic processes, which is less

known in the “time series community”. The treatment of di↵usivity, auto-covariance and cor-

responding spectra is illuminating.

The introduction of the concepts of di↵usive, sub-di↵usive, and super-di↵usive as pertaining to
types of processes is one of the main contributions of this paper. We are very glad to hear your
found this illuminating.

3. The paper is very long, so I propose that the authors perhaps consider rewriting into two back-

to-back papers, with the second being the application to turbulent dispersion... I leave that to the

authors to decide and recommend publication with pleasure.

We believe it should remain as one long contribution. The main point of the paper is to connect
the physical intuition with statistical concepts, and therefore we believe an integrated approach
is preferable. Thank you for leaving this to our judgment.

4. Furthermore, for better overview, some of the results, especially in section 4, could be moved to

Appendices.

We have done so. There are now four new Appendices: Appendix B, Di↵usivity in terms of the
spectrum, takes material from the previous section 2.3; Appendix C, Di↵usiveness and memory,
takes material from the previous section 2.4; Appendix D, The Rihaczek distribution of frac-
tional Brownian motion, takes material from Section 3.3; and Appendix H, The Matérn impulse
response function, takes material from Section 4.4.

Minor points
1. P10, L25-30: seems to be irrelevant paragraph, including 4 self-references. The point is actually

important, but it has been greatly shortened and combined with the previous paragraph.
2. P14, Figure 3: It would be useful to indicate the slope of the “Power Law line” and indicate the

relation to the turbulence scaling theory (if any).

The power law line has been added. We are not aware of any turbulence theory for 2D frequency
(as opposed to wavenumber) spectra; this has been noted in the text, as follows: “The Matérn
spectral form is seen to provide an excellent match to the observed Lagrangian velocity spectra
over roughly eight decades of structure. The high-frequency slope is seen to be roughly |!|�8,
a very steep slope. We are not aware of any physical theory to account for this, nor for the
value of the damping parameter �. Despite the fundamental role that the Eulerian wavenumber

spectrum of velocity plays in turbulence theory, the Lagrangian frequency spectrum has received
relatively little attention. Attempting to connect the observed form of this spectrum to physical
principles is, however, outside the scope of the present paper.”

3. P19, L3: faveraging �! averaging.
Fixed.
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4. P20, L27: It would be useful with a definition of a Gaussian process in this context, and a little

more explanation of why the “original process is Gaussian as well as zero mean”.

Done.
5. P26, L6: To me it seems more logical to say “globally white” rather than “locally white”, in the

sense that points separated in time by T � �1 are independent.

The term “locally white” means that the spectrum is constant, or white, within some frequency
range, but not everywhere. The meaning of this usage has been clarified.

6. P27, L3: This is unclearly written: It is d2/d!2(lnS) = 0 for |!| = �. P33, L16: � �! �t.
We were inconsistent in using � or �t for the sampling interval. Now, we have consistently used
�, without the t. Thank you for noticing this.
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Responses to Reviewer 2

We would like to thank the reviewer for their very careful reading of the paper. This has helped us to
clarify a number of subtle points, and helped us in our goal of balancing a high degree of mathemat-
ical rigor with intuitively clear explanations. We appreciate that reviewing a paper as long as this
one is a substantial task, and we are very grateful for their e↵ort and patience. We have answered
all of the reviewer’s concerns in detail and believe the paper has now been considerably improved.

Major points
1. The main virtue of this paper is that it links statistical concepts and objects with physical ones,

providing the intuition behind mathematical formulae and explaining their physical meaning.
Mots of explanations are intuitively clear, calculations are detailed.
Thank you. This was our main objective, and we are very pleased to see that you believe we
were successful.

2. This results in the size of the paper; the paper is very long and I recommend to split it into two
papers.
This is an issue with which we have wrestled many times in the course of preparing this paper.
However, our conclusion is that in this case, a single long paper is appropriate for the topic, and
is in fact an advantageous presentation. We will explain our reasoning here, together with the
steps we have taken to address the reviewer’s apparent concern that a paper of this length may
place an undue burden on readers. Naturally if the reviewer, or editors, still feel strongly that
the paper should be split in two, we would endeavor to do so, although it would take a fair bit
of time and e↵ort to accomplish.

As the reviewer mentioned in the previous comment, the main contribution of this paper is
the connection of statistical concepts with physical ones. Thus, we cannot split the physical
part from the statistical part without losing the main point of the paper. Similarly, it would not
be sensible to split the fBm and Matérn portions, because our goal is to connect them to each
other. Thus, there is not an obvious way to split the paper in two. Either of these approaches
would generate a huge number of cross-references and repeated material, making the paper(s)
less navigable, rather than more.

Instead, we have attempted to address the reviewer’s concern by making the paper more
readable and navigable through three modifications: moving more material to appendices,
adding a table of contents, and introducing a signposting of what sections need to be read
by whom.

Firstly, we have moved various portions of more technical material into four new appendices:
Appendix B, Di↵usivity in terms of the spectrum, takes material from the previous section
2.3; Appendix C, Di↵usiveness and memory, takes material from the previous section 2.4; Ap-
pendix D, The Rihaczek distribution of fractional Brownian motion, takes material from Section
3.3; and Appendix H, The Matern impulse response function, takes material from Section 4.4.
This reduces the main text by about 3 pages in its current format, and considerably improves
the readability of the paper.

Secondly, we have added a table of contents. If this is permissible within the journal for-
mat, we believe it could be highly useful to readers of this paper. The paper is intended
to be a self-contained and comprehensive treatment of these stochastic processes, such that
a researcher wishing to use the Matérn process does not need to first delve into the litera-
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ture in order to understand fBm or fundamental concepts such as self-similarity. This self-
containedness is a significant benefit o↵ered by this paper, as in our view, there is noth-
ing like it in the literature. Adding a table of contents would let the reader readily access
those parts that are of interest, while skipping over any portions they are already familiar
with, or which pertain to details they may feel they do not need to know. We feel this
comprehensive organization would be more beneficial to readers then splitting the paper in
two.

Finally, we have stated, at the beginning of each section, what the purpose of the section is
and under what conditions a reader might be comfortable skipping that section.

3. Sometimes the authors use objects before introducing them (for example, the Matérn process or
autocovariance function; please, see also the comments below).
We have rearranged things so that this does not occur.

General remarks and questions
1. Statistically fBM and the Matérn process are very di↵erent in nature: fBM is not stationary

and starts from 0; on the contrary, the Matérn process is stationary and its value at 0 value is
random. Please clarify if this di↵erence important for the physical model used in the paper.
The following paragraph has been added at the end of Section 4: “The Matérn process and
fBm di↵er in a qualitatively significant way: the former is stationary, while the latter is non-
stationary. This di↵erence can be seen as a consequence of the lack of damping in the latter
case. In applications, we believe it would be unphysical to observe a process that remains non-
stationary for all time scales. Rather, for su�ciently long observational periods, it is more likely
that the process will eventually settle into stationary behavior. For the Matérn process, this
occurs when the observational window is su�ciently long compared with the decay timescale
��1. Another di↵erence is that the value of fBm at time t = 0 is fixed to zero, while that of the
Matérn process is random. However, since it is common practice to remove the sample mean
prior to analyzing a data time series, and/or to add a constant o↵set to a generated process,
this distinction makes little practical di↵erence for applications such as the one presented here.”

2. Page 3, line 1: please explain what ‘damped version’ of a process mean. This term is used many
times throughout the paper, but it is never defined.
We appreciate this comment, as we had not expected that this terminology might be unfamiliar
to some readers. In the Introduction, we now say: “By ‘damped version’, we mean that the
process is modified as would be expected if a physical damping were introduced into its stochas-
tic di↵erential or stochastic integral equation. This terminology, which draws upon intuition for
damped and undamped oscillators from elementary physics, will be made more clear in Section
4.4.” It is then discussed in detail in the last three paragraphs of Section 4.4, which are new,
and in the first paragraph of Section 4.5.

3. Page 3, line 14: what parameters are meant here? Hurst index for fbm and a scale parameter
for fbm? What is the third parameter of the Matérn process?
This has been clarified as: “More generally, the Matérn process adds a third parameter (damp-
ing) to the two parameters (amplitude together with spectal slope or the Hurst parameter) of
fBm...”

4. Page 5, lines 15-16: in what sense the derivative (stochastically, pathwise, in Lp sense) is taken?
The need to deal with this subtlety is avoided by defining r(t) as the integral of z(t), rather than
defining z(t) as the derivative of r(t).

5. Page 5, line 23: you use here the terms ‘autocovariance function’ and ‘spectral density’, but you
define them only in the next subsection. The rearrangement of this subsection might be helpful
for the reader.
Good point, this change has been made.
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6. Page 7, line 5: please define the isotropy of a process to avoid the confusion with isotropy in
spatial statistics, where it means the invariance of the process under rotation of coordinates.
The meaning is the same here. This section has been expanded for clarity as: ‘[I]f one rotates the
process counterclockwise through some some constant angle⇥ by defining z̃(t) ⌘ ei⇥z(t), we have
Rz̃z̃(⌧) = Rzz(⌧), and the autocovariance function remains unchanged... With z̃(t) ⌘ ei⇥z(t)
again being a rotated version the process, one finds Cz̃z̃(⌧) = ei2⇥Czz(⌧). This shows that infor-
mation regarding the directionality of variability must reside in Czz(t, ⌧) and not in Rzz(t, ⌧).
If the process is isotropic, meaning that its statistics are independent of the rotation angle ⇥,
then clearly Czz(t, ⌧) must vanish.”

7. Page 9, line 20: please give the definition of the Matérn process and formula for its spectrum
here. Is it a Gaussian process?
This discussion on memory vs. di↵usiveness has been split. The high-level discussion is at the
end of Section 2.3, while the detailed discussion and table have been moved to Appendix C.
Thus, no quantities need to be discussed before they are introduced in the main text. In the
appendix, all relevant quantities are referred to by equation number, so that the reader can find
their definitions.

8. Page 9, line 21: in what sense the derivative is taken?
This section, which has been moved to the new Appendix C, has been rewritten in such a way
that we avoid needing to take derivatives. Instead, the various processes are defined in terms of
their transfer functions, the Fourier transforms of their Green’s functions in a stochastic integral
representation.

9. Page 10, line 17: what is periodic domain?
This is a standard term in geophysical numerical modeling. Its meaning has now been made
clear as follows: “A doubly periodic domain means that the x-axis is periodic, such that struc-
tures passing eastward across the eastern boundary return on the western boundary, and that
the y-axis is similarly periodic.”

10. Page 13, line 11: please write the range of the parameters.
This is now done. “The second is a power-law spectrum that arises for fractional Brownian
motion for ↵, termed the slope parameter, in the range 1/2 < ↵ < 3/2. For the slope parameter
↵ > 1/2, the third spectrum is that of a type of random process known as a Matérn process,
which we will show to be a damped version of fractional Brownian motion, with � > 0 playing
the role of an inverse damping timescale.”

11. Page 15, line 23: the equality sign here without the reference to Section 3.3 is misleading. In
Section 2.3 you define the spectrum for stationary process. Fractional Brownian motion is not
stationary, so at that stage it is not clear what this equality means.
Good point. We would like to introduce the power law spectrum, and later discuss its meaning
in more detail. Therefore, at this location we have added the statement: “While the spectrum
of fBm is not defined in the usual sense due to its nonstationary, an expanded version of the
notion of a spectrum, discussed in Section 3.3, is found to yield for fBm the form (Flandrin,

1989; Solo, 1992) ... ” Furthermore, we have introduced a new symbol, eS(!), to distinguish this
‘spectrum’ from the usual Fourier spectrum S(!).

12. Pages 18-19, beginning of Section 3.3. it is worth mentioning that the spectrum of stationary
process and its time-independent spectrum coincide. Thus, time-independent spectrum is a more
general notion than spectrum. Otherwise it is not clear, why one can compare the spectrum of
stationary process and time- independent spectrum of non-stationary process.
A very good point, we have done so. In fact, this suggested to us a reorganization of Section 3.3.
to make this point clearer. Please see the first three paragraphs in that section. Again, thank you.

13. Page 24, lines 13-14: the sentence is not clear. There are two separate integrals in equation
(44). Why the integral in (47) cannot be split into two integrals?
This has been clarified in the text as follows: “Note that the two components of (47) cannot be
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written as separate integrals, because writing them as two separate integrals would mean that
two di↵erent realizations of dW (s) are involved. The two terms in (47) must be based on the
same realization of dW (s) in order to achieve the initial condition z(0) = 0; this is not true for
the two terms in (44), which correspond to two di↵erent intervals of integration.”

14. Page 25, lines 26-27: the following statement is not clear. ‘The first is that there is no upper
bound on ↵, so processes can become still smoother than the ↵ = 3/2 case that defines the upper
limit of the slope parameter for fBm’. If ↵M > ↵fBm, where ↵M is the smoothness parameter
of the Matérn process and ↵fBm is the smoothness parameter of the fBm, it does not mean that
the corresponding Matérn process is smoother than the corresponding fBm.
An interesting and subtle point. It depends on what one means by ‘smooth’. This sentence has
been changed to read “The first is that there is no upper bound on ↵, so the spectral decay
can become even steeper than for the ↵ = 3/2 case that defines the upper limit of the slope
parameter for fBm.”

15. It would be interesting to have the comparison of your simulation algorithm with known approx-
imate algorithms (for example, spectral method). Note, that exact realizations for some values
of ↵ can be generated fast using a modification of circulant embedding called cut-o↵ circulant
embedding, see ().
We agree, such a comparison would be very interesting. In fact it is already being undertaken
by another group (S. Keating, Univ. of New South Wales, pers. comm.). Thank you for the
mention of ‘cut-o↵ circulant embedding’, we were not aware of this. It would also be interesting
to know if our Green’s function method can be readily generalized to larger classes of processes.
As generation methods are not the main focus here, the comparison here is limited to comparing
the O(N3) Cholesky method with the O(N logN) Green’s function method in Figure 8. At the
end of Section 5, we have therefore added the sentence “A more detailed comparison between
the Green’s function method of generation, and other methods such as circulant embedding
(Dietrich and Newsam, 1997; Percival, 2006), is outside the scope of this paper, and is a natural
direction for further work.”

16. Please explain how to choose parameters k and N̂ optimally. How can one estimate the error of
the simulation for given k and N̂ ?
As we state in Section 5.4 in the text, “If desired, the matrix Rm,n in (98) can be computed in
order to explicitly check the errors in computing the covariance matrix.” To this we have now
added: “Thus error can be computed by comparing the di↵erence between the true discretely
sampled autocovariance matrix Rm,n and the autocovariance matrix bRm,n that is satisfied by the
process generated through the Green’s function method. While this is numerically expensive, it
need only be computed one time for a given set of parameters ↵, �, N , k, and ✏.” In addition, we
now discuss the default settings in our numerical implementation, which involve making sensible
choices for N̂ and k: “In the numerical implementation described in Appendix A, we set ✏ = 0.01,
such that T✏ gives the time at which the time-integrated Green’s function reaches one percent of
its total time-integrated magnitude. We also set the oversampling parameter k such that there
will be at least 10 points per damping timescale ��1, which is accomplished by choosing k =
ceil (10⇥ ��) since 1/(��) is the number of sampled points in one damping timescale. These
settings are observed to give fast but accurate performance for a broad range of parameters.”

17. Please explain why you do not use classical maximum likelihood estimation in the time domain.
What is the benefit of using frequency-domain maximum likeihood? It would be interesting to see
the box-plots and bootstrap confidence intervals for the estimated parameters of the times series
generated by the proposed algorithm.
Please now find the following paragraph in Section 6.2: “A standard approach would be to
form a parametric estimate using the maximum likelihood method implemented in the time
domain. However, this method involves a computationally expensive matrix inversion, which
becomes a limiting factor when analyzing large datasets. An alternative approach to estimating
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the parameters is to do so in the frequency domain using a method called the Whittle likelihood
(Whittle, 1953). This approach is considerably faster than time-domain maximum likelihood,
with O(N logN) versus O(N2) behavior, yet is known to give approximately the same results.
It also has the advantage of letting us only fit the parametric model over a specified band of
frequencies. The Whittle likelihood method proceeds as follows.”

18. For the readers convenience, when citing books, please include the number of the relevant chapter
or pages.
Page or chapter numbers have now been given for the half-dozen or so books for which we had
previously neglected them.

Minor issues and typos
1. Page 3, line 2: ‘a uniform rotation rate to is shown’

Fixed.
2. Page 3, line 30: ‘This paper was inspired by the need to a develop’

Fixed, thank you.
3. Page 9, Table 1: “The term in the box is the Matérn process”, you probably mean that the term

in the box is the spectrum of the Matérn process. Please write the ranges for �, ⌦, ↵.
Both of these have been changed as requested.

4. Page 9, line 17: if a function is absolutely integrable, then it is integrable; not vice versa.
Thank you very much for noticing this error. Fortunately, it was only a typographic error, and
the reasoning in the rest of the paragraph holds.

5. Page 17, lines 5-6: the sentence ”The exponent 2↵ � 1 varies from ...” is very di�cult to un-
derstand, however it has a very simple meaning, namely 0 < 2↵� 1 < 2.
This has been replaced with ‘The exponents take on values in the range 0 < 2↵� 1 < 2 due to
the fact that 1/2 < ↵ < 3/2,’ which we agree is clearer, thank you.

6. Page 19, line 3: ‘faveraging’
Fixed, thank you.

7. Page 27, lines 1-3: the sentence is unclear. What vanishes at |!| = �?
This was quite unclear and has been clarified. The point is simply that the fractional rate of
decrease of the spectrum achieves a maximum at this frequency.

8. Page 41, line 2: we proceed as values
This has been corrected to read ‘we proceed as follows.’

9. Page 41, line 16: turbulence turbulence.
Fixed.
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Abstract. Stochastic process exhibiting power-law slopes in the frequency domain are frequently well modeled by fractional

Brownian motion (fBm), with the spectral slope at high frequencies being associated with the degree of small-scale roughness

or fractal dimension. However, a broad class of real-world signals have a high-frequency slope, like fBm, but a plateau in the

vicinity of zero frequency. This low-frequency plateau, it is shown, implies that the temporal integral of the process exhibits

diffusive behavior, dispersing from its initial location at a constant rate. Such processes are not well modeled by fBm, which

has a singularity at zero frequency corresponding to an unbounded rate of dispersion. A more appropriate stochastic model is

a much lesser-known random process called the Matérn process, which is shown herein to be a damped version of fractional

Brownian motion. This article first provides a thorough introduction to fractional Brownian motion, then examines the details of

the Matérn process and its relationship to fBm. An algorithm for the simulation of the Matérn process in O(N logN) operations

is given. Unlike fBm, the Matérn process is found to provide an excellent match to modeling velocities from particle trajectories

in an application to two-dimensional fluid turbulence.

[New material, or portions that have been significantly modified, are noted in blue.]
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1 Introduction

Fractional Brownian motion (fBm), introduced by Mandelbrot and Van Ness (1968), is a canonical stochastic process finding

wide-ranging applications in fields as diverse as oceanography (Osborne et al., 1989; Sanderson et al., 1990; Sanderson and

Booth, 1991; Summers, 2002), geophysics (Molz et al., 1997), finance (Rogers, 1997), and many others. The essential features

of this process are its self-similar behavior—meaning that magnified and rescaled versions of the process appear statistically

identical to the original—together with its nonstationarity, implying a never-ending growth of variance with time. Two other

properties of fBm are its degree of small-scale roughness or fractal dimension (Mandelbrot, 1985; Falconer, 1990, Chapters

2 & 3), and the nature of its long-term memory or long-range dependence (Beran, 1992, 1994). As pointed out by Gneiting

and Schlather (2004), the self-similarity of fractional Brownian motion links the very small and the very large temporal scales

behavior together, such that its memory, fractal dimension, and self-similarity aspect ratio are all controlled by the same

parameter. These, in turn, are all connected to the slope of the spectrum in the Fourier domain, in which fBm is found to exhibit

a simple power-law behavior.

One important property that cannot be captured by fractional Brownian motion is the tendency for a process to diffuse, or

disperse from an initial location at a uniform rate. In the fluid dynamics literature (e.g. Davis, 1983; LaCasce, 2008), it is known

that the zero-frequency value of the spectrum of a process quantifies the dispersive tendency of the temporal integral of that

process. This recognition leads to a classification of processes, proposed here, based on their spectral value at zero frequency.

