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Abstract. It is analytically shown how competing nonlinearities yield new multiscaled (multi humped) structures for internal

solitary waves in shallow fluids. These solitary waves only exist for large amplitudes beyond the limit of applicability of

the KdV equation or its usual extensions. Multiscaling phenomenon exists or do not exist for almost identical density profiles.

Trapped core inside the wave prevents appearance of such multiple scales within the core area. It is anticipated that multiscaling

phenomena exist for solitary waves in various physical origins.5

1 Introduction

The typical horizontal scale (or scales) is a major characteristic of a plane disturbance propagating in a nonuniform medium.

Usually, in an ideal, density stratified shallow fluid, a wave of small, albeit finite amplitude has one typical scale resulting from

the (local) balance between nonlinearity and dispersion like in the realm of Korteveg-de Vries (KdV) equation (Helfrich and

Melville , 2006). If the wavelength of the disturbance is too small for displaying, for instance, capillary dispersion, multiscaled10

solitary waves are possible as shown by Benjamin (1992). They exist due to the competition of gravitational and capillary

dispersion. Similar effect is observed if viscosity is taken into account. The KdV type equation with viscosity term governing

the behaviour of a disturbance in that system allows solution in the form of oscillatory bore as mentioned, for example, by

Grimshaw et al. (2010) . Oscillations of smaller scale superimposed on the smooth front clearly display a two-scale structure

of the bore. This structure is the result of the combined manifestation of gravitational and dissipative effects in the dispersion15

relation. In the present note it is shown that for gravitational dispersion, ignoring all the other earlier mentioned effects,

multiscaled solitary waves are possible. These solutions exist only for disturbances of finite amplitude exceeding the range

of applicability of eKdV model, which incorporates both quadratic and cubic nonlinearities. Existing small amplitude models

can not predict such waves, because they account for higher nonlinearities generating longer scales only as a correction to

the lowest one Grimshaw et al. (2010). For multiscales to occur the various competitive nonlinearities should be of the same20

order and that order needs to be higher then the cubic one as analytically discussed below. This effect was initially noticed

by Derzho and Borisov (1990) in Russian journal. Recently Dunphy et al. (2011) presented numerical results on two humped

and usual one humped solitary internal waves for nearly identical density profiles. However, neither specific nonlinearity in

terms of power series in wave amplitude necessary to reveal a two humped structure or regions of density profiles at which

such structures exist were not presented. It is worth noting that family of solutions is richer then two-humped structures. It is25
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expectable that such multiscaling solitary waves exist in other physical systems where complicated competitive nonlinearities

are balanced by dispersion.

2 Model for internal waves

Let us consider the two-dimensional steady motion of an ideal stratified fluid in a frame of reference moving with phase speed

of wave c . Assuming stratification to be in the form5

ρ0 (z) = ρ00(1−σ(z+ δf(z))), δ << 1,σ << 1,f ∼ 1, (1)

where σ denotes Boussinesq parameter. In (Derzho and Velarde, 1995) it was shown that for this case the dimensionless

(primed) streamfunction ψ′ =−ψ/cH of a solitary disturbance obeys the equation

ψzz +µ2ψxx +λ(ψ− z)− σ

2
(ψz2− 1− 2ψλ(ψ− z)) + δλ(ψ− z)fψ(ψ) = o(σ,δ,µ2), (2)

where µ is the aspect ratio H/L and λ= σgH
c2 .10

In Eq.(2) z denotes the vertical axis, taken positive upwards and x corresponds to the horizontal axis; z and x are scaled

with H and L, the given vertical and horizontal scales respectively. Expecting no confusion we have, for simplicity, dropped

the primes in Eq.(2). Let us locate the bottom and the surface at the dimensionless heights z =−0.5 and z = 0.5 + η(x),

respectively, where η(x) denotes surface displacement. The boundary conditions at the bottom and surface are

ψx = 0 at z =−0.5 (3)15

σ(ψxψzψzz −ψ2
zψzx) +λψx = o(σ) at z = 0.5 + η(x) (4)

ψx =−ηxψz (5)

The solution of Eqs.(2-5) is searched in the form20

ψ = ψ(0) +µ2ψ(1) + ...,λ= λ(0) +µ2λ(1) + ...,η = η(0) +µ2η(1) + ..., (6)

where zeroth order variables are of order unity. Below we shall provide solution for the first mode, which is most frequently

observed in nature. The analysis for the higher modes is similar. In the zeroth order

ψ(0) = z+A(x)cos(πz),λ(0) = π2,η(0) = 0 (7)
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where the amplitude function A(x) is to be determined at a higher order. For the solution to the first order equation to exist

the solvability condition (Fredholm alternative) demands

Axxx +λ(1)Ax−
σ

µ2
(2Ax− 8πAAx + 2π2A2Ax) + 2

δ

µ2
Qx(A) = 0 (8)

Q(A) = A

0.5∫

−0.5

cos2(πz)fψ(ψ = ψ(0))dz (9)5

In order to (locally) balance nonlinearity and dispersion we have to require max(σ/µ2, δ/µ2)∼ 1 thus determining L.