We refer to random processes as diffusive, subdiffusive, or superdiffusive, depending on whether the spectral value is finite

and nonzero, zero, or unbounded, respectively. This quality of “diffusiveness” will be shown to be related to, but distinct

from, the more familiar classification of processes as short-memory or long-memory depending on the long-time behaviors of

their autocovariance functions (Beran, 1992, 1994; Gneiting and Schlather, 2004). Fractional Brownian motion is found to be

superdiffusive, and is associated with a diffusivity that tends to increase without bound.

A particular application is the stochastic modeling of velocities obtained from particle trajectories in fluid flows. In the

field of oceanography, one of the main windows into studying the physics of the ocean circulation consists of position data

from instruments that drift freely with the currents (Rupolo et al., 1996; Rossby, 2007; Lumpkin and Pazos, 2007). Similarly,

numerical models of fluid systems are frequently analyzed by examining the motion of particles carried with the flow (Pasquero

et al., 2002; Veneziani et al., 2005a; Lilly et al., 2011). Such position records are known as Lagrangian trajectories, on account

of the moving frame of reference associated with the particles or instruments. One thread of research attempts to predict

Lagrangian statistics based on dynamical assumptions (e.g. Griffa, 1996; Majda and Kramer, 1999; Berloff and McWilliams,

2002; Veneziani et al., 2005a; Majda and Gershgorin, 2013). Here, we instead try to identify the simplest stochastic model

that can explain the major observed features, leaving the connection to the equations of motion to the future. Velocities from

Lagrangian trajectories are found (e.g. Rupolo et al., 1996) to exhibit power-law behaviors at high frequencies, and indeed
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fractional Brownian motion has been suggested as a stochastic model (Osborne et al., 1989; Sanderson et al., 1990; Sanderson

and Booth, 1991; Summers, 2002). Yet a primary characteristic of these trajectories is their tendency to diffuse at a uniform

rate at long times (Taylor, 1921; Davis, 1983; LaCasce, 2008; Koszalka and LaCasce, 2010), a feature that fBm cannot capture.

A type of random process having a sloped spectrum that matches fBm at high frequencies, but that takes on a constant

value in the vicinity of zero frequency, exists and is known as the Matérn process (Matérn, 1960; Guttorp and Gneiting, 2006).

The same process has been referred to occasionally as the fractional Ornstein-Uhlenbeck process (Wolpert and Taqqu, 2005;

Lim and Eab, 2006), because it also generalizes the well-known Ornstein-Uhlenbeck process (Uhlenbeck and Ornstein, 1930)

to fractional orders. A multivariate version of the Matérn process is broadly used for spatial statistics in various fields (Goff

and Jordan, 1988; Handcock and Stein, 1993; Gneiting et al., 2010; Lindgren et al., 2011; Schlather, 2012). Yet despite the

appeal of its generality, the Matérn process appears in only a handful of papers in the time series literature (Wolpert and Taqqu,

2005; Lim and Eab, 2006; Li et al., 2010; Hartikainen and Särkkä, 2010; Sykulski et al., 2016a; ?). In fluid dynamics, the only

instances we are aware of is an application to wind tunnel data by Von Karman (1948), pointed out by Guttorp and Gneiting

(2006), together with a more recent study by Hedevang and Schmiegel (2014).

The purpose of this paper is to investigate the theoretical properties of the Matérn process, in particular its relationship

to fractional Brownian motion, and to establish the practical importance of this under-appreciated process for modeling time

series that exhibit the fundamental phenomenon of diffusion. On the theoretical side, the Matérn process is seen to be a damped

version of fractional Brownian motion, in the same way that the Ornstein-Uhlenbeck process is a damped version of standard

Brownian motion. A simple generalization of the Matérn process that incorporates a uniform rotation rate is shown to describe

a forced/damped fractional oscillator. By “damped version”, we mean that the process is modified as would be expected if a

physical damping were introduced into its stochastic differential or stochastic integral equation. This terminology, which draws

upon intuition for damped and undamped oscillators from elementary physics, will be made more clear in Section 4.4.

On the practical side, we find the Matérn process to be an excellent match for Lagrangian velocity spectra from a numerical

simulation of two-dimensional turbulence, a classical system in fluid dynamics that has been the subject of a large number of

studies, (e.g. Lin, 1972; McWilliams, 1990a; Dritschel et al., 2008; Bracco and McWilliams, 2010; Kadoch et al., 2011; Scott

and Dritschel, 2013). The Matérn process allows one to simultaneously vary the values of the three most important properties

of Lagrangian trajectories: the kinetic energy, the degree of small-scale roughness or fractal dimension, and the long-time

diffusive behavior. Thus, it is arguably the simplest stochastic model that can capture the essential features of such data.

A transition of the spectrum to constant values at sufficiently low frequencies is expected to be a common feature of many

physical systems. Systems are often characterized by a pressure to grow—represented by a forcing—together with some drag

or resistance on that growth, represented by a damping. After a sufficiently long time, the forcing and the damping equilibrate

and one reaches a bounded state. This leads to the speculation that many time series that are well described as fBm over

relatively short timescales may be better matched by the Matérn process over longer timescales. More generally, the Matérn

process adds a third parameter (damping) to the two parameters (amplitude together with spectral slope or the Hurst parameter)

of fBm, thus permitting a wider range of spectral forms to be accommodated. It is therefore reasonable to think that the Matérn

process could be of broad interest in many areas in which fBm has already proven itself useful.
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Many of the results herein may be found somewhere in the literature; the novelty and significance of this paper arise from

placing these results in context. The relevant literature is vast, and the results that form this narrative are widely distributed

within disparate communities. The concept of diffusivity discussed in Section 2 is well known within physics and fluid dynam-

ics, but is largely unheard of in the time series literature. The Matérn process investigated in Section 4 is well known in spatial

statistics, but not in time series or in fluid dynamics. That the Matérn process is essentially damped fractional Brownian motion,

one of our main points, has already been recognized by Lim and Eab (2006), who, however, appear to have come upon the

Matérn form independently, without using this name and without referencing the existing literature. Thus, the various results

brought together here currently exist in such a dispersed state that the significance of combining them is not at all apparent.

The main contributions of this work are: (i) to place the Matérn process in context by understanding its relationship to

fractional Brownian motion; (ii) to establish why the Matérn process is important for stochastic modeling of time series,

geophysical time series in particular, which is its ability to simultaneously capture the effects of long-timescale diffusivity and

small-scale fractal dimensionality; (iii) to demonstrate its performance with an application to a classical physical system; and

(iv) to accomplish these goals in a way that is accessible to a general audience.

This paper was inspired by the need to develop a stochastic model for a particular physical application. As such, we are

cognizant of the need to make stochastic modeling tools accessible to a broad audience. We have therefore endeavored to

present material in a manner that is grounded in concepts from signal analysis, as this is a common language shared by many

fields. A priority is placed on being self-contained, in order to avoid referring the reader repeatedly to the literature. The use

of stochastic differential equations, or other more mathematical tools, is avoided unless absolutely necessary. At the same

time, we are aware of the need to maintain rigor, and have therefore sought to carefully qualify any approximate or informal

statements. New results are denoted as such.

The structure of the paper is as follows. Section 2 introduces background material regarding the concept of diffusivity and

its relationship to the spectrum, and presents a preview of the application to turbulence as a motivation. An introduction to

fractional Brownian motion is presented in Section 3. The properties of the Matérn process are then investigated in Section 4.

Section 5 presents a new algorithm for fast approximate numerical generation of the Matérn process, and Section 6 returns to

the application with additional details. The paper concludes with a discussion.

All numerical software associated with this paper, including a script for figure generation, is distributed as a part of a freely

available Matlab toolbox, as described in Appendix A. The paper includes two supplemental animations, http://www.jmlilly.

net/videos/dispersionmovie.mp4 and http://www.jmlilly.net/videos/turbulencemovie.mp4.

2 Background and motivation

This section introduces background material on stochastic processes, and identifies the diffusivity as a fundamental second-

order stochastic quantity. This importance of diffusivity is illustrated by briefly discussing an application to modeling particle

velocities in fluid turbulence.
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2.1 Complex notation, continuous time

In this paper, we will work with continuous-time, complex-valued processes, a choice that deserves comment. The decision to

use complex-valued processes stems from the fact that the main application, to fluid dynamics, consists of analyzing trajectories

that may be regarded as positions on the complex plane. For the most part, the results all apply equally well to real-valued

processes. The choice to work in continuous time reflects more than convenience, as physical phenomena are generally regarded

as existing continuously in time. A discrete time series arises when a process, such as a fluid flow, happens to be sampled at

discrete intervals, owing to the constraints of measurements with real-world instruments. For these reasons, we will work in

continuous time, and discrete sampling effects will be addressed when relevant.

2.2 Autocovariance and spectrum

The next two subsections have been reorganized.

Let z(t) = u(t)+ iv(t) be a potentially nonstationary, complex-valued, zero-mean random process, where i⌘
p
�1. For

concreteness herein, z(t) will be regarded as having units of velocity, with u(t) and v(t) giving eastward and northward

velocity components, respectively. The autocovariance function of z(t) is defined as

Rzz(t,⌧)⌘ E{z(t+ ⌧)z⇤(t)} (1)

where the asterisk denotes the complex conjugate; note this satisfies the symmetry Rzz(t,⌧) =R⇤
zz(t+ ⌧,�⌧). If it is the

case that z(t) is second-order stationary, meaning that its second-order statistics are independent of global time t, the auto-

covariance function is written as Rzz(⌧). In this case one finds R⇤
zz(�⌧) =Rzz(⌧), and thus the autocovariance function of a

stationary complex-valued stochastic process has Hermitian symmetry. Another useful property of Rzz(⌧) is that it is rotation-

ally invariant in the x–y plane: if one rotates the process counterclockwise through some some constant angle ⇥ by defining

z̃(t)⌘ ei⇥z(t), we have Rz̃z̃(⌧) =Rzz(⌧), and the autocovariance function remains unchanged.

It is well known that the autocovariance function of a complex-valued process does not completely characterize its second-

order statistics (Mooers, 1973; Picinbono and Bondon, 1997; Schreier and Scharf, 2003). Additional information is contained

within a second covariance function

Czz(t,⌧)⌘ E{z(t+ ⌧)z(t)} (2)

which is the covariance between z(t) and its own complex conjugate.1 This quantity is variously known as the relation function

(Picinbono and Bondon, 1997) or complementary autocovariance function (Schreier and Scharf, 2003) or pseudo-covariance

(Neeser and Massey, 1993) in the time series literature, and as the outer autocovariance in oceanography and atmospheric

science (Mooers, 1973). Unlike the autocovariance function, the relation function changes with a coordinate rotation. With
1It is considered standard that the covariance between two zero-mean complex-valued time series a(t) and b(t) involves a conjugation of one of the two

time series, e.g. R
ab

(⌧)⌘ E{a(t+ ⌧)b⇤(t)}. This accounts for the conjugation in (1) and the absence of conjugation in (2). Thus, the quantity C

zz

(t,⌧)

may be equivalently, but rather confusingly, denoted as R
zz

⇤ (t,⌧).
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z̃(t)⌘ ei⇥z(t) again being a rotated version the process, one finds Cz̃z̃(⌧) = ei2⇥Czz(⌧). This shows that information regard-

ing the directionality of variability must reside in Czz(t,⌧) and not in Rzz(t,⌧). If the process is isotropic, meaning that its

statistics are independent of the rotation angle ⇥, then clearly Czz(t,⌧) must vanish; the process is then said to be proper or

circular or circularly symmetric. In the present paper we are concerned with isotropic processes, and we will therefore limit

our attention to Rzz(t,⌧).

The statistical information contained in the autocovariance function of a second-order stationary process, Rzz(⌧), can be

equivalently expressed in terms of its Fourier transform, the spectrum Szz(!), through the inverse Fourier relationship

Rzz(⌧) =
1

2⇡

1
Z

�1

ei!⌧Szz(!)d!. (3)

Rather than needing to deal separately with an eastward or u-velocity spectrum and a northward or v-velocity spectrum,

the spectrum of the complex-valued velocity z(t) = u(t)+ iv(t) compactly includes contributions due to positively-rotating

circular motions ei|!|⌧ for ! > 0, and those due to negatively-rotating circular motions e�i|!|⌧ for ! < 0. For this reason Szz(!)

is referred to as the rotary spectrum in the oceanographic and atmospheric science literature (Fofonoff, 1969; Gonella, 1972;

Mooers, 1973; Emery and Thomson, 2014, Chapter 5.4.4.2). Unlike the spectrum of a real-valued signal, the rotary spectrum

is in general not a symmetric function of !. Because physical processes are generally better separated in the frequency domain

than in the time domain, and because the spectrum is a more straightforward quantity to estimate than is the autocovariance,

we will work with the spectrum rather than the autocovariance for stochastic modeling.

2.3 Diffusive processes

The time integral of the velocity process z(t) defines a complex-valued displacement or trajectory on the complex plane,

denoted by

r(t)⌘
t
Z

0

z(⌧)d⌧ (4)

where the integral is interpreted as �
R 0
t
z(⌧)d⌧ for t < 0. This definition of r(t) sets the initial condition r(0) = 0. Drawing

on a key concept from physics we introduce the total or isotropic diffusivity as

(t)⌘ 1

4

d

dt
E

�

|r(t)|2
 

(5)

which quantifies the expected rate at which the particles disperse, or spread out, over time from an initial location. Here E{·}
is the expectation operator. Note that (t) is the defined as the average of the rates of dispersion in the x- and y-directions,

x(t)⌘ 1
2

d
dt E

�

x2
(t)
 

and y(t)⌘ 1
2

d
dt E

�

y2(t)
 

. 2

2Why  should be defined as the average of the component diffusivities 
x

and 

y

, and not their sum, requires some comment. Recall that the diffusion

equation with constant diffusivity, but differing diffusivities in the x- and y-directions, is @

@t

�= 

x

@

@x

2 �+

y

@

@y

2 � for some field �(x,y, t). Under the

assumption of isotropy, the definition = 1
2 [

x

+

y

] leads to the usual form of the diffusion equation @

@t

�= r2
� where r2 is the horizontal Laplacian.

Defining  instead as the sum of the component diffusivities would lead to a 1
2 appearing in this equation, which is not standard. This accounts for the factor

of 1/4 in (5), rather than the more familiar 1/2 that is found in the definition of the component diffusivities 
x

and 

y

.
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If an ensemble of particles exhibits a power-law dispersion near some time t with

E

�

|r(t)|2
 

⇠ t� , (t)⇠ t��1 (6)

then the local behavior is said to be diffusive if � = 1, subdiffusive if � < 1, and superdiffusive if � > 1. The same process may

exhibit different diffusive regimes at different times, but if (6) holds in an asymptotic sense for large t, then the long-time limit

of (t) is given by

⌘ lim

t�!1

1

4

d

dt
E

�

|r(t)|2
 

=

8

>

>

<

>

>

:

0, � < 1

constant, � = 1

1, � > 1

(7)

where the time-independent, asymptotic quantity  is conventionally known simply as the diffusivity. In the case that  is a

nonzero constant, one has E
�

|r(t)|2
 

= 4t, and the expected area enclosed by the particle ensemble grows linearly with time.

Thus  quantifies a tendency for random fluctuations to yield systematic outward or radial motion.

The seminal work of Taylor (1921) applied the concept of diffusivity to study the random motions of macroscopic fluid parti-

cles, a usage that is now widespread in fluid dynamics (LaCasce, 2008). Here we employ the physical concept of diffusiveness

to describe the long-term dispersive behavior of random processes in general, regardless of the system being represented.

While the diffusivity is not a recognized quantity in time series analysis, we will show that is an essential second-order

descriptor, on par with the variance. If z(t) is a zero-mean second-order stationary process with autocovariance function

Rzz(⌧) and Fourier spectral density Szz(!), and having variance �2 ⌘ E
�

|z(t)|2
 

, one finds

�2
=Rzz(0) =

1

2⇡

1
Z

�1

Szz(!)d! (8)

=

1

4

Szz(0) =
1

4

1
Z

�1

Rzz(⌧)d⌧ (9)

which shows that the variance �2 and diffusivity  may be seen as time- and frequency-domain analogues of one another. The

first of these relations is the well-known Parseval’s theorem, while the second is shown in Appendix B. Just as the variance

�2 is given by the integral of the velocity spectrum, or the value of the autocovariance at zero, the diffusivity  is the integral

of the autocovariance, or the value of the spectrum at zero. As each is the zeroth-order moment in one of the two domains,

they share a common footing as the two lowest-order and potentially most important second-order statistical properties of a

stationary random process.

The result that the diffusivity is the zero-frequency value of velocity spectrum is not entirely new. It is implicit in a result

of Kampé de Fériet (1939), see p. 527–528 of Monin and Yaglom (2007). It is also pointed out in Davis (1983, p. 175) and

is mentioned in LaCasce (2008). However, this result does not appear widely appreciated in the ocean/atmosphere literature.

Within the time series literature, there does not appear to be a recognition of the potential importance of the zero-frequency

value of the spectrum on account of its connection to dispersive behavior.
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Because the diffusivity appears as a second-order descriptor of the velocity process z(t), it is useful to categorize z(t)

according to the associated diffusivity value. For a given z(t) we may define  as in (9) through the value of the spectrum

at zero frequency, or equivalently, through the integral of the autocovariance. We will refer to z(t) as a diffusive process if it

is associated in this way with a non-zero and finite value of . Processes associated with zero values of  will be said to be

subdiffusive, while those associated with unbounded values of  will be referred to as superdiffusive. Note that the diffusivity

is a property that can be associated both with the velocity process z(t), in the zero-frequency value of its spectrum, and the

trajectory r(t), in its rate of dispersion. To avoid ambiguity, we will say that z(t) is a diffusive process whereas r(t) is a

diffusive trajectory, and so forth for sub- and superdiffusive processes.3

The classification of a stochastic process as diffusive, subdiffusive, or superdiffusive is related to a well-known property, the

process memory. If the autocovariance of a finite-variance stationary process exhibits the long-term decay

Rzz(⌧)⇠ |⌧ |�µ, 0< µ 1 |⌧ |!1 (10)

then the process is said to be a long-memory process or to have long-range dependence (Beran, 1992, 1994; Gneiting and

Schlather, 2004). A short-memory process is one for which the autocovariance falls off more rapidly than |1/⌧ |, in which case

the autocovariance function will be absolutely integrable; note that the statement Rzz(⌧)⇠ |⌧ |�µ means that the magnitude of

the autocovariance decays as |⌧ |�µ. Thus, short-memory stationary processes are those for which the autocovariance function

is absolutely integrable, and long-memory stationary processes are those for which it is not.

The process memory is therefore a classification based on the absolute integrability of the autocovariance, whereas the

diffusiveness is based on its integrability, as seen in (9). From this one may establish that both short- and long-memory

processes can be diffusive or subdiffusive, but only long-memory processes can be superdiffusive. A long-memory process has

an autocovariance that is not absolutely integrable, whereas a diffusive process has an autocovariance that is integrable and that

integrates to a nonzero value. A function can be integrable but not absolutely integrable, thus a diffusive process can be long-

memory. Similarly, both short-memory and long-memory processes could have autocovariances that integrate to zero, giving

a subdiffusive process. However, if a function is absolutely integrable then it is also integrable, thus a short-memory process

cannot be superdiffusive. For concreteness, examples of spectra of processes with different combinations of diffusiveness and

memory are presented in Appendix C based on modifications to the Matérn process.

2.4 Application to 2D turbulence

In this paper, we will be concerned with an application to the stochastic modeling of particle trajectories, and the associated

velocity time series, from a numerical simulation of fluid turbulence. The system we will use, known as forced-dissipative two-

dimensional turbulence, see e.g. Chapter 8.3 of Vallis (2006), generates temporally and spatially varying flows that exist purely

in the horizontal plane. This system is considered an idealized representation of turbulence in planetary fluid dynamics. Details

of the numerical model, including the model equations and parameter choices, are described in Section 6.1. The simulation is
3A diffusive process in our terminology is distinct from the idea of a Markov diffusion process, which is the solution to a particular type of first-order

stochastic differential equation (e.g. Metzner, 2007). As the latter usage appears to be somewhat restricted, we expect there to be little possibility of confusion.
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Figure 1. A snapshot of current speed from the turbulence simulation (left) together with 1024 particle trajectories (right). In the left panel,

shading is the speed
p

U2
(x,y, t)+V 2

(x,y, t) at each point, with white corresponding to zero velocity and black to 18 cm s�1. In the

right-hand panel, different trajectories are represented by different shadings of gray. The physical domain size is 2500 ⇥ 2500 km, with

the x- and y-axes in this figure given in units of 1000 km. See turbulencemovie.mp4 for an animation of this figure, in which only the 512

particles to be analyzed are shown.

carried out in a doubly periodic domain4 having physical dimension of 2500 ⇥ 2500 km, and is integrated for three years. The

time series analyzed here are 512 particle trajectories taken from a total of 1024 that are tracked throughout this experiment,

and that are initially uniformly distributed throughout the model grid at regular intervals.

A snapshot of the velocity field at the initial time, together with the particle trajectories from the entire simulation, is shown

in Fig. 1. The quantity plotted in the left-hand panel is the current speed |U + iV |=
p
U2

+V 2 at time t= 0, where U =

U(x,y, t) and V = V (x,y, t) are the velocities at each point in the domain. The roughly circular regions of high-speed currents

correspond to long-lived swirling structures termed vortices or eddies. The emergence of vortices is one of the defining features

of two-dimensional turbulence (e.g. McWilliams, 1990a). A method for their study based on trajectory data has been developed

elsewhere (Lilly and Gascard, 2006; Lilly and Olhede, 2009; Lilly et al., 2011). The focus here, however, is on trajectories not

directly influenced by such structures. For this reason, one-half of the trajectories are discarded in order to exclude those

directly effected by vortices, using a criterion described in Section 6.1, leaving 512 trajectories that will be analyzed herein.
4 A doubly periodic domain means that the x-axis is periodic, such that structures passing eastward across the eastern boundary return on the western

boundary, and that the y-axis is similarly periodic.
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The supplementary animation turbulencemovie.mp4 presents the evolution of these 512 trajectories superimposed on the speed

as in Fig. 1a.

These 512 “eddy-free” trajectories are also displayed in Fig. 2a. Here, the position coordinates in the periodic domain have

been unwrapped, and the resulting trajectories r(t) offset in the horizontal so as to begin at the origin at time t= 0. Dispersion

is then visualized by the circles, which have been drawn with radii

r̃n ⌘
r

E

n

|r(n�)|2
o

(11)

at uniformly spaced time intervals n�t, with � equal to six months and n= 1,2, . . .6. In this expression, the expectation

operator is interpreted as the average over all 512 trajectories. For constant diffusivity, one expects that r̃2n = 2n� from (5),

such that the total enclosed area increases linearly, and the radius increases as the square root of time. That the trajectories

shown here are exhibiting diffusive behavior is thus indicated by the appearance of the circles in Fig. 2a, which become more

closely spaced together as time increases.

The average estimated spectrum of the velocity signals z(t) corresponding to these trajectories is shown as the heavy black

curve in Fig. 3. Non-parametric estimates of the velocity spectra have been formed for each trajectory by tapering with a lowest-

order Discrete Prolate Spheroidal Sequence or “Slepian” taper (Slepian, 1978; Thomson, 1982; Park et al., 1987; Percival and

Walden, 1993, Chapter 3.9) having a time-bandwidth product set to a value of 10, see p. 12,677 of Park et al. (1987) for a

definition of this parameter. The spectra for all 512 velocity signals are averaged together, and because there is no expected

difference between clockwise and anti-clockwise velocities, only spectra for positive frequencies are shown.

The velocity spectrum is observed to have three main features: an overall energy level, a high-frequency slope, and a low-

frequency plateau. As shown in the preceding section, the low-frequency plateau of the velocity signals is a reflection of the

diffusive behavior of the trajectories. The goal of this paper is to identify a stochastic model capable of reproducing these three

features, and to thoroughly understand its properties.

2.5 Overview of stochastic models

Consider one-, two-, and three-parameter frequency spectra having the forms

Szz(!) =A2, Szz(!) =
A2

|!|2↵ , Szz(!) =
A2

(!2
+�2

)

↵

which are taken as models for the complex velocity time series z(t) from the turbulence simulation. The first type of spectrum

corresponds to white noise.5 The second is a power-law spectrum that arises for fractional Brownian motion (Mandelbrot and

Van Ness, 1968) for ↵, termed the slope parameter, in the range 1/2< ↵< 3/2. For the slope parameter ↵> 1/2, the third

spectrum is that of a type of random process known as a Matérn process (Matérn, 1960; Guttorp and Gneiting, 2006), which we

will show to be a damped version of fractional Brownian motion, with �> 0 playing the role of an inverse damping timescale.
5For the sake of brevity, we here glossing over the fact that the spectrum of white noise is defined only up to the Nyquist frequency, whereas the other two

spectra are defined for all frequencies.
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Figure 2. [See caption on next page]
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Figure 2. [See figure on previous page] Dispersion curves for the three-year turbulence trajectories and the three different stochastic models

discussed in Section 2.5. Panel (a) shows 512 “eddy-free” trajectories, chosen from a larger set of 1024 as described later in Section 6.1.

All curves have been offset such that the initial points are located at the origin. Panel (b) shows realizations of a Matérn random process

using parameters fit to the velocity spectra of each trajectory, and then cumulatively summed to produce a displacement, also with the initial

condition at the origin. Similarly, the lower two panels show trajectories corresponding to white noise velocities (c) and velocities for a

power-law process (d), the latter approximated using a Matérn process with very low damping. The stochastic velocities in (c) are chosen to

match the low-frequency spectral levels of the turbulence trajectories, while in (d) they are chosen to match the high-frequency spectral slope.

All trajectories in the doubly-periodic domain have been unwrapped for presentational clarity, with the gray square in each panel showing

the domain size. Note that the x- and y-axes in panel (d) are a factor of one million times larger than those of the other panels, which is why

the gray box is not visible. In each panel, black circles show the root-mean-square distance from the origin r̃
n

defined as in (11). Circles are

drawn every six months, beginning at six months and ending at three years. The circles in (d) do not become closer together with increasing

radius, indicating superdiffusive behavior. See dispersionmovie.mp4 for an animation of the first two panels of this figure.

Note that these three models are formally nested within one another: choosing �= 0, the third becomes the second; and choose

↵= 0, the second becomes the first.

The form of the Matérn spectrum is fit to the velocity spectra of the turbulence trajectories, in a way that will be described

in Section 6, to generate best-fit values of the three Matérn parameters (A, ↵, and �) for each of the 512 trajectories. The low-

frequency values from these fits are then used to match the white noise spectrum, while the parameters for the high-frequency

slopes are used to match the power-law spectrum. For each set of parameters, realizations of these three types of random

processes are constructed from the best-fit parameters using the methods described in Section 5. The spectra of the simulated

trajectories are then estimated in the same manner as for the original trajectories, and shown in Fig. 3. As expected due to their

construction, the white noise and power-law process match only the low-frequency plateau or high-frequency spectral slope,

respectively, of the original spectra.

The Matérn spectral form is seen to provide an excellent match to the observed Lagrangian velocity spectra over roughly

eight decades of structure. The high-frequency slope is seen to be roughly |!|�8, a very steep slope. We are not aware of any

physical theory to account for this, nor for the value of the damping parameter �. Despite the fundamental role that the Eulerian

wavenumber spectrum of velocity plays in turbulence theory, the Lagrangian frequency spectrum has received relatively little

attention. Attempting to connect the observed form of this spectrum to physical principles is, however, outside the scope of the

present paper.

These three different sets of random processes for the velocity time series are then cumulatively summed to form trajectories,

and are compared with the original trajectories in Fig. 2; note the axes limits in Fig. 2d are a factor of one million times larger

than in the other panels, a consequence of the growth of the variance to enormous values. The turbulence trajectories and

the synthetic trajectories generated from the Matérn model are observed to be virtually indistinguishable in character. See

the supplementary file dispersionmovie.mp4 for an animation of the upper two panels of Fig. 2, showing the good agreement

between the Matérn trajectories and the turbulence trajectories.
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Figure 3. Spectra for the trajectories shown in Fig. 2. Estimated rotary spectra S
zz

(!) are shown for positive frequencies only, since the

negative frequency side is statistically identical. The first four curves show the mean values of the estimated spectra, formed as described in

the text, of each of the four sets of trajectories shown in Fig. 2. The fifth curve, indicated by a solid line, shows a slope of �8, corresponding to

a slope parameter ↵= 4. The dotted horizontal line marks the approximately limit of double numerical precision for the power law process,

15 orders of magnitude below its maximum; this numerical precision limit accounts for the flattening of gray dashed curve.

By contrast, the one-parameter and two-parameter spectral models provide poor fits to the observed trajectories, see Fig. 2c,d.

The trajectories associated with the white noise velocities match the dispersion curves closely, but the trajectories are far too

rough in appearance. When set to match the high-frequency spectral slope and thus the trajectory behavior at small scales, the

power-law model for velocity spectra yields trajectories with a vastly incorrect range, too high a degree of smoothness at the

large scale, and dispersion characteristic of a continually increasing diffusivity.

Thus, the white noise model is able to correctly match the large scale, low-frequency component of the velocity spectra

that accounts for the diffusive behavior of the trajectories. The power-law model is able to correctly match the high-frequency

14



component of the spectrum that sets the small-scale roughness. The Matérn spectrum allows one to match both. This provides

a compelling example that motivates examining the Matérn process in more detail.

3 Fractional Brownian motion

This section reviews the properties of fractional Brownian motion, focusing on the central importance of the spectrum. With a

few noted exceptions, this section presents material that is already known in the literature. Readers already very familiar with

this process may wish to skip to the description of the Matérn process in the next section.

3.1 Spectrum

As described in the Introduction, many real-world processes are found to exhibit power-law behavior over a broad range of

frequencies. For a range of spectral slopes, the power-law spectrum corresponds to that of a Gaussian random process6 called

fractional Brownian motion (fBm), introduced by Mandelbrot and Van Ness (1968). While the spectrum of fBm is not defined

in the usual sense due to its nonstationarity, an expanded version of the notion of a spectrum, discussed in Section 3.3 and

denoted as eSzz(!), is found to yield for fBm the form (Flandrin, 1989; Solo, 1992)

eSfBm
zz (!) =

A2

|!|2↵ , 1/2< ↵< 3/2 (12)

where ↵ will be called the slope parameter, and with A setting the spectral level. Fractional Brownian motion is a generaliza-

tion of classical Brownian motion—corresponding to the case ↵= 1 and therefore to an !�2 spectrum—for which the slope

parameter ↵ can take a range of non-integral values. It is clear that a process having a spectrum proportional to |!|�2↵ for

↵> 1/2 will be singular at zero, and will integrate to an infinite value, thus possessing neither a finite diffusivity nor a finite

variance. Both the variance and the diffusivity of fBm will be found to increase without bound.

Examples of complex-valued fractional Brownian motion are shown in Fig. 4. Here nine curves are shown for nine different

values of ↵, varying from just greater than 1/2 to just less than 3/2. The decrease in the degree of roughness as ↵ increases,

and the spectral slope becomes more steep, is readily apparent in the figure. This occurs due to the fact that larger values of

↵ correspond to stronger degrees of ‘filtering’, with steep spectral slopes removing high-frequency contributions to variance.

Because we are considering that z(t) represents a velocity z(t) = u(t)+ iv(t), this figure shows plots of u(t) versus v(t), as

opposed to the trajectories that would arise from temporally integrating these quantities.

The main goal of this section is to utilize fBm to understand the implications of the slope parameter ↵. It will be found that

for fractional Brownian motion, ↵ has several intuitively distinct but partly corresponding interpretations: it is directly linked

to the temporal decay of the autocovariance function; it controls the aspect ratio of rescaling for self-similar behavior; it sets

the fractal dimension or degree of roughness; and it determines the degree of persistence or anti-persistence of a differenced

version of the process, see Appendix F. Note that in the fBm literature, the slope parameter ↵ is conventionally replaced
6A Gaussian random process is one for which every finite linear combination of samples has a jointly Gaussian distribution. For example, the distribution of

the process at a fixed time is Gaussian, and the distribution between the process and itself at two different times is a jointly Gaussian function of two variables.
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Figure 4. Plan view of realizations of complex-valued fractional Brownian motion z(t), for nine different values of the slope parameter ↵,

as indicated in the legend. All nine time series have been set to have unit sample variance, and the real part of each curve is offset by a value

of �3 from that for the next lower value of ↵. The smallest value of ↵, corresponding to the least smooth process, is at the right. The data

aspect ratio is equal between the real and imaginary parts.

with H = ↵� 1/2, referred to as the Hurst parameter, with 0<H < 1, in terms of which the fBm spectrum is given by
eSfBm
zz (!) =A2/|!|2H+1.

There are compelling reasons to work with the slope parameter ↵ rather than the Hurst parameter H . While spectral slope

could be characterized in the vicinity of any frequency, the Hurst parameter is, strictly speaking, a measure of the long-time

process range or memory. That is, H is a limiting quantity pertaining to the behavior of the process at very large timescales.

As pointed out by Gneiting and Schlather (2004), the self-similarity of fBm implies that the large-scale behavior (memory)

and small-scale behavior (fractal dimension) must be linked. However, for stochastic processes more generally, no such link

between large and small scales is required. The spectral slope is therefore more appropriate when showing the connection of

fBm to its damped version, the Matérn process, which is a short-memory process. Furthermore, because the appearance of the

Matérn process as damped fractional Brownian motion is most clear in the frequency domain, it is sensible to work with a

parameter that makes the spectral form simple.

3.2 The fBm autocovariance function

Fractional Brownian motion is defined in terms of a stochastic integral equation, which will be presented later in this section.

This stochastic integral equation leads to a nonstationary autocovariance function given by (Mandelbrot and Van Ness, 1968)

RfBm
zz (t,⌧) = E{z(t+ ⌧)z⇤(t)}= V↵

2

A2
⇥

|t+ ⌧ |2↵�1
+ |t|2↵�1 � |⌧ |2↵�1

⇤

(13)

where V↵ is a normalizing constant defined shortly. The exponents take on values in the range 0< 2↵� 1< 2 due to the fact

that 1/2< ↵< 3/2. Thus the dependence of RfBm
zz (t,⌧) on t and ⌧ varies from being relatively flat, near ↵= 1/2, to relatively

steep, near ↵= 3/2.
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Observe that fractional Brownian motion is nonstationary—its autocovariance is a function of “global” time t as well as the

time offset ⌧ . Most significantly, the variance of fBm is

�2
(t) = E{|z(t)|2}=RfBm

zz (t,0) = V↵A
2|t|2↵�1 (14)

which increases without bound; the longer one waits, the larger the expected amplitude of variability becomes. The time-

varying fBm diffusivity is found to be

(t) =
V↵

4

↵+1

↵
A2|t|2↵, t� 0 (15)

as we readily find by integrating the autocovariance as in (B4). Like the variance, the diffusivity tends to increase without

bound, rather than taking on a constant value. Note that the ratio of the diffusivity to the variance increases linearly with time,

(t)/�2
(t) = 1

4 |t|(↵+1)/↵.

The normalizing constant in fBm, conventionally denoted V↵, is defined as the variance at time t= 1 of an fBm process

having the amplitude parameter A set to unity,

V↵ ⌘ E{|z(1)|2}=RfBm
zz (1,0), A= 1. (16)

Its value is found to be (Barton and Poor, 1988)

V↵ =

�(2� 2↵)sin(⇡↵)

⇡(↵� 1/2)
(17)

where �(x) is the gamma function. We find in Appendix E that this constant can be cast in the more symmetric form

V↵ =

1

⇡

�

�

↵� 1
2

�

�

�

3
2 �↵

�

�(2↵)
(18)

which allows one to see behavior of this coefficient more clearly. Recall that �(x), while positive for positive x, is negative in

the interval (�1,0), as follows from the reflection formula �(x) = ⇡/ [sin(⇡x)�(1�x)]. Thus V↵ is positive over the whole

permitted range of ↵, 1/2< ↵< 3/2, but becomes unphysically negative as one passes outside of this range. Because the

gamma function has a singularity at zero, with �(x) tending to positive infinity as x approaches zero from above, V↵ also tends

to positive infinity as one approaches the two endpoints ↵= 1/2 and ↵= 3/2. Finally, from �(1/2) =
p
⇡ and �(2) = 1, the

value of the coefficient for the Brownian case of ↵= 1 is found to be V1 = 1.

In addition to the autocovariance function, it is informative to also examine a related second-order statistical quantity,

�zz(t,⌧)⌘
1

2

E

n

|z(t+ ⌧)� z(t)|2
o

=

1

2

[Rzz(t+ ⌧,0)+Rzz(t,0)� 2<{Rzz(t,⌧)}] (19)

where <{·} denotes the real part. This quantity is commonly known as the variogram in time series analysis and geostatistics,

following Cressie (1988) and Matheron (1963); in the turbulence literature, the same quantity is widely used and is known as

the second-order structure function, a term which dates back at least to the 1950’s (Monin, 1958). For a stationary random

process, the variogram becomes simply �zz(t,⌧) = �zz(⌧) = �2 �<{Rzz(⌧)}. Thus in the stationary case, the variogram

merely repeats information already present in the autocovariance function.
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For fractional Brownian motion, cancellations in the variogram occur and one obtains

� fBm
zz (t,⌧) = � fBm

zz (⌧) =
V↵

2

A2|⌧ |2↵�1 (20)

which is independent of global time t. Thus unlike its autocovariance function, the variogram of fBm is stationary. This

equation states that the expected squared difference between fBm values at any two times is proportional to a power of the time

difference, implying that the expected rate of growth of the fBm from its current value is independent of t. One might therefore

say that fBm is nonstationary, but in a time-independent or stationary manner. A process having a stationary variogram is said

to be intrinsically stationary (Ma, 2004).

3.3 Linking the spectrum and autocovariance

Owing to its nonstationarity, the fBm autocovariance cannot be Fourier transformed in the usual way to yield a spectrum that

is independent of global time t. Evidently the notion of what it means to be a Fourier transform pair must be generalized to

accommodate the time-dependent autocovariance. That the spectrum of fractional Brownian motion should be a power law of

the form |!|�2↵ was already conjectured by Mandelbrot and Van Ness (1968), based on earlier work by Hunt (1951) on the

spectrum of its increments. Proving that this should be the case was accomplished by Solo (1992) using one approach, and by

Flandrin (1989) and Øigård et al. (2006) using two variants of a different approach. Here, we essentially follow the latter paper,

incorporating some additional details.

In general, the Fourier transform with respect to ⌧ of a nonstationary autocovariance function Rzz(t,⌧) defines a time-

varying relative of the spectrum

Szz(t,!)⌘
1
Z

�1

Rzz(t,⌧)e
�i!⌧

d⌧ (21)

which, provided the integral on the right-hand side is well defined, is known as the Rihaczek (Rihaczek, 1968; Flandrin,

1999, p. 60–62) or Kirkwood-Rihaczek (Kirkwood, 1933; Hindberg and Hanssen, 2007; Øigård et al., 2006) distribution, or

alternatively as the time-frequency spectral density (Hanssen and Scharf, 2003). If one averages the Rihaczek distribution

across global time in moving windows of length T , then takes the limit as T approach infinity, one obtains

Szz(t,!;T )⌘
1

T

t+T/2
Z

t�T/2

Szz(u,!)du, eSzz(!)⌘ lim

T�!1
Szz(t,!;T ) (22)

where eSzz(!) is a time-averaged spectrum of a potentially nonstationary process. Observe that for stationary processes,

Rzz(t,⌧) and therefore Szz(t,!) are independent of the global time t. In this case, Szz(t,!) reduces to the usual Fourier

spectrum Szz(!), the time average in (22) has no effect, and eSzz(!) is therefore also identical to the usual Fourier spectrum

Szz(!). Thus eSzz(!) is a generalization of the usual Fourier spectrum, to which it reduces in the stationary case, that may be

used to describe nonstationary processes.
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For fractional Brownian motion, the Rihaczek distribution was stated by Øigård et al. (2006) to be

SfBm
zz (t,!)⌘

1
Z

�1

RfBm
zz (t,⌧)e�i!⌧

d⌧ (23)

=

A2

|!|2↵
�

1� ei!t
�

+V↵A
2⇡|t|2↵�1�(!) (24)

with �(t) being the Dirac delta function; see Appendix D for details of the derivation. The time-averaged version of the fBm

Rihaczek distribution, defined as in (22), is given by

S
fBm

zz (t,!;T ) =
A2

|!|2↵



1� ei!t sin(!T/2)

!T/2

�

+

V↵

2↵T
A2⇡

"

�

�

�

�

t+
T

2

�

�

�

�

2↵

�
�

�

�

�

t� T

2

�

�

�

�

2↵
#

�(!) (25)

and in the limit as the averaging time T approaches infinity, we find the time-averaged nonstationary spectrum for fBm to be

eSfBm
zz (!)⌘ lim

T�!1
S
fBm

zz (t,!;T ) =
A2

|!|2↵ (26)

where all terms dependent on global time t are found to vanish. This determines a sense in which the power-law form is the

correct spectrum to associate with nonstationary fractional Brownian motion. In the approach of Flandrin (1989), a different,

but related, time-varying generalization of the spectrum is used instead of the Rihaczek distribution, but leading to the same

power-law form for the time-averaged spectrum.