Benney and Ko (1978) suggested to consider the nonlinear terms as power series in the Boussinesq parameter instead of

small amplitude parameter. Derzho and Velarde (1995) somewhat generalized this idea. After straightforward integrations for

remaining solitary wave solution, Eqs.(8-9) can be reduced to

A2
x +λ(1)A2 + 2

δ

µ2

A∫

0

Q(A′)dA′+A2(
8πA

3
− 2− π2A2

3
) = 0. (10)10

Since an analytical function within a limited interval can be represented with prescribed accuracy in the form of some

N th-order polynomal (Korn and Korn , 1968) it follows that

A∫

0

Q(A′)dA′ =A2PN (A), (11)

For the wave of amplitude A0 Eq.(10) yields

A2
x

A2
= (A0−A)Φ(A), (12)15

Φ(A) = 2
δ

µ2

PN (A0)−PN (A)
A0−A

+
δ

µ2

π2

3
(

8
π
−A−A0) (13)

λ(1) =
σ

µ2
(−8πA

3
+ 2 +

π2A2

3
)− 2

δ

µ2
PN (A0) (14)

Equations (12-14) determine completely both profile and phase velocity of a solitary wave with amplitude A0.

3 Multiscaling

The function f in the form of a M th-order polynomial generates PN with the index N =M − 1. The power index of Φ is20

thus max(1,M − 2). The condition for Eq.(8) to possess a multiscaled solution reduces to the condition that Φ(A) must
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Figure 1. Existence domain for two humped solitary wave

Figure 2. Amplitude function, streamlines and surface profile for typical two humped solitary wave

be sign-defined with several extrema within [0,A0 ] . Thus it must have more than two imaginary roots in that interval. It

determines M ≥ 4 , i.e. for a stratification in the form of cubic polynomial or if wave amplitude is small enough to neglect A4

and higher order nonlinearities, multiscaled solitary waves do not exist because f has no imaginary roots for this case. This

is why classical KdV or mKdV can not provide multiscaled solitary waves over flat bottom. The region of existence of two

humped solitary waves is shown in Fig.1.5

The profile of stratification for this case is

ρ0(z) = ρ(1−σz+ 0.5σ2z2 +ασ2z4), (15)

which produces quadratic, cubic and quartic terms in Eq.(8). A two-humped solitary wave with amplitude A0= 0.194 for the

particular stratification profile Eq.(15) with α=−1.39 and σ = 0.01 is shown in Fig. 2.

Indeed the maximum derivative on x in the dimensionless coordinates is of order unity. However, the wave has a pronounced10

two-scale structure with typical lengthscales which are much larger than the length L used to scale the derivative. A solitary

wave with three typical lengthscales ( tree-humped one) is shown in Fig. 3.
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Figure 3. Amplitude function for three humed solitary wave

For this case the stratification profile is

ρ0(z) = ρ(1−σz+σ2(1.206z2− 4.37z3− 3.435z4− 33.407z6)),

which produces in Eq. (8) nonlinear terms up to A6. Generally, one can expect at most M/2 different scales for a stratification

in the form of polynomial with even power index M , and (M − 1)/2 otherwise. The theory described above is valid for wave

amplitudes below A∗, a certain amplitude at which a vortex core started to appear inside the wave. For nearly linear density5

profile A∗ = 1/π. Derzho and Grimshaw (1997) have shown that

B2
x ∼R(A∗)(1−B)− 8ν

15
(1−B5/2), (16)

where ν is the supercriticality parameter defined such that B varies from zero to one as wave amplitude does from A∗ to the

maximum value allowed predicted there.R(A∗) depends on stratification profile and is fixed. It is straightforward to notice that

B(x) is monotonic and therefore multiscaling does not exist whenA>A∗ . Multiscaling effects similar to the discussed above,10

could be observed in various physical media. Derzho and Grimshaw (2005) reported that solitary Rossby waves in channels

obey the same KdV type equation with complicated nonlinearity due to mean shear variations. Coriolis force for Rossby waves

plays the same role as gravitational force for the internal gravity waves. The results on multiscalng for Rossby waves with and

without trapped core will be reported elsewhere.

4 Conclusion15

For the particular case of a nonlinear dispersive medium like a shallow stratified fluid embedded in the gravity field, we have

obtained multiscaled solitary waves which are predicted when there exists competition of several different types of nonlinearity.

The mechanism leading to these solutions differs from the mechanism of multiscaling due to the competition of different

types of dispersion or effects due to the dissipation. We have shown that the length used to scale the x-derivative does not
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simply coincide with the typical length scale of the wave, as for KdV. Moreover, multiscaled (multi humped) disturbances

exist for sufficiently large amplitudes, at least terms in forth order of waves amplitude should be accounted . Multiscaling

(multi humped) phenomenon exists or do not exist for almost identical density profiles. Trapped core inside the wave prevents

appearance of such multiple scales within the core area. It is noted that multiscaling phenomena exist for solitary waves in

various physical origins, for example, for Rossby waves on a shear flow.5
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