This approach to proving that the power-law form is the correct spectrum to associate with fBm may be critiqued on the

grounds that taking the limit of an average of the time-frequency spectral density, while mathematically sensible, does not

correspond well with a limiting action that occurs in actual practice. Solo (1992) took a different approach, and found that if

the expected autocovariance and spectrum are estimated from a sample over a finite time interval, the power-law form again

emerges in the limit as that the time interval tends to infinity. That proof therefore has a strong intuitive appeal, but is more

involved than the argument presented here.

3.4 Self-similarity

The most striking feature of fBm is that it is statistically identical to rescaled versions of itself. To show this, we define a time-

and amplitude-rescaled version of z(t) as

z̃(t)⌘ �↵�1/2 z(t/�) (27)

where the amplitude rescaling has been chosen to depend upon � as well as the slope parameter ↵. From (13), one finds

RfBm
z̃z̃ (t,⌧) = �2↵�1RfBm

zz (t/�,⌧/�) =
V↵

2

A2�2↵�1
⇥

|(t+ ⌧)/�|2↵�1
+ |t/�|2↵�1 � |⌧/�|2↵�1

⇤

=

V↵

2

A2
⇥

|t+ ⌧ |2↵�1
+ |t|2↵�1 � |⌧ |2↵�1

⇤

=RfBm
zz (t,⌧) (28)

and the autocovariance function of the rescaled process is determined to be the same as that of the original process.
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Because the original, unrescaled fBm process is Gaussian as well as zero mean, its statistical behavior is completely char-

acterized by its autocovariance function. Thus fBm is statistically identical to itself when we “zoom in” in time, provided we

also magnify the amplitude appropriately. This property was referred to as self-similarity in the original work of Mandelbrot

and Van Ness (1968); although later the term self-affinity was suggested as a substitute (Mandelbrot, 1985), the original term

appears to be in more widespread use.

The positive constant � can be seen as a temporal zoom factor, while the coefficient �↵�1/2 describes how the amplitude is

to be rescaled. Choosing � > 1 corresponds to zooming in in time, since then the interval from zero to � in the new process

z̃(t) is drawn from the smaller interval zero to one in z(t/�). Similarly, �↵�1/2 with ↵> 1/2 is greater than one, implying the

amplitude must also be magnified. The required degree of amplitude magnification increases with ↵ from a minimum value

of unity at ↵= 1/2 to a value of � at ↵= 3/2. The slope parameter ↵ therefore governs the aspect ratio of rescaling for this

self-similar behavior.

An illustration of self-similarity is presented in Fig. 5, using the real parts of the nine realizations shown in Fig. 4. The

two panels show the effects of the self-similar rescaling (27) on each time series with a zoom factor � = 4, with the zooming

represented by the gray boxes. The boxes on the left, of different aspect ratios, are rescaled according to the law (27) to have

the same aspect ratios, as shown on the right. It is clear that each of the nine curves presents the same degree of roughness,

and same amplitude of variability, on the left as on the right. This demonstrates what is meant by statistical self-similarity, and

shows how ↵ controls the aspect ratio. A distinguishing feature of fractional Brownian motion is that this zooming may be

continued indefinitely in either direction.

For stationary processes, self-similarity may also be seen in the frequency domain. Apply the rescaling (27) to some process

z(t), which is now assumed to be stationary. From the Fourier representation of the autocovariance, one finds

Rz̃z̃(⌧) = �2↵�1 1

2⇡

1
Z

�1

Szz(!)e
i!⌧/�

d! = �2↵ 1

2⇡

1
Z

�1

Szz(�!)e
i!⌧

d! (29)

after employing the change of variables !/� 7! !. Thus, in order for the process to be self-similar, one must have

Szz(!) = �2↵Szz(�!) (30)

in the spectral domain. This would clearly be the case for the power-law spectrum Szz(!) =A2|!|�2↵, if a stationary process

with such a spectrum were to exist. More generally, if a process has an approximately power-law spectrum over a range of

frequencies, then the self-similarity condition (30) is expected to be approximately satisfied over that range. In this sense a

power-law spectrum implies self-similarity.

Fractional Brownian motion is peculiar in that it has neither a well-defined derivative nor a well-defined integral. Loosely

speaking, one may say that a derivative does not exist because the limiting action of taking a derivative conflicts with the self-

similarity. Because z(t) exhibits variability at infinitesimally small scales, [z(t+�)� z(t)]/� does not have a well-defined

limit as � tends to zero. The integral
R t

�1 z(u)du does not exist either, because z(t) has unbounded variance as t progresses

toward to infinitely large negative times and is therefore not integrable. Nevertheless, a differenced version of fBm does exist.

This process, termed fractional Gaussian noise, is discussed for completeness in Appendix F.
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Figure 5. A demonstration of self-similarity for fractional Brownian motion, using the realizations presented in Fig. 4. The real part of

each process is shown, with the y-axes in this figure corresponding exactly to the x-axis in Fig. 4. The gray boxes in panel (a) illustrate the

different scaling behaviors, as described by (27). When each process is rescaled such that the boxes in (a) are transformed to the boxes in (b),

the resulting time series are statistically identical to the originals. Thus the rescaled curves in (b) present the same degree of roughness as the

corresponding curves in (a). The temporal magnification factor is � = 4, while the amplitude magnification factor �↵�1/2 varies from 1 at

↵= 1/2 to 4 at ↵= 3/2. In order to avoid the appearance of additional roughness in (a) due only to numerical resolution, only every fourth

point in (a) is shown; thus the curves in (a) and (b) consist of the same number of points.

3.5 Fractal dimension

The property of self-similarity, which is global in nature, was shown in the previous section to be related to the spectral slope.

The slope is also related to two local properties, one associated with the slope at small frequencies, or the behavior of the
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autocovariance at large time offsets, and one associated with the slope at high frequencies, or the autocovariance at small

time offsets. The former property is the process memory or long-range dependence discussed in Section 2.3, while the latter

is the fractal dimension. While we view spectral slope as the more physically meaningful quantity, its relationship to fractal

dimension is here discussed for completeness

Fractal dimension is a measure of the dimensionality of a curve (or some higher-order surface) that accounts the effect

of roughness (Mandelbrot, 1985; Falconer, 1990). There are several different measures of fractal dimension in use, giving

sometimes different values of dimensional measure for a particular curve (see e.g. Mandelbrot, 1985; Taylor and Taylor, 1991;

Dunbar et al., 1992). The most well-known measure, the Hausdorff dimension, is related to the behavior of the autocovariance

function or variogram at very short timescales. One must also distinguish between the dimension of a curve as a function of the

time variable, as in u(t) = <{z(t)} versus t, and the dimension of a curve such as z(t) = u(t)+ iv(t) in space or u(t) versus

v(t), see e.g. Qian (2003). In the literature, the former is known as a graph, and the latter as a sample path.

The dimension of the graph is closely related to the short-time behavior of the autocovariance. As described by Gneiting and

Schlather (2004), for a univariate (or real-valued) stationary process u(t) that has an autocovariance function behaving as |⌧ |⇢

for some 0< ⇢ 2 as ⌧ ! 0, the Hausdorff dimension of the graph of the process is given by D = 2� ⇢/2. The comparable

result for intrinsically stationary Gaussian processes such as fBm is provided by Adler (1977). For fBm, ⇢= 2↵� 1, hence

the dimension of the graph of (real-valued) fBm is D = 5/2�↵. This varies from D = 1 for the smoothest processes having

↵= 3/2, to D = 2 for the roughest processes with ↵= 1/2, corresponding to the bottom-to-top progression seen in Fig. 5.

As pointed out by Gneiting and Schlather (2004), the self-similarity of fBm links the behavior at very large scales and very

small scales together. Because for fBm the spectral slope is constant, the fractal behavior at small scales implies a singularity

in the spectrum at the origin. This is associated with unbounded diffusivity, and since this singularity is not integrable, with

unbounded variance as well. The Matérn process examined in the next section has an additional degree of freedom compared

to fBm, such that the spectrum transitions to flat values for sufficiently low frequencies. This decouples the fractal dimension

from the low-frequency behavior and permits the phenomenon of diffusivity to arise.

3.6 Stochastic integral equation

Fractional Brownian motion is defined via the stochastic integral equation (Mandelbrot and Van Ness, 1968)

z(t) =
A

�(↵)

8

<

:

0
Z

�1

⇥

(t� s)↵�1 � (�s)↵�1
⇤

dW (s)+

t
Z

0

(t� s)↵�1
dW (s)

9

=

;

(31)

where dW (t) here are increments of the complex-valued Wiener process, the covariance of which between itself at two different

times is

E {dW (t)dW ⇤
(s)}= �(t� s)dtds. (32)

The integration with respect to dW (s) indicates in (31) that these integrals are of the Riemann-Stieltjes form, see Percival and

Walden (1993). The process dW (s) can be said to represent continuous-time white noise, thus this equation defines fBm as
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a weighted integral of white noise. Because in (31) one may exchange the order of the integral and the expectation operator,

and dW (s) is zero mean, z(t) is also zero mean. As dW (s) is Gaussian and z(t) is a linear combination of Gaussian random

variables, z(t) is also Gaussian. Thus z(t) inherits both zero-meanness and Gaussianity from the increments of the Wiener

process. Further intuitive content of (31) is not initially apparent, so we will take some time to examine it in detail.

Note that standard Brownian motion, corresponding to ↵= 1, is defined for all t as

z(t) =A

t
Z

0

dW (s) (33)

in which the integral is interpreted as z(t) =�A
R 0
t
dW (s) for t < 0. This is simply the temporal integral of white noise. The

fBm definition (31) reduces to the Brownian form with ↵= 1, with the first term in (31) vanishing.

The stochastic integral equation (31) can be written in the somewhat more transparent form

z(t) =
A

�(↵)

t
Z

�1

⇥

(t� s)↵�1 � I(�s)(�s)↵�1
⇤

dW (s) (34)

where I(t) is the indicator, or unit step, function defined as

I(t)⌘

8

<

:

1, t� 0

0, t < 0

. (35)

The purpose of the second term in (34) is now clearly seen to set the initial condition. It is not a function of time; it is simply

a random number, chosen to set z(0) = 0 identically. Note that the two components of (34) cannot be written as separate

integrals, because writing them as two separate integrals would mean that two different realizations of dW (s) are involved.

The two terms in (34) must be based on the same realization of dW (s) in order to achieve the initial condition z(0) = 0; this

is not true for the two terms in (31), which correspond to two different intervals of integration.

The weighting factors such as (t� s)↵�1 in (31) may be seen as creating a fractional integral of the Wiener process, as will

now be shown. There is a simple expression for a function f(t) that is integrated n times from some initial point a to time t,

an action that is the reverse of the repeated derivative (d

n/dtn)f(t). This formula, known as Cauchy’s formula for repeated

integration, states

t
Z

a

⌧1
Z

a

· · ·
⌧n�2
Z

a

2

4

⌧n�1
Z

a

f(⌧n)d⌧n

3

5

d⌧n�1 · · ·d⌧2d⌧1 =
1

(n� 1)!

t
Z

a

(t� ⌧)n�1f(⌧)d⌧ (36)

meaning that one may collapse an integral that is repeated n times into a single integral, with a weighting to the (n� 1)th

power. Note that applying (d

n/dtn) to both sides, one obtains f(t) = f(t)—the left-hand side by repeated applications of the

fundamental theorem of calculus, and the right-hand side by repeated applications of the Leibniz integral rule.

While the left-hand side of the Cauchy integral formula is not interpretable for non-integer ↵, the right-hand side remains

valid. This allows us to define a fractional integral of f(t) by letting n take on non-integer values in the right-hand-side of (36).
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According to this reasoning, the quantity

1

�(↵)

t
Z

a

(t� ⌧)↵�1f(⌧)d⌧ ↵> 0 (37)

is known as the Riemann-Liouville fractional integral, and may be said to integrate the function f(t) a fractional number of

times ↵. For further details on fractional calculus, see e.g. Gorenflo and Mainardi (1997).

Returning to the definition of fBm in (31), we now see that it is simply a fractional integral of continuous-time white noise,

modified to have the initial condition z(0) = 0. Unlike standard Brownian motion (33), which is integrated only from time

t= 0, for fractional Brownian motion one integrates from the infinite past in order to obtain the desired statistical behavior,

and then one offsets this process by the correct amount in order to set the desired initial condition.

4 The Matérn process

The previous section reviewed the properties of fractional Brownian motion, including its self-similarity and fractal dimension,

and showed how these are related to the spectral slope. This section examines the Matérn process in detail, with a focus on its

relationship to fBm. A simple extension, the inclusion of a ‘spin parameter’, generalizes the Matérn process to encompass a

larger family of oscillatory processes that are shown to represent forced/damped fractional oscillators.

4.1 The Matérn process and its spectrum

In Section 2 we showed that fractional Brownian motion is unable to capture long-time diffusive behavior, and demonstrated

that this was a deficiency for the particular application to modeling particle velocities in two-dimensional turbulence. Regarding

the spectra in Fig. 3, one sees a high-frequency power law slope but a low-frequency plateau. This leads us to consider a

spectrum of the form

SM
zz (!) =

A2

(!2
+�2

)

↵ , ↵>
1

2

(38)

which is the spectrum of a type of stationary random process known as the Matérn process (Matérn, 1960; Guttorp and Gneiting,

2006). Unlike fBm, the Matérn process is defined for all ↵> 1/2 and not just in the range 1/2< ↵< 3/2. Compared with

fBm, the Matérn spectrum incorporates an additional (non-negative) parameter � having units of frequency, which will be

shown to have the physical interpretation of a damping. Note that the form of the Matérn spectrum also generalizes that of the

Ornstein-Uhlenbeck process, corresponding to the ↵= 1 case, to fractional orders (Wolpert and Taqqu, 2005; Lim and Eab,

2006).

Examples of simulated Matérn processes are shown in Fig. 6, for twelve different values of ↵ and three different values

of �. The box indicates a very low-damping regime with 1/2< ↵< 3/2, roughly corresponding to the fractional Brownian

motion realizations seen in Fig. 4. There are two important differences when compared to fBm. The first is that there is no

upper bound on ↵, so the spectral decay can become even steeper than for the ↵= 3/2 case that defines the upper limit of the
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Figure 6. Plan view of realizations of the complex-valued Matérn process, for twelve different values of the slope parameter ↵ and three

different values of the damping parameter �. Lines corresponding to successively higher values of ↵ are offset by a value of �3 in the x-

direction, while successively higher values of � are offset by a value of �3 in the y-direction. The slope parameter ↵ ranges from just greater

than 1/2 to 2 with an interval of 1/8, while � takes the values 1/10, 1/100, and 1/1000. The various ↵ values are shown as alternating black

and gray lines, with largest value ↵= 2 shown as the heavy black line. The dotted box corresponds to those values of ↵ shown previously in

Fig. 4, and to the smallest of the three damping values presented here.

slope parameter for fBm. The second is the role of the additional parameter �. As this parameter is increased, the curves for

any ↵ value appear more and more like white noise.

The damping parameter � thus emerges as controlling the transition between two distinct spectral regimes. The Matérn

spectrum is observed to have two limits

SM
zz (!)⇡

A2

|!|2↵ , |!|� � (39)

SM
zz (!)⇡

A2

�2↵
, |!|⌧ � (40)

so that, for high frequencies, an fBm-like power-law decay is recovered, while for low frequencies the spectrum approaches

a constant. The spectrum may therefore may be said to be locally white (or constant) for small |!|/�; that is, the spectrum

is not constant over all frequencies, or globally white, but it is approximately white for sufficiently low frequencies. The

Matérn process thus provides a continuum between the two regimes of white noise and a power-law spectrum, with a transition

dictated by the value of �. Equivalently, � gives the approximate timescale at which the process begins to exhibit self-similar

behavior, as one zooms out from very large timescales. It follows that in real-world applications, the sampling interval must be

sufficiently small compared to � in order to resolve the self-similar behavior.
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The theoretical spectra corresponding to the realizations in Fig. 6 are shown in Fig. 7a. When frequency is normalized by the

damping parameter, the theoretical (as opposed to the sampled) spectra for the different � values become identical. A transition

in the vicinity of !/�= 1 is readily apparent. The different spectral levels reflect the choice of normalization, which is that �2

has been set to unity. Smaller values of ↵, corresponding to slower decay, therefore appear with lower spectral levels in order

to integrate to unit variance.

To examine the role of � as a transition frequency, we take the derivative of the logarithm of the spectrum, and obtain
d

d!
lnSM

zz (!) =�↵
2!

!2
+�2

(41)

and note that d2

d!2 lnSM
zz (!) vanishes at |!|= �, so the rate of change (41) obtain an extremum at that frequency. The third

derivative d3

d!3 lnSM
zz (!) is positive at |!|= �, indicating that this extremum of d

d! lnSM
zz (!) is a minimum. Thus the param-

eter � gives the frequency at which lnSM
zz (!) is decreasing most rapidly with increasing |!|, a natural choice to designate

the transition between the energetic “white” regime at low frequencies and the decaying regime at high frequencies. Since
d
d! lnSM

zz (!) =
⇥

d
d!S

M
zz (!)

⇤

/SM
zz (!), |!|= � is the frequency at which the fractional decrease in SM

zz (!) is largest.

The variance and diffusivity of the Matérn process are both finite, and are found to be given by

�2
= c↵

A2

�2↵�1
, =

1

4
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�2↵
(42)

in which we have introduced the normalizing constant
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where B(x,y)⌘ �(x)�(y)/�(x+ y) is the beta function. The value of the diffusivity is found from = Szz(0)/4, see (9),

together with the Matérn spectrum form in (38), while the variance is

�2
=

1

2⇡

1
Z

�1

SM
zz (!)d! =

1

2⇡

1
Z

�1

A2

(!2
+�2

)

↵ d! =

A2

2⇡�2↵�1

1
Z

0

x�1/2

(1+x)↵
dx (44)

after the change of variables !2 7! x�2. Applying one of the defining forms of the beta function, e.g. Gradshteyn and Ryzhik

(2000, 3.194.3),
1
Z

0

xµ�1

(1+x)⌫
dx=B(µ,⌫�µ), ⌫ > µ > 0 (45)

then leads to the variance expression given in (42).

The Matérn spectrum can be rewritten in terms of the variance �2 as

SM
zz (!) =

�2↵�1

c↵

�2

(!2
+�2

)

↵ (46)

so that the diffusivity becomes =

1
4�

2/(�c↵). In this form, the Matérn spectrum becomes a function of �2, ↵, and � rather

than A2, ↵, and �. This will prove to be more convenient for numerical optimization during parameter fitting, because rea-

sonable ranges for � are more readily determined than are ranges of A. This re-parameterization also simplifies somewhat the

form of the autocovariance function, presented next.
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4.2 The autocovariance function

The autocovariance function corresponding to the spectrum (38) is found to be (Matérn, 1960; Guttorp and Gneiting, 2006)

RM
zz(⌧) = �2M↵(�⌧) (47)

where for notational convenience we have introduced the Matérn function

M↵(x)⌘
2

�(↵� 1/2)2↵�1/2
|x|↵�1/2K|↵�1/2|(|x|) (48)

as a modified version of the K↵�1/2(x), the decaying modified Bessel function of the second kind of order ↵� 1/2. Integral

relation 17.34.9 given on p. 1126 of Gradshteyn and Ryzhik (2000) may be rearranged to give

M↵(�⌧) =
1

2⇡

1
Z

�1

�2↵�1

c↵

ei!⌧

(!2
+�2

)

↵ d! (49)

for ↵> 0 and �> 0, verifying that (47) is the inverse Fourier transform of (46). The cosine integral version of this result is

sometimes known as Basset’s formula, see Watson (1922, p. 172), who states the case of integer ↵ is originally due to Basset

(1888, p. 19), and who also discusses some history of the integral on the right-hand-side.

Examples of theoretical Matérn autocovariance functions are presented in Fig. 7b, again corresponding to the realizations

in Fig. 6. As is usual with Fourier pairs, the most localized spectra correspond to the most distributed autocovariance func-

tions, and vice-versa. As ↵ decreases, the autocovariance falls off more and more quickly from the origin, with a singularity

developing at the origin as ↵ approaches one-half.

The asymptotic behavior of the Matérn covariance for large and small times is as follows. For |⌧ |� 1/�, one has the

behavior

RM
zz(⌧)⇡ �2

p
2⇡

�(↵� 1/2)2↵�1/2
|�⌧ |↵�1 e��|⌧ | (50)

as follows from the asymptotic behavior of the modified Bessel function for large argument (Abramowitz and Stegun, 1972,

9.7.2). Thus the Matérn process exhibits exponential decay of its covariance function, and is therefore categorized as a short-

memory process. For time offsets that are small compared to the damping timescale, |⌧ |⌧ 1/�, and for the slope parameter in

the range 1/2< ↵< 3/2, one finds
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(51)

as the short-time behavior of the Matérn autocovariance function. This is derived in Appendix G following Goff and Jordan

(1988, their Appendix A), who were apparently the first to establish it, see Guttorp and Gneiting (2006). It is also shown in

Appendix G that for ↵> 3/2, the lowest-order dependence of the Matérn autocovariance function no longer contains a power

of ↵, but instead remains proportional to ⌧2 as ↵ increases.
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Figure 7. Theoretical spectra (a), autocovariance functions (b), and Green’s functions (c) for Matérn processes corresponding to the different

↵ values shown previously in Fig. 6, and with the process variance set to �2
= 1. The corresponding expressions are (46), (47), and (60),

respectively. As in Fig. 6, the various ↵ values are shown by alternating black and gray lines, with ↵= 2 shown as a heavy black line. Time

and frequency have been nondimensionalized as ⌧� and !/�, respectively; thus the transition between a flat and a sloped regime occurs in

the vicinity of !/�= 1 in (a), while the e-folding time in (c) is ⌧�= 1. The autocovariance function (b) develops a strong singularity as ↵

approach 1/2, which is linked to the flattening of the spectrum in (a). The Green’s function in (c) is infinite at ⌧�= 0 for ↵< 1, and vanishes

at ⌧�= 0 for ↵> 1.

The expression (51) for the short-time behavior of the Matérn autocovariance may be simplified by noting
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�
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1

2
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which relates V↵, the coefficient of fractional Brownian motion defined in (18), to c↵, the normalizing constant for the Matérn

process defined in (43). These two definitions together with the duplication formula for the gamma function (E5) presented

in Appendix E lead to the above result. Substituting this into the asymptotic expansion (51) for small |⌧ |, we obtain for

1/2< ↵< 3/2

RM
zz(⌧)⇡ �2 � 1

2

V↵A
2|⌧ |2↵�1, |⌧ |⌧ 1/� (53)

after making use of the expression for the Matérn variance given by (42). This matches exactly the ⌧ -dependence inferred

for a power-law spectrum inferred in Appendix D using a limiting argument. Note that the only dependence on � of the

autocovariance for |⌧ |⌧ 1/� is through the variance �2.

From this small-⌧ expansion, we can immediately determine the fractal dimension, as discussed in Section 3.5. One finds

D =

8

<

:

5
2 �↵ ↵< 3/2

1 ↵� 3/2
(54)
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so that the fractal dimension decays from D = 2, for very rough processes with ↵= 1/2, to D = 1, for smooth processes with

↵= 3/2, just as with fractional Brownian motion. For slopes steeper than !�3, the fractal dimension remains at unity. This is

a consequence of the fact that for ↵> 3/2, the highest power of ⌧ appearing in the small-⌧ expansion (51) is ⌧2.

4.3 Inclusion of spin

A very simple modification can expand the range of possibilities of the Matérn process, and also aid in the development of

physical intuition. We add a deterministic tendency for the process to spin on the complex plane at rate ⌦, and refer to this new

process as the oscillatory Matérn process or oMp. Modulating the Matérn autocovariance RM
zz(⌧) by ei⌦⌧ gives

RoMp
zz (⌧)⌘ ei⌦⌧RM

zz(⌧) (55)

SoMp
zz (!) =

A2

[(!�⌦)

2
+�2

]

↵ (56)

for the new autocovariance function / spectrum pair. Note that with ↵= 1, these reduce to

RoMp
zz (⌧) =

A2

2�
ei⌦⌧e��|⌧ | (57)

SoMp
zz (!) =

A2

(!�⌦)

2
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(58)

where we have made use of 10.2.17 on p. 444 of Abramowitz and Stegun (1972) for the former equality. These are observed

to be the autocovariance and spectrum of the complex-valued oscillator known as the complex Ornstein-Uhlenbeck process

(Jeffreys, 1942; Arató et al., 1999).

Thus the oscillatory Matérn process subsumes the Matérn process and the complex Ornstein-Uhlenbeck process into a larger

family. In this next section we will determine the stochastic integral equation of this oscillatory Matérn process.

4.4 Stochastic integral equation

Unlike fractional Brownian motion, the Matérn process is not generally defined in terms of a stochastic integral equation or a

stochastic differential equation. A stochastic integral equation that will generate an oscillatory Matérn process is

z(t) =A

1
Z

�1

g(t� s)dW (s) (59)

where the Green’s function, or impulse response function, is

g(t)⌘

8

<

:

1
�(↵) t

↵�1ei⌦te��t, t� 0

0, t < 0

. (60)

Note that the Green’s function has been set to vanish before time t= 0, thus corresponding to a causal filter.

The Fourier transform of a Green’s function g(t) is an important quantity known as the transfer function, and we find

G(!) =

1
Z

�1

g(t)ei!t
dt =

1

[i(!�⌦)+�]↵
(61)
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for the Matérn transfer function, using 3.2.3 on p. 118 of Bateman (1954). In terms of the Green’s function, the autocovariance

function is given by

Rzz(⌧)⌘ E{z(t)z⇤(t� ⌧)}=A2

1
Z

�1

1
Z

�1

g(t� s)g⇤(t� ⌧ � r)E{dW (s)dW ⇤
(r)}=A2

1
Z

�1

g(s)g⇤(s� ⌧)ds (62)

with the last expression following from the orthogonality property of the Wiener increments (32), together with a change in the

variable of integration. From the familiar cross-correlation theorem
1
Z

�1

g(s)g⇤(s� ⌧)ds=
1

2⇡

1
Z

�1

|G(!)|2 ei!⌧
d! (63)

it then follows that spectrum of the process generated using the Green’s function (60) matches that for the oscillatory Matérn

process (56).7

Examples of the Green’s functions for ⌦= 0 are shown in Fig. 7c. Note a change in behavior across ↵= 1. For higher

values of ↵, the Green’s function vanishes at ⌧ = 0, thus developing a maximum that is seen to shift away from the origin as

one increases ↵. For ↵< 1, however, a singularity develops at the origin, and the Green’s function monotonically decays with

increasing time.

Identifying this stochastic integral equation sheds light on the nature of the Matérn process itself. The Green’s function g(t)

defined in (60) is also the solution to an impulse forcing of the damped fractional oscillator equation


d

dt
+�� i⌦

�↵

g(t) = �(t) (64)

as shown in Appendix H. This establishes the physical interpretation of the oscillatory Matérn process as a damped fractional

oscillator forced by continuous-time white noise. The standard Matérn process is then seen as a forced/damped fractional

oscillator in which the oscillation frequency is set to zero.

Note that here we have avoided attempting to write the Matérn process as a stochastic differential equation, as there are math-

ematical difficulties in ensuring that the fractional-order derivatives exist.8 The approach we have taken, comparing the impulse

response function (60) for the Matérn stochastic integral equation (59) with that for the deterministic fractional differential

equation (64), is intended to determine the physical nature of the system while sidestepping such mathematical difficulties.

We can also now understand why � is referred to as a ‘damping’. In the ↵= 1 case, the oscillatory Matérn process becomes

identical to the complex Ornstein-Uhlenbeck process, as previously mentioned. The Green’s function for this process is ei⌦t��t

for non-negative t, and zero elsewhere. This Green’s function is also the solution to the first-order ordinary differential equation

d

dt
g(t)+�g(t)� i⌦g(t) = �(t) (65)

7As an aside, we point out that this result implies that with ⌦= 0, the cross-correlation of g(t) with itself as in (62) must recover the Bessel function form

of the Matérn autocovariance function, although this is not at all obvious in the time domain.
8The expansion of the fractional-order operator in (64) using the generalized binomial theorem, see (H1), involves infinitely many higher-order derivatives;

but their existence conflicts with self-similar roughness of the Matérn process as one proceeds to increasingly small scales.

30



which is the equation for a damped, one-sided oscillator forced by a delta function. This equation appears, for example, in the

study of oscillations of the ocean surface layer forced by the wind (Pollard and Millard, Jr., 1970), in which � parameterizes

a physical drag. In the Green’s function, � sets the timescale of the decay of the oscillations, and it therefore also controls the

decorrelation time in the autocovariance function (57). In the spectrum (58), � removes the singularity at ! = ⌦, replacing it

with a ‘bump’ that becomes more spread out as � increases.

All of these factors support interpreting � as a damping for ↵= 1. For other values of ↵, we see that � still controls the

decay of the Green’s function (60), the long-term decay (50) of the autocovariance function (55), and the spreading out of the

singular peak at ! = ⌦ in the spectrum (56). In the fractional differential equation (64) as well, � appears as a quantity that

can trade off against the rate of change. Thus, for ↵ 6= 1, the parameter � still acts in a way that supports its identification as a

damping.

As shown in the next section, if the damping vanishes, the stochastic integral equation for the Matérn process becomes

identical to that for fractional Brownian motion, apart from a modification that sets the initial condition for fBm.

4.5 Relationship to fractional Brownian motion

Having identified the stochastic integral equation for the Matérn process, we now examine its relationship with fractional

Brownian motion. The Green’s function of the oscillatory Matérn process (60) can be rewritten as

g↵,�,⌦(t)⌘
I(t)

�(↵)
t↵�1ei⌦te��t (66)

where I(t) is the indicator function defined in (35), and where we explicitly specify the dependence of g(t) upon the Matérn

parameters. In terms of this Green’s function, the stochastic integral equation defining fBm (34) becomes

z(t) =
A

�(↵)

t
Z

�1

⇥

(t� s)↵�1 � I(�s)(�s)↵�1
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dW (s) (67)

=A

t
Z

�1

[g↵,0,0(t� s)� g↵,0,0(�s)]dW (s) (68)

in which g↵,0,0(t) =
1

�(↵)I(t) t
↵�1. The only difference between this and the equation for the undamped, non-oscillatory

Matérn process (59) is the second term in the integral, which as shown earlier, serves the function of enforcing the initial

condition z(0) = 0. This confirms that the standard Matérn process with �> 0, and consequently with a Green’s function of

the form g↵,�,0(t) =
1

�(↵)I(t) t
↵�1e��t, is rightly thought of as damped fractional Brownian motion.

If fractional Brownian motion and the standard Matérn processes are essentially facets of the same process, one should be

able to see this directly from their autocovariances. This is indeed the case. For time shifts ⌧ that are very small compared to

the global time t, the fBm autocovariance (13) is approximately given by

RfBm
zz (t,⌧)⇡ �2

(t)� 1

2

V↵A
2|⌧ |2↵�1, |⌧ |⌧ |t| (69)
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where �2
(t)⌘RfBm

zz (t,0) = V↵A2|t|2↵�1 is the time-varying fBm variance encountered earlier in (14). This matches (53) for

the Matérn autocovariance at small |⌧ |/�.

The intuitive interpretation of this result is that a Matérn process has a second-order structure that behaves for small time

offsets ⌧ in the same way as does fractional Brownian motion, considered for offsets ⌧ that are small compared with the current

global time t. Or, even more succinctly, the local behaviors of the Matérn process and fBm are the same; they differ from each

other only for sufficiently large time offsets.

To look at this another way, imagine that a modified Matérn process were constructed with an integral matching the form of

that for fractional Brownian motion (68). In other words, we define z(t) as in (68) but for arbitrary values of �. Such a process

would then by definition have z(0) = 0, and would therefore not be stationary. For nonzero �, after a sufficiently long time this

initial condition is ‘forgotten’ on account of the decaying exponential in the Green’s function, and the process will eventually

behave as if it were stationary. For �= 0, however, this initial condition is never forgotten.

The qualitatively significant difference between the Matérn process and fBm—that the former is stationary, while the latter

is non-stationary—can be seen as a consequence of the lack of damping in the latter case. In applications, we believe it would

be unphysical to observe a process that remains nonstationary for all timescales. Rather, for sufficiently long observational

periods, it is more likely that the process will eventually settle into stationary behavior. For the Matérn process, this occurs

when the observational window is sufficiently long compared with the decay timescale ��1. Another difference is that the

value of fBm at time t= 0 is fixed to an exact value of zero, while that of the Matérn process is random. However, since it is

common practice to remove the sample mean prior to analyzing a data time series, and/or to add a constant offset to a generated

process, this distinction makes little practical difference for applications such as the one presented here.

5 Generation

This section addresses means to simulate realizations of fractional Brownian motion and the Matérn process numerically. The

main contribution is a new approach to simulating a diffusive process such as the Matérn in O(N logN) operations, by relying

on the knowledge of its Green’s function. Readers not interested in these numerical details may feel free to proceed to the

application in Section 6.

5.1 The Cholesky decomposition

The standard approach to simulating a Gaussian random process with a known covariance matrix is a method called the

Cholesky decomposition, which we discuss here. In this section, as we will be dealing with vectors and matrices, a change of

notation is called for. We now let zn ⌘ z(n�) with integer n denote a discretely sampled random process, sampled at N times

separated by the uniform interval �.

This sequence is arranged into a length N random column vector denoted z. We define the expected N ⇥N covariance

matrix of z as R⌘ E

�

zzH
 

, where the superscript “H” denotes the conjugate transpose, having components

Rm,n = E{zmz⇤n}= E{z (m�) z⇤(n�)}=Rzz (n�,(m�n)�) . (70)
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Here n� plays the role of global time t, and (m�n)� that of the time offset ⌧ , in the evaluation of the nonstationary covariance

function Rzz(t,⌧) = E{z(t+ ⌧)z⇤(t)}. Thus variation in R of the time offset ⌧ with fixed global time t occurs in the direction

perpendicular to the main diagonal, while variation of t with fixed ⌧ occurs along the main diagonal. In the case of a stationary

process, there is no variation parallel to the main diagonal, and R is then said to be a Toeplitz matrix.

The Cholesky decomposition factorizes the covariance matrix as R= LU, where L is lower triangular and U is upper

triangular. It follows from the Hermitian symmetry of R that L=UH. Now let w be an N -vector of unit-variance, independent,

complex-valued Gaussian random variables. Forming the sequence ˆz= Lw, we find the covariance matrix bR⌘ E

�

ˆzˆzH
 

associated with ˆz is given by

bR⌘ LE

�

wwH
 

LH
= LILH

=R (71)

where I is the N ⇥N identity matrix. Note while we could have also chosen to use U to generate the random sequence, the

use of L is more natural as it corresponds to a causal filter.

Thus to simulate a length N sequence of a possibly nonstationary Gaussian random process, one simply populates an N⇥N

matrix with the known values from the autocovariance function, applies the Cholesky decomposition to generate a lower

triangular matrix, and multiplies the result by a vector of white noise. The resulting sequence has the identical covariance

structure to a length N sample of the original random process.

A limitation of this approach is that the Cholesky decomposition requires, in its most straightforward implementation,

O(N3
) operations. Computational costs therefore increase steeply with increasing N . However, it is the case that many real-

izations of sequences of a fixed length can be generated quickly, because one only needs to form the Cholesky decomposition

once for a given autocovariance matrix. For simulation of stationary processes, the Toeplitz matrix structure can in principle

be used to accelerate the Cholesky decomposition to O(N2
) or even O(N logN), see Yagle and Levy (1985) and Dietrich and

Newsam (1997) respectively. The latter method, termed circulant embedding, while O(N logN), involves embedding the co-

variance matrix of interest within a larger matrix, and may lead to somewhat unpredictable tradeoffs between minimizing error

and increasing the matrix size (Percival, 2006). The method presented here has the advantages that it is very straightforward to

implement, and that the error terms are well understood provided the Green’s function is known.

5.2 Discretization effects in fast generation

To devise our generation method, we will first renormalize the Green’s function so that we may use � rather than A to param-

eterize the process amplitude. A modified Green’s function is defined as

g̃(t) = g̃↵,�,⌦(t)⌘
�↵�1/2

p
c↵

I(t)

�(↵)
t↵�1ei⌦te��t (72)

where the subscripts on g̃(t) will be dropped unless explicitly needed. The stochastic integral equation for the Matérn process

(59) then becomes

z(t) = �

1
Z

�1

g̃(t� s)dW (s) (73)
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recalling that � and A related by �2
= c↵A2/�2↵�1. Next we introduce a temporal spacing ˜

�⌘�/k that is finer than the

sampling interval �, where k is a positive integer termed the oversampling parameter. We then have

z(t) = �
1
X

p=0

t�p�̃
Z

t�(p+1)�̃

g̃(t� s)dW (s) (74)

by splitting the integral in (73) into contributions from smaller integrals over segments of duration ˜

�. Here we have replaced

the upper limit of integration with t, as g̃(t� s) vanishes for negative values of its argument.

For each of these integrals over a short segment, we approximate the Green’s function by a constant, namely the value of

the Green’s function at the segment midpoint, which occurs when t� s= (p+1/2) ˜�. Employing this approximation and

evaluating the result at the discrete times t= n� defines a discrete series

z̃n ⌘ �
1
X

p=0

g̃
⇣

(p+1/2) ˜�
⌘

n��p�̃
Z

n��(p+1)�̃

dW (s) (75)

for all integers n=�1, . . . ,�2,�1,0,1,2, . . .1. Because
R b

a
dW (s) is a zero-mean Gaussian random variable with variance

(b� a), the integral in the above expression simplifies to

n��p�̃
Z

n��(p+1)�̃

dW (s) =

(nk�p)�̃
Z

(nk�p�1)�̃

dW (s) = wnk�p

p

˜

� (76)

where wn, defined for integer n, is a sequence of complex-valued, unit variance, independent Gaussian random variables.

Introducing an oversampled version of the discrete Green’s function as

g̃{k}n ⌘ g̃ ((n+1/2)�/k) (77)

our expression (75) for z̃n becomes

z̃n = �

r

�

k

1
X

p=0

g̃{k}p wnk�p. (78)

This is a discrete convolution, but modified by the fact that the output will have a temporal resolution that is k times more

coarse than that of the two input series.

The numerical evaluation of the oversampled Green’s function can be simplified by noting the behavior of g̃(t) with respect

to a rescaling of the time axis by some factor r,

g̃↵,�,⌦(rt) =
�↵�1/2

p
c↵

I(rt)

�(↵)
(rt)↵�1ei⌦rte��rt

=

1p
r
g̃↵,�r,⌦r(t). (79)

Then the Green’s function appearing in (78) can be rewritten as

g̃{k}n = g̃↵,�,⌦ ((n+1/2)�/k) =

r

k

�

g̃↵,��/k,⌦�/k (n+1/2) (80)
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which replaces the time rescaling with a rescaling of the damping � and frequency shift ⌦, resulting in a cancellation of the

factor
p

�/k.

The autocovariance function of z̃n is very close to the sampled autocovariance function of the Matérn process, and can

be made arbitrary close by a suitable choice of oversampling rate k, as will now be shown. The autocovariance sequence

associated with z̃n is found to be

eRn ⌘ E

�

z̃mz̃⇤m�n

 

= �2�

k

1
X

p=0

1
X

q=0

g̃{k}p

h

g̃{k}q

i⇤
E

n

wmk�pw
⇤
(m�n)k�q

o

(81)

and since E{wmw⇤
n}= �m,n where �m,n is the Kronecker delta function, all terms in the summation vanish except for when

mk� p= (m�n)k� q or equivalently q = p�nk. Thus

eRn = E

�

z̃mz̃⇤m�n

 

= �2�

k

1
X

p=0

g̃{k}p

h

g̃{k}p�nk

i⇤
(82)

which is clearly an approximation to (62) for an autocovariance function in terms of its Green’s function. The discretely

sampled autocovariance sequence can therefore be approximated to arbitrary precision by a choosing a suitable degree of

oversampling. However, notice that the summations in (78) and (82) extend to infinity, which is not possible in practice. In the

next subsection we examine the impact of additional errors resulting from finite sample size effects.

5.3 Sample size effects in fast generation

In practice, the summations over the duration of the Green’s function must be truncated at some point. It is tempting to truncate

the Green’s function after a relatively short time. However, for spectra having a large dynamic range, this truncation leads to

undesirable leakage effects, just as in spectral analysis, that degrade the spectrum of the generated sequences. Instead, we will

utilize a Green’s function that is longer than entire length of the time series.

Firstly we need to determine a suitable cutoff for limiting the long-term influence of the Green’s function. We denote by

T✏ the time such that the magnitude of the Green’s function, integrated to this time, rises to within a fraction ✏ of the value it

obtains when integrated over all times:
R T✏

0 |g̃(s)| ds
R1
0 |g̃(s)| ds

= 1� ✏. (83)

Using the definition of the Matérn Green’s function (60), one may readily show that this occurs when

� (↵,�T✏)

�(↵)
= 1� ✏, �(↵, t)⌘

t
Z

0

s↵�1e�s ds. (84)

where �(↵, t) is the incomplete gamma function of order ↵ evaluated at time t.

Anticipating transforming to the Fourier domain, we will define sequences that are periodized. Because we intend to employ

a periodic convolution, yet wish to prevent noise values at the end of the time series from influencing the beginning, we will
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create a longer sequence of length bN ⌘N +N✏ where N✏ ⌘ ceil(T✏/�) with ceil(·) being the ceiling function. Let bwn be a

version of the noise that is periodic with period bN , and bg{k}n be a version of g̃{k}n that is set to zero for n > bN � 1. Form a

length- bN vector ˆz with entries given by

ẑn ⌘ �

r

�

k

bN�1
X

p=0

bg{k}p bwnk�p (85)

and now decompose this vector into two parts, ˆz= [

ˆz✏ ˆzo]T where the superscript “T ” is the transpose operator. In the initial

portion ˆz✏, of length N✏, the decaying Green’s function is interacting with noise wrapped around from the end of the periodic

noise sequence. This portion is discarded, while the second portion ˆzo is of length N and is the simulated series we desire.

The N ⇥N covariance matrix associated with the latter sequence, bR= E

�

ˆzoˆzHo
 

, has components given by

bRm,n = �2�

k

bN�1
X

p=0

bN�1
X

q=0

bg{k}p

h

bg{k}q

i⇤
E

�

bwmk�p+kN✏ bw
⇤
nk�q+kN✏

 

. (86)

To simplify this expression, observe that the covariance of the periodized noise sequence bwn is

E{ bwm bw⇤
n}=

1
X

`=�1
�m,n+` bN (87)

with the sum indicating that the periodized noise is correlated with copies of itself from the future and the past. Thus in (86),

all terms vanish except for when mk� p= (nk� q)+ ` ˆN or equivalently q = p� (m�n)k+ ` ˆN . We then have

bRm,n = �2�

k

bN�1
X

p=0

bg{k}p

h

bg{k}p�(m�n)r + bg{k}
p�(m�n)r+N̂

i⇤
(88)

for the terms in the N ⇥N covariance matrix bR. Note that this consists only of the `= 0 and `= 1 terms from (87). The

first term in (88) is due to the `= 0 term. The second (`= 1) term arises from the Green’s function interacting with a copy

of itself shifted by ˆN due to the periodization of the noise, and is expected to be much smaller than the first term. Note that

contributions from negative ` do not appear due to the fact that bg{k}n vanishes for negative n; but all contributions from `> 1

also vanish because bg{k}n has been truncated to vanish for n > bN � 1.

5.4 Comparison of fast and Cholesky methods

The advantage to the Green’s function approach is that (85) is a discrete, periodic convolution that can be implemented using a

Fast Fourier Transform in O(

bN log

bN) operations; if bN ⇡N , this is approximately O(N logN). In the numerical implemen-

tation described in Appendix A, we set ✏= 0.01, such that T✏ gives the time at which the time-integrated Green’s function

reaches one percent of its total time-integrated magnitude. We also set the oversampling parameter k such that there will be

at least 10 points per damping timescale ��1, which is accomplished by choosing k = ceil (10⇥��) since 1/(��) is the

number of sampled points in one damping timescale. These settings are observed to give fast but accurate performance for a

broad range of parameters.
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If desired, the matrix bRm,n in (88) can be computed in order to explicitly check the errors in computing the covariance

matrix, although this will necessarily slow down the algorithm. The terms in the true, discretely sampled autocovariance

matrix are given exactly by

Rm,n = �2

T̂
Z

0

g̃(s)g̃⇤ (s� (m�n)�)ds+�2

1
Z

T̂

g̃(s)g̃⇤ (s� (m�n)�)ds (89)

where ˆT = (

ˆN �1)�; this follows from the form of the Matérn autocovariance function in terms of the Green’s function (62).

We may observe that discretizing the first integral corresponds to the first summation in (88). There are therefore three error

terms between Rm,n and bRm,n: errors associated with this discretization, which are minimized by choosing the oversampling

rate k to be sufficiently large; and errors from the second integral in (89) and the second summation in (88), both of which

are minimized by choosing N✏ sufficiently large. Thus error can be computed by comparing the difference between the true

discretely sampled autocovariance matrix Rm,n and the autocovariance matrix bRm,n that is satisfied by the process generated

through the Green’s function method. While this is numerically expensive, it need only be computed one time for a given set

of parameters ↵, �, N , k, and ✏.

As an example, in Fig. 8 we present spectra of 25 samples of Matérn processes generated using both the Cholesky decom-

position and the fast Green’s function algorithm. The estimated spectrum for each realization is computed using Thomson’s

adaptive multitaper algorithm (Thomson, 1982; Park et al., 1987) using 15 orthogonal Slepian tapers having a time-bandwidth

product of eight. The adaptive algorithm employs frequency-domain smoothing only to the extent that it can be achieved

without the expense of broadband bias.

No substantial difference between spectra computed with the two different algorithms is seen over many decades of structure,

indicating that fast algorithm is able to simulate the Matérn process to a very high degree of accuracy. In generating this plot

for time series of length 1000, 2000, 4000, and 8000 points (as shown here), the Green’s function method executes respectively

3, 7, 11, and 45 times faster than the Cholesky algorithm on a Mac desktop. Note that the Green’s function method does not

depend on any special properties of the Matérn process, apart from the particular definition of the cutoff time T✏ for the initial

time period (83). The method is therefore suitable for any Gaussian random process having a decaying and sufficiently smooth

autocovariance for which the Green’s function has an analytic expression. A more detailed comparison between the Green’s

function method of generation, and other methods such as circulant embedding (Dietrich and Newsam, 1997; Percival, 2006),

is outside the scope of this paper, and is a natural direction for further work.

6 Application

This section presents the details of an application of the Matérn process to modeling particle velocities in a numerical simulation

of two-dimensional fluid turbulence, a preview of which was presented in Section 2.4. Details of the numerical model are given

in Section 6.1, the estimation of parameter values is discussed in Section 6.2, and the means by which realizations of the

stochastic models are obtained is described in Section 6.3.
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Figure 8. A comparison of the spectra of simulated unit-variance Matérn process having twenty-five different (↵,�) values for (a) the

Cholesky decomposition algorithm and (b) the fast generation algorithm presented based on the Green’s function. The process samples are

each 8000 points long, with the sample interval � set to unity. Black curves show the multitaper spectral estimates, as described in the

text, while gray curves are the theoretical spectral forms. Successive spectral plots have been offset in the vertical by a factor of
p
10 for

presentational clarity. The five lines within each group correspond to the five ↵ values 1, 1.5, 2, 3, and 4. The five groups correspond to

different values of �, with � equal to 0.01, 0.02, 0.05 0.2, or 1 times the value of ↵ for each curve, proceeding from bottom to top. Only

positive frequencies are shown, as the theoretical spectra at negative frequencies are identical. Simulated spectra from the O(N logN) fast

algorithm and those from the O(N3
) Cholesky algorithm are found to be virtually identical.

6.1 Numerical simulation of 2D turbulence

A system called forced-dissipative quasigeostrophic turbulence is created by integrating an equation for the streamfunction

�(x,y, t). For nondivergent flows, the streamfunction is a scalar-valued quantity at each point giving the velocity components

through U(x,y, t) =� @
@y� and V (x,y, t) = @

@x�. The equation to be integrated is

@

@t

�

r2
���/L2

D

�

+ J(�,r2
�) = F �D (90)
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where J(a,b)⌘ @a
@x

@b
@y � @b

@x
@a
@y is the Jacobian operator, LD is a spatial scale termed the deformation radius, F is a forcing

function, and D is a damping. This equation is derived from a conservation law following particle trajectories. This simple

system is considered an idealized representation of turbulence in planetary fluid dynamics, on scales large enough that the

rotation of the planet is important, but not so large that the planet’s curvature needs to be taken into account.

An integration of (90) is carried at 10242 resolution in a doubly periodic domain of dimension 2500 ⇥ 2500 km. As is

typical in such problems, the forcing F consists of random fluctuations of a particular spatial scale imposed everywhere in

the domain at each time step. A characteristic forcing scale of 117 km is chosen here such that the scale of the forcing is

intermediate between the grid scale and the domain scale. The damping is chosen to take the form D = rr2
� where r is set

to 1.5⇥10

�8 s�1. After an initial spin-up period, during which an equilibration of the energy level is achieved, the simulation

is run for three years or 3*365=1095 days.

A snapshot of current speed from the first day of the simulation after the end of the spin-up period is shown in the left panel

of Fig. 1. As mentioned previously, the circular areas of high speed represent long-lived vortices (see e.g McWilliams, 1990b;

Scott and Dritschel, 2013), which are not the subject of this study. Instead we are interested in the behavior of particles that

inhabit the spaces between the vortices.

The analysis here is based on a set of 1024 particle trajectories that are tracked throughout this experiment, shown in the

right panel of Fig. 1. The trajectories are output at high temporal resolution, decimated to a six hour sampling interval, and first

central differenced to produce velocities. Position and velocity records are then decimated again to daily resolution, which we

find to be sufficient to capture meaningful variability. One-half of the trajectories are then discarded in order to exclude those

most directly effected by vortices, as described next, leaving 512 trajectories of length 1095 to be analyzed.

The simplest way to remove the effects of vortices is simply to discard those trajectories which conspicuously exhibit the

effects of vortex trapping. A common measure of the impact of vortices on a given trajectory is the so-called spin parameter

(Sawford, 1999; Veneziani et al., 2005b, a), defined as

⌦⌘
u(t) d

dtv(t)� v(t) d
dtu(t)

u2
(t)+ v2(t)

=

=
�

z⇤(t) d
dtz(t)

 

|z(t)|2
(91)

in which “=” is the imaginary part. In our implementation, these time derivatives are adequately approximated by first central

differences at daily resolution. The overbar here is a temporal average over the extent of a trajectory; note that since the mean

velocity is zero, the denominator is the velocity variance along the trajectory.

We take the modulus of the time-averaged spin, |⌦|, as a measure of the overall impact of vortices. Because of the long-term

persistence of particles within vortices (see e.g. Pasquero et al., 2002), it is unlikely that a small value of |⌦| would result from

cancellation of positive and negative contributions within the same time series for the three-year lengths we consider. Conser-

vatively, we keep the half of the 1024 trajectories having the lower values of spin magnitude. The resulting 512 trajectories,

offset to begin at the origin in Fig. 2a, exhibit a meandering character in addition to their dispersion. The omitted trajectories

typically present a dense and regular looping structure, some of which may be seen in the right-hand panel of Fig. 1.
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6.2 Frequency-domain maximum likelihood

This section describes the method by which the Matérn parameters are estimated from a finite data sample, which necessitates

some new notation. In reality one only observes a random process z(t) at a finite set of discrete times z[n] = z(n�) separated

by the fixed time interval �, and with n= 0,1,2, . . . ,N � 1. In this subsection, we use square brackets for time series which

take discrete arguments, thereby distinguishing a discretely sampled time series z[n] from its continuous-time analogue z(t).

Based on this sample z[n], one wishes to estimate the parameters of stochastic model, conventionally denoted by the vector ✓,

which in the case of the Matérn model is ✓ = (�,↵,�).

A standard approach would be to form a parametric estimate using the maximum likelihood method implemented in the

time domain. However, this method involves a computationally expensive matrix inversion, which becomes a limiting factor

when analyzing large datasets. An alternative approach to estimating the parameters is to do so in the frequency domain

using a method called the Whittle likelihood (Whittle, 1953). This approach is considerably faster than time-domain maximum

likelihood, with O(N logN) versus O(N2
) computational cost, yet is known to give approximately the same results. It also has

the advantage of letting us only fit the parametric model over a specified band of frequencies. The Whittle likelihood method

proceeds as follows. The discrete Fourier transform of the length N sequence z[n] is given by

Z[m]⌘
N�1
X

n=0

z[n]e�i2⇡mn/N (92)

for m= 0,1,2, . . . ,(N � 1). The squared modulus of this sequence of N Fourier coefficients, renormalized by 1/N , defines a

spectral estimate known as the periodogram

bSzz[m]⌘ 1

N
|Z[m]|2 . (93)

This is to be compared with the discretely sampled theoretical spectrum (46) for a particular value of the parameters ✓

S✓
zz[m] = SM

zz

✓

2⇡m

N�

◆

=

�2↵�1

c↵

�2

h

�

2⇡m
N�

�2
+�2

i↵ (94)

where 2⇡m/(N�) is recognized as the mth Fourier frequency.

The model parameters are estimated by finding the value of ✓ that maximizes the so-called Whittle log-likelihood

`(✓) =�
X

m2F

(

lnS✓
zz[m] +

bSzz[m]

S✓
zz[m]

)

(95)

in which F is a set of integers indicating the Fourier frequencies over which the fit is to be applied. For example, F could be

chosen to be m= 0,1,2, . . . ,(N � 1), in which case the fit will be applied to all frequencies.

In turns out to be the case that in the inference of parameters for a steep spectrum, such as we are dealing with here, this

approach is inadequate as it ignores potentially significant effects associated with the finite sample size. In particular, spectral

blurring associated with the periodogram can lead to quite incorrect slopes at high frequencies. Instead we use the de-biased

Whittle likelihood method recently developed by Sykulski et al. (2016b). In that approach, the periodogram bSzz[m] in (95) is
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replaced with a tapered spectral estimate, and the theoretical spectrum S✓
zz[m] is replaced with the expected tapered estimate

for a Matérn process characterized by the particular value of ✓. The de-biased Whittle likelihood allows the parameters ✓ to be

more accurately estimated, as it correctly accounts for the effect of spectral leakage as well as aliasing.

6.3 Stochastic model realizations

Here we give details on how the realizations shown in Fig. 2b–d have been created. First, in preparing Fig. 3, tapered spectral

estimates as well as periodogram estimates are formed. As discussed in Section 2.4, for data tapers we use the lowest-order

Slepian taper (Slepian, 1978; Thomson, 1982; Park et al., 1987; Percival and Walden, 1993) with the time-bandwidth product

set to 10. The average over all time series, and over both sides of the frequency spectrum, are shown for both estimates. In

contrast with the tapered estimates, the periodogram (not shown) is seen to accurately estimate the spectrum over only about

half of the dynamic range. This fact illustrates the potentially severe problems with using the standard Whittle likelihood for

parameter inference involving steep spectra, and motivates our use of the de-biased method.

After forming the tapered spectral estimate for each of the 512 turbulence velocity time series, we apply the de-biased

Whittle likelihood to infer the best fit Matérn parameters for each time series. Here the frequency set F is chosen to include

frequencies up to 1.5 radians per day, as this corresponds to the upper limit of apparent structure in the spectra. For each

set of parameters, we generate a realization of a Matérn process having these properties as described in Section 5, and then

cumulatively sum these velocity time series to produce the trajectories shown in Fig. 2b. Estimation of the spectra for these

Matérn realizations in the same manner as for the turbulence data leads to the black dashed line shown in Fig. 3, which is seen

to be a very close match to the velocity spectra for the particle trajectories from the turbulence simulation.

To generate the trajectories shown in Fig. 2c and Fig. 2d, we proceed as follows. The parameter values from the fit to the

Matérn form are converted to a diffusivity through =

1
4�

2/(�c↵), which is then used to scale realizations of white noise. The

spectra of the associated velocities in Fig. 3c are seen as matching the low-frequency values of the Lagrangian velocity spectra

from our turbulence simulation. Cumulatively summing these white noise velocities produces the trajectories in Fig. 2c; note

that these trajectories therefore consist of discrete samples of standard Brownian motion. These are seen to match well the

dispersion characteristics of the turbulence trajectories, but to have far too high a degree of small-scale roughness.

For the power-law realizations, we cannot employ fractional Brownian motion because the observed slopes—which in this

simulation is steeper than those found in the ocean—are outside the fBm range. Instead we use the implied spectral amplitudes

A2
= �2�2↵�1/c↵ and slope parameters ↵ from the Matérn fit to fix the properties of a different Matérn process having a very

small damping value, chosen as �= 2⇡/T where T is the record duration. Realizations are then generated and cumulatively

summed to give the trajectories shown in Fig. 2d. As mentioned before, these have vastly too much energy on account of

extending the high-frequency slope to very low frequencies. The flattening of the estimated spectrum for these realizations

seen in Fig. 3 is a result of the extreme dynamic range hitting the limit of numerical precision.

The point of the application is to show that Matérn process provides an excellent match to the turbulence data. This opens

the door to investigating a number of interesting physical questions regarding the distributions and interpretations of those

parameters, which must, however, be left to the future.
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7 Discussion

This paper has examined the Matérn process as a stochastic model for time series, which we have shown to be equivalent to

damped fractional Brownian motion (fBm). The damping is shown to be essential for permitting the phenomenon of diffusivity

to arise in the temporal integral of the process, referred to here as the trajectory, which disperses from its initial location at a

constant rate. The rate of diffusion of the trajectory is given by the value of the spectrum of the process at zero frequency. At

higher frequencies, the spectrum transitions to a power-law slope, like fBm, with the location of this transition being controlled

by the damping parameter.

Because damping is a common feature in physical systems, the Matérn process is expected to be valuable in describing

time series which, when observed over shorter time intervals, appear to consists of fractional Brownian motion. The addition

of a spin parameter leads to a still more general process that satisfies the stochastic integral equation for a damped fractional

oscillator forced by continuous-time white noise, and that encompasses the standard Matérn process as well as the complex

(Jeffreys, 1942; Arató et al., 1999) and standard (Uhlenbeck and Ornstein, 1930) Ornstein-Uhlenbeck processes within a single

larger family. A simple algorithm for generating approximate realizations of this ‘oscillatory Matérn’ process in O(N logN)

operations was presented.

A categorization of stochastic processes as diffusive, subdiffusive, and superdiffusive was proposed, depending upon their

value at zero frequency. These categorizations refer to the nature of the dispersion experienced by the trajectory associated

with the process, assuming that the integral of the process is well defined. This categorization is related to, yet distinct from,

the conventional designation of a random process as short-memory or long-memory (Beran, 1994). We have argued that the

diffusivity categorization may prove to be a powerful way to describe stochastic processes in general.

The Matérn process was found to provide an excellent match to velocity time series from particle trajectories in forced/dissipative

two-dimensional fluid turbulence that are not directly influenced by the presence of vortices. This is an important contribution,

since we show that a power-law process such as fBm cannot hope to capture the diffusive behavior. Despite its simple three-

parameter form, trajectories associated with the Matérn process were seen to be visually virtually indistinguishable from those

from the numerical model. This suggests that the Matérn form may prove useful for describing similar trajectories taken by

instruments tracking the actual ocean currents. Such ‘Lagrangian data’ is one of the main windows into observing the ocean

circulation, yet surprisingly little work has been done to analyze the velocity spectra in major Lagrangian datasets (Rupolo

et al., 1996; Elipot and Lumpkin, 2008). Apart from Rupolo et al. (1996), the spectral slope in oceanographic Lagrangian data

is almost completely unexplored, although it is implicit in several fractal dimension studies (Osborne et al., 1989; Sanderson

et al., 1990; Sanderson and Booth, 1991; Summers, 2002).

In this paper, we have taken essentially an observational approach, and sought to fit a parametric model to the trajectories as

a descriptive analysis, without requiring a physical justification. A next step is to attempt to understand this model on physical

grounds. A number of researchers have attempted to derive forms for the Lagrangian velocity spectrum (or, equivalently, the

autocovariance function) under simplified dynamical assumptions (Griffa, 1996; Weiss et al., 1998; Majda and Kramer, 1999;

Berloff and McWilliams, 2002; Veneziani et al., 2005a; Majda and Gershgorin, 2013). One promising avenue of comparison
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is with the work of Berloff and McWilliams (2002), who derive dynamical models roughly equivalent to integral orders of the

Matérn process. Another is with Majda and Kramer (1999), see their Section 3.1.2, who construct idealized velocity fields that

give rise to the diffusive, subdiffusive, and superdiffusive regimes of Lagrangian behavior. Exploring the relationship of the

Matérn form to these dynamical models is a promising direction for future research.
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Appendix A: A freely available software package

All software needed to carry out the analyses described in this paper, and to generate all figures, is distributed as a part

of a freely available toolbox of Matlab functions. This toolbox, called jLab, is available at http://www.jmlilly.net and is

distributed under a Creative Commons license. The package to implement the Matérn analysis, called jMatern, includes the

following functions: materncov, maternspec, and maternimp, which implement the Matérn autocovariance function,

spectrum, and impulse response or Green’s function, respectively; maternoise, which generates realizations of the Matérn

process using either the standard Cholesky decomposition method, or the fast generation method described in Section 5;

maternfit, which performs a parametric spectral fit for the Matérn process and a number of variations, using the de-biased

Whittle likelihood method discussed in Section 6.2; and blurspec, which accounts for the blurring and/or aliasing of the

theoretical spectrum associated with truncation of a continuous random process or the tapering of a finite sample. All functions

support the oscillatory Matérn process as well as the standard Matérn process. Finally, makefigs_matern generates all

figures in this paper based on model output that can be downloaded from http://www.jmlilly.net/ftp/pub/materndata.zip.

Appendix B: Diffusivity in terms of the spectrum

This appendix is new and contains material relocated from the main text.

Here we show that for a second-order stationary process, the diffusivity  is the value of the spectrum at zero frequency,

as stated in (9). This is done by beginning with the nonstationary case. The time-dependent diffusivity (t) of a nonstationary
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process can be expressed in terms of the nonstationary autocovariance function Rzz(t,⌧) as

(t) =
1

4

d

dt

t
Z

0

t
Z

0

E{z(t1)z⇤(t2)}dt1dt2 (B1)

=

1

4

d

dt

t
Z

0

2

4

t
Z

0

Rzz(t2, t1 � t2)dt1

3

5

dt2 (B2)

after substituting (4) into (5) and making use of (1). Applying the Leibniz rule for differentiation of an integral, in the form

d

dt

t
Z

0

f(⌧, t)d⌧ = f(t, t)+

t
Z

0

@

@t
f(⌧, t)d⌧ (B3)

the expression for the time-dependent diffusivity simplifies to

(t) =
1

4

t
Z

0

Rzz(t, t1 � t)dt1 +
1

4

t
Z

0

Rzz(t2, t� t2)dt2

=

1

2

t
Z

0

<{Rzz(t,⌧ � t)} d⌧ (B4)

where in applying (B3), f(⌧, t) is taken to be the entire quantity in square brackets in (B2). The second line in (B4) follows

from the symmetry Rzz(t,⌧) =R⇤
zz(t+ ⌧,�⌧), with <{·} denoting the real part.

The time-dependent diffusivity can be understood in several different ways, see also LaCasce (2008). Substituting the defi-

nition of the autocovariance (1), the last expression in (B4) becomes

(t) =
1

2

t
Z

0

<{E[z(⌧)z⇤(t)]} d⌧ (B5)

which states that the time-dependent diffusivity (t) is the integral of the covariance between the velocity at time t and the

velocity at all times between 0 and t. However, z⇤(t) can be pulled outside the integral, leading to

(t) =
1

2

<

8

<

:

E

2

4z⇤(t)

t
Z

0

z(⌧)d⌧

3

5

9

=

;

=

1

2

<{E[z⇤(t)r(t)]} (B6)

so that (t) can equivalently be seen as the inner product of the velocity at time t and the displacement at time t.

In the case that z(t) is stationary, Rzz(t,⌧) =Rzz(⌧), and the long-time limiting diffusivity value  is given by

= lim

t�!1

1

2

t
Z

0

<{Rzz(⌧ � t)} d⌧ (B7)

= lim

t�!1

1

2

0
Z

�t

<{Rzz(⌧)} d⌧ =

1

4

1
Z

�1

Rzz(⌧)d⌧ (B8)
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after a change of variables. One may invert the inverse Fourier transform (3) to give Szz(!) =
R1
�1 e�i!⌧Rzz(⌧)d⌧ , and we

then see that = Szz(0)/4, as claimed in (9). Thus, while diffusivity is generally thought of as a time-domain quantity, it may

also be expressed in the frequency domain.
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Table 1. Examples of spectra for short-and long-memory processes of subdiffusive, diffusive, and superdiffusive types. The term in the box

is the spectrum of the Matérn process, as given in (38). Note that the two spectra corresponding to diffusive processes have been normalized

such that = S
zz

(0)/4 = 1. � is a nonnegative constant, while ⌦ is a nonzero constant of either sign.

 Short Memory Stationarity Long Memory Stationarity

Superdiffusive 1 (not possible) — S
zz

(!) =
1

!2�
(!2

+�2
)

↵

↵+� > 1
2 , � < 1

2

Diffusive 1 S
zz

(!) =
4�2↵

(!2
+�2

)

↵

↵> 1
2 S

zz

(!) =
4⌦

2�
�
⌦

2
+�2

�
↵

|!�⌦|2� (|!�⌦|2 +�2
)

↵

↵+� > 1
2 , � < 1

2

Subdiffusive 0 S
zz

(!) =
!2

(!2
+�2

)

↵

↵> 3
2 S

zz

(!) =
!2

|!�⌦|2� (|!�⌦|2 +�2
)

↵

↵+� > 3
2 , � < 1

2

Appendix C: Diffusiveness and memory

This appendix is new and contains material relocated from the main text.

In this appendix we examine the relationship between the properties of memory and diffusiveness, by constructing examples

of processes with different combinations of these two properties through modifying the Matérn process. Here we will make

use of a number of quantities that are not defined until the Matérn process is examined in Section 4.

Spectra of stationary processes corresponding to different combinations of memory and diffusiveness are given in Table C1.

These processes can be generated through the stochastic integral equation (59), and are most simply described by specifying

modifications to the transfer function G(!) defined in (61), with attendant changes for its Fourier transform, the time-domain

Green’s function g(t). As discussed in Section 2.3, the classification of a process as ‘diffusive’ means that its spectrum takes

on a finite nonzero value at zero frequency, such that the integrated version of the process exhibits diffusive dispersion, with

the expected squared distance from an initial location increasing at a constant rate.

Multiplying the Matérn transfer function given by (61), with the spin ⌦ set to zero, by ! multiplies the spectrum by !2 and

thus leads to a short-memory subdiffusive process, with a spectrum shown at the lower left of Table C1. This process has finite

variance provided we choose ↵> 3/2. Dividing the Matérn transfer function by |!|� , corresponding to a fractional integration,

divides the spectrum by |!|2� . This gives a process that is both long-memory and superdiffusive, with a spectrum shown at

the upper right. Adding a spin to this latter process, by shifting the transfer function frequency by ⌦ as in (61), also shifts the

spectrum as ! 7! !�⌦. The resulting spectrum, shown at the center right of Table C1, has a finite value at frequency zero but

a singularity off zero, and is therefore diffusive but long-memory; we note that this continuous-time process is related to the

discrete-time Gegenbauer process (Gray et al., 1989; Baillie, 1996). Finally, multiplying the transfer function of the previous

process by ! multiplies the spectrum by !2, causing the spectrum at zero frequency to vanish; however this does not remove
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the singularity at ! = ⌦, leading to a long-memory subdiffusive process, the spectrum of which is at the lower right in the

table.

These results show that diffusiveness and memory, while related, are distinct properties that can be varied independently.

In this table we have also noted the parameter ranges required for the process spectrum to integrate to a finite variance, and

therefore for the process to be stationarity. In general for a spectrum of the form |!|�2↵, the behavior of the singularity at zero

contributes to unbounded variance for ↵> 1
2 , while the behavior at large frequencies contributes to unbounded variance for

↵< 1
2 . Ensuring that neither the singularities nor the large-frequency decay will contribute to unbounded variance leads to the

parameter ranges for stationarity shown in the table.

Appendix D: The fBm Rihaczek distribution

This appendix is new and contains material relocated from the main text.

Here we derive (24) for the Rihaczek distribution of fractional Brownian motion, an expression that was previously pre-

sented by Øigård et al. (2006), adding some additional details. For fBm, there arises a complication in defining the Rihaczek

distribution as in (21), because the integral in (23) is divergent. Despite this, (24) may be derived by interpreting this integral

in a limiting sense, as is now shown. For ↵> 1/2, consider the integral

1
Z

�1

|⌧ |2↵�1e�i!⌧
d⌧ = 2<

8

<

:

1
Z

0

⌧2↵�1ei!⌧
d⌧

9

=

;

(D1)

which does not exist in the usual sense, since the integral is divergent. However, a limiting form does exist, given by

lim

✏�!0

1
Z

0

⌧2↵�1e�✏⌧+i!⌧
d⌧ = ei↵⇡

�(2↵)

!2↵
, ! 6= 0 (D2)

which is an example of what is termed an Abel limit, see Wong (1980, p. 407). Thus interpreting (D1) as an Abel limit leads to

1

2cos(⇡↵)�(2↵)

1
Z

�1

|⌧ |2↵�1e�i!⌧
d⌧ =

1

|!|2↵
(D3)

such that a decaying power law in the frequency domain is associated with a growing power law, of one lower order, in the time

domain. Here we have noted that changing the sign of ! in (D2) is equivalent to a complex conjugation, since (�1)

2↵
= e2i⇡↵,

this leading to the absolute value of !.

The coefficient of the integral in (D3) simplifies to �V↵/2, as shown in Appendix E. One then finds

�
1
Z

�1

V↵

2

A2|⌧ |2↵�1 e�i!⌧
d⌧ =

A2

|!|2↵ =

eSfBm
zz (!) (D4)

which shows that A2/|!|2↵ is the inverse Fourier transform, in the Abel limit sense, of that part of the nonstationary autoco-

variance function RfBm
zz (t,⌧) depending only on ⌧ . The inverse Fourier transformed quantity on the left-hand side of (D4) is

47



also recognized from (20) as the negative of the fBm variogram �fBm
zz (⌧). A change of variables gives

�
1
Z

�1

V↵

2

A2|t+ ⌧ |2↵�1 e�i!⌧
d⌧ = ei!t A2

|!|2↵ (D5)

and substituting (D4) and (D5) into (23), and making use of
R1
�1 e�i!⌧

d⌧ = 2⇡�(!), one obtains (24). From left to right in

(24), we have the inverse Fourier transforms of the |⌧ | term, the |t+ ⌧ | term, and the |t| term from the fBm autocovariance

function (13).

Appendix E: The form of the fBm coefficient V↵

The usual form of the coefficient for fractional Brownian motion, in terms of the Hurst parameter H = ↵� 1/2, is

VH ⌘ �(1� 2H)cos(⇡H)

⇡H
(E1)

see Barton and Poor (1988). In terms of the slope parameter ↵, this becomes

V↵ ⌘ �(2� 2↵)sin(⇡↵)

⇡(↵� 1/2)
(E2)

which can be expressed in a more symmetric form as follows. First we expand the denominator using �(1+ ⌫) = ⌫�(⌫) or

⌫ = �(1+ ⌫)/�(⌫) with ⌫ = ↵� 1/2, giving

V↵ =

�(2� 2↵)�
�

↵� 1
2

�

sin(⇡↵)

⇡�
�

↵+

1
2

� . (E3)

The so-called reflection and duplication theorems for the gamma function are, respectively,

sin(⇡⌫) =
⇡

�(⌫)�(1� ⌫)
(E4)

�(2⌫) =
1p
⇡
2

2⌫�1
�(⌫)�

✓

⌫+
1

2

◆

(E5)

see 6.1.17 and 6.1.18 on p. 256 of Abramowitz and Stegun (1972). Applying the later to both �(2↵) and �(2�2↵) gives their

product as

�(2↵)�(2� 2↵) =
1

⇡
�(↵)�

✓

↵+

1

2

◆

�(1�↵)�

✓

3

2

�↵

◆

(E6)

in which all powers of two exactly cancel. Employing the reflection theorem with ⌫ = ↵, this becomes

�(2↵)�(2� 2↵) =
�

�

↵+

1
2

�

�

�

3
2 �↵

�

sin(⇡↵)
(E7)

and substituting this into (E3) leads to (18), as claimed.

Now, using the reflection formula (E4) together with a trigonometric identity we find

�cos(⇡↵) = sin

⇣

⇡↵� ⇡

2

⌘

=

⇡

�

�

↵� 1
2

�

�

�

3
2 �↵

� (E8)
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and therefore

� 1

cos(⇡↵)�(2↵)
=

1

⇡

�

�

↵� 1
2

�

�

�

3
2 �↵

�

�(2↵)
= V↵. (E9)

This establishes that the coefficient of the integral in (D3) is the same as �V↵/2.

Appendix F: Fractional Gaussian noise

Define the difference of a fractional Brownian motion process at one time and itself a different time as

z�(t)⌘ z(t+�)� z(t) (F1)

which will be explicitly labeled by the time interval � for clarity. The resulting process is called fractional Gaussian noise or

fGn (Mandelbrot and Van Ness, 1968; Mandelbrot and Wallis, 1969; Percival and Walden, 1993). While it is more usual to

sample the process defined by (F1) at regular intervals, here we will examine the properties of the continuous-time process.

The autocovariance function for continuous-time fractional Gaussian noise will be denoted as

RfGn
zz,�(t,⌧)⌘ E{z�(t+ ⌧)z⇤�(t)} (F2)

and this expands to give

RfGn
zz,�(t,⌧) =RfBm

zz (t,⌧)+RfBm
zz (t+�,⌧)�RfBm

zz (t,⌧ +�)�RfBm
zz (t+�,⌧ ��). (F3)

Substituting the form of the fBm autocovariance (13), cancellations occur, leading to

RfGn
zz,�(⌧)⌘RfGn

zz,�(t,⌧) =
V↵

2

A2
h

|⌧ +�|2↵�1
+ |⌧ ��|2↵�1 � 2 |⌧ |2↵�1

i

(F4)

where our notation is modified to reflect the fact that the autocovariance is independent of t. Fractional Gaussian noise is

therefore a stationary process. On account of the self-similar scaling of the fBm autocovariance function (28), one finds

RfGn
zz,�(⌧) =�

2↵�1RfGn
zz,1(⌧/�) (F5)

so that we may without loss of generality set �= 1. For convenience we let ⌧̃ ⌘ ⌧/� be a nondimensional time offset.

The expression (F4) may be compared with (5.2) of Mandelbrot and Van Ness (1968), who permitted the durations of the

two increments to differ. Our expression differs from that in Mandelbrot and Van Ness (1968) because we have chosen to apply

the similarity scaling to remove the increment duration rather than the separation, for reasons to become apparently shortly;

“T ” in Mandelbrot and Van Ness (1968) refers to what we call ⌧ here.

The normalized fGn covariance function RfGn
zz,1(⌧̃)/(A

2V↵) is shown in Fig. F1. Because fGn will generally be sampled,

we are typically interested only in time offsets ⌧ that exceed the sample interval �, corresponding to ⌧̃ > 1. Analyzing

RfGn
zz,1(⌧̃)/(A

2V↵) using (F4), one sees that for ⌧̃ > 1 it obtains a maximum value of unity at ↵= 3/2, while it vanishes

both for ↵= 1/2 and ↵= 1. It is found that RfGn
zz,1(⌧̃) is positive for ↵> 1, and negative for ↵< 1, see Mandelbrot and Van
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Ness (1968). The maximum positive value is at ↵= 3/2 for all ⌧̃ , but the maximum negative value occurs at some intermediate

value of ↵ in the range (1/2,1). For any fixed ↵, increasing ⌧̃ leads to absolute values of RfGn
zz,1(⌧̃) that decay toward zero.

The behavior of the fractional Gaussian noise covariance function allows us to discuss the property of persistence. For ↵> 1,

fGn exhibits positive correlations, such that positive values will tend to be followed by positives value and negative values by

negative values. However, for ↵< 1, fGn is anti-persistent, and positive values will tend to be followed by negative values and

vice-versa. Note that RfGn
zz,1(⌧̃) is not symmetric about ↵= 1: the most positive correlations occur at ↵= 3/2, but the most

negative correlations do not occur at ↵= 1/2. This may perhaps be seen as reflecting a difference between persistence and

anti-persistence. Values of the same sign can follow one another indefinitely, for any timescale; but the same cannot be true for

values of the opposite sign.

The persistence transition in fractional Gaussian noise at ↵= 1 is reflected in the behavior of fractional Brownian motion

seen in Fig. 5. Values of ↵> 1 coincide with the tendency for the process to systematically drift away from an initial value, as

differenced versions of the process will tend to keep contributing perturbations of one particular sign. Similarly, for ↵< 1, the

anti-correlations of the differenced process tend to act to restore fBm toward a baseline, and therefore these process are more

closely distributed around the mean value of zero. The important point is that for fractional Brownian motion, the spectral slope

can be seen as being linked to the degree of persistence or anti-persistence associated with a differenced version of the process.

The memory of fractional Gaussian noise may be determined as follows. The fGn autocovariance (F4) can be rewritten as

RfGn
zz,�(⌧) =

V↵

2

A2⌧2↵�1
h

|1+�/⌧ |2↵�1
+ |1��/⌧ |2↵�1 � 2

i

(F6)

after pulling out the factor of ⌧2↵�1. Employing the binomial expansion, (1+x)� = 1+�x+ 1
2�(��1)x2

+O(x3
) for small

x, cancellations occur and we find

RfGn
zz,�(⌧) =

V↵

2

A2
�

2
(2↵� 1)(2↵� 2)⌧2↵�3

+O
�

⌧2↵�2
�

(F7)

for the asymptotic behavior at large ⌧ . Recall from Section C that a long-memory stationary process is one for which the long-

time behavior of the autocovariance function behaves as Rzz(⌧)⇠ |⌧ |�µ for 0< µ 1. For fGn we have µ= 3� 2↵, thus

1 ↵< 3/2 corresponds to 0< µ 1, and fractional Gaussian noise is a long-memory process in this range of ↵.

Appendix G: The Matérn autocovariance for small ⌧

In this appendix we derive the form of the small-⌧ behavior of the Matérn autocovariance function, as was apparently first done

by Goff and Jordan (1988), their p. 13,606. Here we follow those authors, paying particularly close attention to the ↵ range

over which the result is valid. For this we will make use of the identity 9.6.2 of Abramowitz and Stegun (1972)

K⌫(⌧) =
1

2

⇡
I�⌫(⌧)� I⌫(⌧)

sin(⌫⇡)
(G1)

together with the series expansion 9.6.10 of Abramowitz and Stegun (1972)

I⌫(⌧) =
✓

1

2

⌧

◆⌫ 1
X

n=0

�

1
2⌧
�2n

n!�(n+1+ ⌫)
. (G2)
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Figure 9. The fractional Gaussian noise autocovariance function RfGn

zz,1(e⌧), as defined in (F4), here normalized by dividing by V
↵

and A2.

The time axis is interpreted as the normalized time ⌧̃ = ⌧/�. The shading shows log10 of the magnitude of the normalized autocovariance

function, which obtains a maximum of unity at ↵= 3/2 for all e⌧ . A sign change occurs at ↵= 1, with positive values at higher ↵ and

negative values at lower ↵. Black lines are contours of positive values, with a contour interval of 0.1 beginning at zero, while thin white lines

are contours of negative values with an interval of 0.01. The heavy white curve is the zero contour at ↵= 1.

Employing the reflection formula (E4), these combine to give

⌧⌫K⌫(⌧) =
1

2

�(1� ⌫)�(⌫)
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(G3)

and gathering the terms for n= 0, one finds

M⌫+1/2(⌧) =
1

�(⌫)2⌫�1
|⌧ |⌫K⌫(|⌧ |) = 1�

✓

1

2

|⌧ |
◆2⌫

�(1� ⌫)

�(1+ ⌫)
+

1
X

n=1

⌧2n
⇥

cn + dn|⌧ |2⌫
⇤

(G4)
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where cn and dn are constants describing the behavior proportional to ⌧2n and |⌧ |2n+2⌫ , respectively. Here M↵(⌧) is the

Matérn function introduced in (48).

Provided that ⌫ > 0, we have M⌫+1/2(⌧)⇡ 1 for ⌧ sufficiently close to zero. For 0< ⌫ < 1 and small ⌧ , the term outside

the summation in (G4), which is proportional to |⌧ |2⌫ , dominates the first term in the summation, which is proportional to ⌧2;

all other terms are then smaller still. The range of ⌫ for which this result is valid does appear to have been mentioned by Goff

and Jordan (1988). Since ⌫ in these expressions is related to ↵ in the Matérn autocovariance function through ⌫ = ↵�1/2, this

domination occurs for 1/2< ↵< 3/2, and we obtain the asymptotic behavior (51) for |⌧ |⌧ 1/�. For larger values of ↵, the

smallest power of ⌧ in (G4) is the ⌧2 term on the second line of (G4), which therefore dominates.

Appendix H: The Matérn oscillator equation

This appendix is new and contains material relocated from the main text.

The Green’s function (60) for the oscillatory Matérn process is also the solution the fractional differential equation (64),

which describes a damped fractional oscillator forced by a delta function at the origin, as we now show. We expand the

operator in (64) as


d

dt
+�� i⌦

�↵

=

1
X

n=0

↵(↵� 1) · · ·(↵�n+1)

n!



d

n

dtn
+(�� i⌦)

↵�n

�

(H1)

using Newton’s generalization of the binomial theorem to non-integral orders. Substituting g(t) = 1
2⇡

R1
�1G(!)ei!t

d! into

the left-hand side of the differential equation (64), applying (H1), and carrying out the indicated derivatives, leads to



d

dt
+�� i⌦

�↵

g(t) =
1

2⇡

1
Z

�1

G(!) [i (!�⌦)+�]↵ ei!t
d! (H2)

after collapsing the summation using a second application of the generalized binomial theorem. Now a cancellation occurs,

and the right-hand side of (H2) becomes simply 1
2⇡

R1
�1 ei!t

d!, which is equal to �(t), thus verifying (64).

52



References

Abramowitz, M. and Stegun, I. A.: Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, National Bureau

of Standards, Washington, D. C., tenth printing edn., 1972.

Adler, R. J.: Hausdorff dimension and Gaussian fields, Ann. Probab., 5, 145–151, 1977.

Arató, M., Baran, S., and Ispány, M.: Functionals of complex Ornstein-Uhlenbeck processes, Comput. Math. Appl., 37, 1–13, 1999.

Baillie, R. T.: Long memory processes and fractional integration in econometrics, J. Econometrics, 73, 5–59, 1996.

Barton, R. J. and Poor, H. V.: Signal detection in fractional Gaussian noise, IEEE T. Inform. Theory, 34, 943–959, 1988.

Basset: A Treatise on Hydrodynamics, with Numerous Examples, Cambridge Univ Press, 1888.

Bateman, H.: Tables of Integral Transforms, McGraw-Hill Book Company, Inc, 1954.

Beran, J.: Statistical methods for data with long-range dependence, Stat. Sci., 7, 404–416, 1992.

Beran, J.: Statistics for Long-Memory Processes, vol. 61 of Monographs on Statitics and Applied Probability, Chapman & Hall / CRC, 1994.

Berge, C.: Principles of Combinatorics, Academic Press, 1971.

Berloff, P. and McWilliams, J.: Material transport in oceanic gyres. Part II: Hierarchy of stochastic models, J. Phys. Oceanogr., 32, 797–830,

2002.

Bracco, A. and McWilliams, J. C.: Reynolds-number dependency in homogeneous, stationary two-dimensional turbulence, J. Fluid Mech.,

646, 517–526, 2010.

Cressie, N.: A graphical procedure for determining nonstationarity in time series, J. Acoust. Soc. Am., 83, 1108–1116, 1988.

Davis, R. E.: Oceanic property transport, Lagrangian particle statistics, and their prediction, J. Mar. Res., 41, 163–194, 1983.

Dietrich, C. R. and Newsam, G. N.: Fast and exact simulation of stationary Gaussian processes through circulant embedding of the covariance

matrix, SIAM J. Sci. Comput., 18, 1088–1107, 1997.

Dritschel, D. G., Scott, R. K., Gottwald, G. A., and Tran, C. V.: Unifying scaling theory for vortex dynamics in two-dimensional turbulence,

Phys. Rev. Lett., 101, 94 501, 2008.

Dunbar, S. R., Douglass, R. W., and Camp, W. J.: The divider dimension of the graph of a function, J. Math. Anal. Appl., 167, 1992.

Elipot, S. and Lumpkin, R.: Spectral description of oceanic near-surface variability, Geophys. Res. Lett., 35, L05 606,

doi:10.1029/2007GL032874, 2008.

Emery, W. J. and Thomson, R. E.: Data Analysis Methods in Physical Oceanography, Elsevier, third edn., 2014.

Falconer, K.: Fractal Geometry: Mathematical Foundations and Applications, John Wiley & Sons, 1990.

Flandrin, P.: On the spectrum of fractional Brownian motion, IEEE T. Inform. Theory, 35, 197–199, 1989.

Flandrin, P.: Time-Frequency / Time-Scale Analysis, Academic Press, San Diego, 1999.

Fofonoff, N. P.: Spectral characteristics of internal waves in the ocean, Deep-Sea Res., 16, 59–71, (Supplement), 1969.

Gneiting, T. and Schlather, M.: Stochastic models that separate fractal dimension and the Hurst effect, SIAM Rev., 46, 269–282, 2004.

Gneiting, T., Kleiber, W., and Schlather, M.: Matérn cross-covariance functions for multivariate random fields, J. Acoust. Soc. Am., 105,

1167–1177, 2010.

Goff, J. A. and Jordan, T. H.: Stochastic modeling of seafloor morphology: Inversion of sea beam data for second-order statistics, J. Geophys.

Res., 93, 13 589–13 608, 1988.

Gonella, J.: A rotary-component method for analyzing meteorological and oceanographic vector time series, Deep-Sea Res., 19, 833–846,

1972.

53



Gorenflo, R. and Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics, vol. 378 of CISM International Centre for Me-

chanical Sciences Series, chap. Fractional calculus: Integral and differential equations of fractional order, pp. 223–276, Springer-Verlag

Wien, 1997.

Gradshteyn, I. S. and Ryzhik, I. M.: The Table of Integrals, Series and Products, 6th Edition, Academic Press, 2000.

Gray, H. L., Zhang, N.-F., and Woodward, W. A.: On generalized fractional processes, J. Time Ser. Anal., 10, 233–257, 1989.

Griffa, A.: Stochastic Modelling in Physical Oceanography, chap. Applications of stochastic particle models to oceanographic problems, pp.

113–140, Springer, Boston, MA, 1996.

Guttorp, P. and Gneiting, T.: Studies in the history of probability and statistics XLIX. On the Matérn correlation family, Biometrika, 93,

989–995, 2006.

Handcock, M. S. and Stein, M. L.: A Bayesian analysis of kriging, Technom, 35, 403–410, 1993.

Hanssen, A. and Scharf, L. L.: A theory of polyspectra for nonstationary stochastic processes, IEEE T. Signal Proces., 51, 1243–1252, 2003.

Hartikainen, J. and Särkkä, S.: Kalman filtering and smoothing solutions to temporal Gaussian process regression models, in: Proceedings of

the IEEE International Workshop on Machine Learning for Signal Processing (MLSP), 2010.

Hedevang, E. and Schmiegel, J.: A Lévy based approach to random vector fields: with a view towards turbulence, Int. J. Nonlin. Sci. Num.,

15, 2014.

Hindberg, H. and Hanssen, A.: Generalized spectral coherences for complex-valued harmonizable processes, IEEE T. Signal Proces., 55,

2407–2413, 2007.

Hunt, G. A.: Random Fourier transforms, Trans. Amer. Math. Soc., 71, 38–69, 1951.

Jeffreys, H.: The variation of latitude, Mon. Not. R. Astron. Soc., 100, 139–155, 1942.

Kadoch, B., del Castillo-Negrete, D., Bos, W. J. T., and Schneider, K.: Lagrangian statistics and flow topology in forced two-dimensional

turbulence, Phys. Rev. E, 83, 036 314, 2011.

Kampé de Fériet, J.: Les fonctions aléatoires stationnaires et la théorie statistique de la turbulence homogéne, Ann. Soc. Sci. Brux., 59,

145–194, 1939.

Kirkwood, J. G.: Quantum statistics of almost classical assemblies, Phys. Rep., 44, 31–37, 1933.

Koszalka, I. M. and LaCasce, J. H.: Lagrangian analysis by clustering, Ocean Dyn., 60, 957–972, 2010.

LaCasce, J. H.: Statistics from Lagrangian observations, Prog. Oceanogr., 77, 1–29, 2008.

Li, J.-Y., Lu, X., Li, M., and Chen, S.: Data simulation of Matérn type, WSEAS Transactions on Computers, 9, 696–705, 2010.

Lilly, J. M. and Gascard, J.-C.: Wavelet ridge diagnosis of time-varying elliptical signals with application to an oceanic eddy, Nonlinear Proc.

Geoph., 13, 467–483, 2006.

Lilly, J. M. and Olhede, S. C.: Wavelet ridge estimation of jointly modulated multivariate oscillations, in: 2009 Conference Record of the

Forty-Third Asilomar Conference on Signals, Systems, and Computers, pp. 452–456, 2009.

Lilly, J. M., Scott, R. K., and Olhede, S. C.: Extracting waves and vortices from Lagrangian trajectories, Geophys. Res. Lett., 38, 1–5, 2011.

Lim, S. C. and Eab, C. H.: Riemann-Liouville and Weyl fractional oscillator processes, Phys. Lett. A, 355, 87–93, 2006.

Lin, J.-T.: Relative dispersion in the enstrophy-cascading inertial range of homogeneous two-dimensional turbulence, J. Atmos. Sci., 29,

394–396, 1972.

Lindgren, F., Rue, H., and Lindström, J.: An explicit link between Gaussian fields and Gaussian Markov random fields: the stochastic partial

differential equation approach, J. Roy. Stat. Soc. B Met., 73, 423–498, 2011.

54



Lumpkin, R. and Pazos, M.: Lagrangian Analysis and Prediction in Coastal and Ocean Processes, chap. Measuring surface currents with

Surface Velocity Program drifters: the instrument, its data, and some recent results, pp. 39–67, Cambridge University Press, 2007.

Ma, C.: The use of the variogram in the construction of stationary time series models, J. Appl. Probab., 41, 1093–1103, 2004.

Majda, A. J. and Gershgorin, B.: Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum and

intermittency, Philos. T. Roy. Soc. A, 371, 20120 184, 2013.

Majda, A. J. and Kramer, P. R.: Simplified models for turbulent diffusion: Theory, numerical modelling, and physical phenomena, Phys.

Rep., 1999.

Mandelbrot, B. B.: Self-affinity and fractal dimension, Phys. Scripta, 32, 257–260, 1985.

Mandelbrot, B. B. and Van Ness, J. W.: Fractional Brownian motions, fractional noises and applications, SIAM Rev., 10, 422–437, 1968.

Mandelbrot, B. B. and Wallis, J. R.: Computer experiments with fractional Gaussian noises: Part 3, mathematical appendix, Water Resour.

Res., 5, 260–267, 1969.

Matérn, B.: Spatial variation: stochastic models and their applications to some problems in forest surveys and other sampling investigations,

Meddelanden från Statens Skogsforskningsinstitut, 49, 1–144, 1960.

Matheron, G.: Principles of geostatistics, Econ. Geol., 58, 1246–1266, 1963.

McWilliams, J. C.: The vortices of two-dimensional turbulence, J. Fluid Mech., 219, 361–385, 1990a.

McWilliams, J. C.: The vortices of geostrophic turbulence, J. Fluid Mech., 219, 387–404, 1990b.

Metzner, P.: Transition path theory for Markov processes, Ph.D. thesis, Freien Universität Berlin, http://www.diss.fu-berlin.de/diss/servlets/

MCRFileNodeServlet/FUDISS_derivate_000000003512/, 2007.

Molz, F. J., Liu, H. H., and Szulga, J.: Fractional Brownian motion and fractional Gaussian noise in subsurface hydrology: A review,

presentation of fundamental properties, and extensions, Water Resour. Res., 33, 2273–2286, 1997.

Monin, A. S.: The structure of atmospheric turbulence, Theor. Probab. Appl., 3, 266–296, 1958.

Monin, A. S. and Yaglom, A. M.: Statistical Fluid Mechanics, Volume II: Mechanics of Turbulence, Dover Publications, Inc., 2007.

Mooers, C. N. K.: A technique for the cross spectrum analysis of pairs of complex-valued time series, with emphasis on properties of

polarized components and rotational invariants, Deep-Sea Res., 20, 1129–1141, 1973.

Neeser, F. D. and Massey, J.: Proper complex random processes with applications to information theory, IEEE T. Inform. Theory, 39, 1293–

1302, 1993.

Øigård, T. A., Hanssen, A., and Scharf, L. L.: Spectral correlations of fractional Brownian motion, Phys. Rev. E, 74, 1–6, 2006.

Osborne, A. R., Jr., A. K., Provenzale, A., and Bergamasco, L.: Fractal drifter trajectories in the Kuroshio extension, Tellus, 41, 416–435,

1989.

Park, J., Vernon III, F. L., and Lindberg, C. R.: Frequency-dependent polarization analysis of high-frequency seismograms, J. Geophys. Res.,

92, 12,664–12,674, 1987.

Pasquero, C., Provenzale, A., and Weiss, J. B.: Vortex statistics from Eulerian and Lagrangian time series, Phys. Rev. Lett., 89, 284 501,

2002.

Percival, D. B.: Exact simulation of complex-valued Gaussian stationary processes via circulant embedding, Signal Process., 86, 1470–1476,

2006.

Percival, D. B. and Walden, A. T.: Spectral Analysis for Physical Applications, Cambridge University Press, New York, 1993.

Picinbono, B. and Bondon, P.: Second-order statistics of complex-valued time series, IEEE T. Signal Proces., 45, 411–420, 1997.

55



Pollard, R. T. and Millard, Jr., R.: Comparison between observed and simulated wind-generated inertial oscillations, Deep-Sea Res., 17,

813–821, 1970.

Qian, H.: Processes with Long-Range Correlations, chap. Fractional Brownian motion and fractional Gaussian noise, pp. 22–33, Springer,

2003.

Rihaczek, A. W.: Signal energy distribution in time and frequency, IEEE T. Inform. Theory, 14, 369–374, 1968.

Rogers, L. C. G.: Arbitrage with fractional Brownian motion, Math. Financ., 7, 95–105, 1997.

Rossby, H. T.: Lagrangian Analysis and Prediction in Coastal and Ocean Processes, chap. Evolution of Lagrangian methods in oceanography,

pp. 1–38, Cambridge University Press, 2007.

Rupolo, V., Artalea, V., Huab, B. L., and Provenzale, A.: Lagrangian velocity spectra at 700 m in the western North Atlantic, J. Phys.

Oceanogr., 26, 1591–1607, 1996.

Sanderson, B. G. and Booth, D. A.: The fractal dimension of drifter trajectories and estimates of horizontal eddy-diffusivity, Tellus, 43,

334–349, 1991.

Sanderson, B. G., Goulding, A., and Okubo, A.: The fractal dimension of relative Lagrangian motion, Tellus, 42, 550–556, 1990.

Sawford, B. L.: Rotation of trajectories in Lagrangian stochastic models of turbulent dispersion, Bound.-Lay. Meteorol., 93, 411–424, 1999.

Schlather, M.: Advances and Challenges in Space-time Modelling of Natural Events, vol. 207 of Lecture Notes in Statistics, chap. Construc-

tion of covariance functions and unconditional simulation of random fields, pp. 25–54, Springer Berlin Heidelberg, 2012.

Schreier, P. J. and Scharf, L. L.: Stochastic time-frequency analysis using the analytic signal: why the complementary distribution matters,

IEEE T. Signal Proces., 51, 3071–3079, 2003.

Scott, R. K. and Dritschel, D. G.: Halting scale and energy equilibration in two-dimensional quasigeostrophic turbulence, J. Fluid Mech.,

721, 1–12, 2013.

Slepian, D.: Prolate spheriodal wave functions, Fourier analysis, and uncertainty– V: The discrete case, Bell Syst. Tech. J., 57, 1371–1430,

1978.

Solo, V.: Intrinsic random functions and the paradox of l/f noise, SIAM J. Appl. Math., 52, 270–291, 1992.

Summers, D. M.: Impulse exchange at the surface of the ocean and the fractal dimension of drifter trajectories, Nonlinear Proc. Geoph., 9,

11–23, 2002.

Sykulski, A. M., Olhede, S. C., Lilly, J. M., and Danioux, E.: Lagrangian time series models for ocean surface drifter trajectories, J. Roy.

Stat. Soc. C App., 65, 29–50, 2016a.

Sykulski, A. M., Olhede, S. C., Lilly, J. M., and Early, J. J.: The Whittle likelihood for complex-valued time series, in revision; draft available

at http://arxiv.org/pdf/1605.06718., 2016b.

Taylor, C. C. and Taylor, S. J.: Estimating the dimension of a fractal, J. Roy. Stat. Soc. B Met., pp. 353–364, 1991.

Taylor, G. I.: Diffusion by continuous movements, P. Lond. Math. Soc., 20, 196–212, 1921.

Thomson, D. J.: Spectrum estimation and harmonic analysis, Proc. IEEE, 70, 1055–1096, 1982.

Uhlenbeck, G. E. and Ornstein, L. S.: On the theory of the Brownian motion, Phys. Rep., 36, 823–841, 1930.

Vallis, G. K.: Atmospheric and Oceanic Fluid Dynamics: Fundamentals and Large-Scale Circulation, Cambridge University Press, 2006.

Veneziani, M., Griffa, A., Garraffo, Z., and Chassignet, E.: Lagrangian spin parameter and coherent structures from trajectories released in a

high-resolution ocean model, J. Mar. Res., 63, 753–788, 2005a.

Veneziani, M., Griffa, A., Reynolds, A. M., Garraffo, Z. D., and Chassignet, E. P.: Parameterizations of Lagrangian spin statistics and particle

dispersion in the presence of coherent vortices, J. Mar. Res., 63, 1057–1083, 2005b.

56



Von Karman, T.: Progress in the statistical theory of turbulence, P. Natl. Acad. Sci. USA, 34, 530–539, 1948.

Watson, G. N.: A Treatise on the Theory of Bessel Functions, Cambridge Univ Press, 1922.

Weiss, J. B., Provenzale, A., and McWilliams, J. C.: Lagrangian dynamics in high-dimensional point-vortex systems, Phys. Fluids, 10,

1929–1941, 1998.

Whittle, P.: Estimation and information in stationary time series, Ark. Mat., 2, 423–434, 1953.

Wolpert, R. L. and Taqqu, M. S.: Fractional Ornstein-Uhlenbeck Lévy processes and the telecom process: upstairs and downstairs, Signal

Process., 85, 1523–1545, 2005.

Wong, R.: Error bounds for asymptotic expansions of integrals, SIAM Rev., 22, 401–435, 1980.

Yagle, A. E. and Levy, B. C.: The Schur algorithm and its applications, Acta Appl. Math., 3, 255–284, 1985.

57


