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Abstract. It is analytically shown how competing nonlinearities yield multiscaled structures for internal solitary waves in

shallow fluids. These solitary waves only exist for large amplitudes beyond the limit of applicability of the KdV equation or its

usual extensions. Multiscaling phenomenon exists or does not exist for almost identical density profiles. Trapped core inside

the wave prevents appearance of such multiple scales within the core area. The structural stability of waves of large amplitude

is briefly discussed. Waves of large amplitude displaying both quadratic, cubic and higher order nonlinear terms have stable5

and unstable branches. Multiscaled waves without vortex core are shown to be structurally unstable. It is anticipated that

multiscaling phenomena exist for solitary waves in various physical origins.

1 Introduction

The typical horizontal scale (or scales) is a major characteristic of a plane disturbance propagating in a nonuniform medium.

Usually, in an ideal density stratified shallow fluid, a wave of small, albeit finite amplitude has one typical scale resulting from10

the (local) balance between nonlinearity and dispersion like in the realm of Korteveg-de Vries (KdV) equation (Helfrich and

Melville , 2006). Solitary waves of permanent form for which capillary dispersion is of the same order as the gravitational one

may have oscillatory outskirts as predicted by Benjamin (1992). When viscosity is taken into account, transient effects leading

to various length scales are discussed for the KdV type equation with cubic nonlinearity, for example by Grimshaw et al.

(2003). In the present note it is shown that for the gravitational dispersion, ignoring all other earlier mentioned effects, solitary15

waves with multiple scales are possible. These solutions exist only for disturbances of finite amplitude exceeding the range

of applicability of the extended KdV model, which incorporates both quadratic and cubic nonlinearities. Higher nonlinearity

in the existing small amplitude KdV or mKdV models leads to the correction of the wave length scale without generation

of multiscaling. For appearance of multiscaling, the various competitive nonlinearities should be of the same order and that

order needs to be higher then the cubic one as analytically discussed below. This effect was initially noticed by Derzho and20

Borisov (1990) in the Russian journal but the result was not widely dissimilated. Recently Dunphy et al. (2011) presented

numerical procedure that provides fast calculations for gravitational waves between rigid lids . This model is able to work with

fine density stratifications. Dunphy et al. (2011) reported two-humped and usual one-humped solitary internal waves solutions

for nearly identical density profiles in a two-pycnocline density stratification. Lamb and Wan (1998) have numerically shown

that in some stratifications with two pycnoclines three conjugate flow solutions leading to two-humped solitary waves were25

present. Makarenko et al. (2009) theoretically considered continuous stratification in order to characterize the role of vertical
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structure of the fluid density in the context of waves close to the limiting amplitude. To the best of author knowledge, neither

specific nonlinearity in terms of power series of wave amplitude necessary to reveal a two-humped structure nor regions of

density profiles with single pycnocline at which such structures exist were not examined in the literature. Kurkina et al. (2011)

derived KdV like equation with quadratic and quartic nonlinear terms for interfacial transient waves for the specific three layer

geometry. Assumption on small albeit finite wave amplitude was essential to balance nonlinearity and dispersion in that study.5

Table-top limiting solutions were reported and they were stable within the accuracy of their numerical scheme. In the current

paper, an asymptotic model presented in earlier papers by the author addresses multiscaling phenomena for internal solitary

waves under free surface in the frame of Dubreil-Jacotin-Long equation (DJL) (Long , 1965). Special attention is given to

the case of complicated nonlinearity involving both quadratic, cubic and quartic nonlinear terms for the case of continuous

stratification with a single pycnocline . Solitary waves of permanent form, their existence and structural stability are discussed.10

It is worth noting that family of solutions is richer then two-humped structures. It is expectable that such multiscaling solitary

waves exist in other physical systems where complicated competitive nonlinearities are balanced by dispersion.

2 Model for internal waves

Let us consider the two-dimensional steady motion of an ideal stratified fluid in a frame of reference moving with phase speed

of wave c . The approach is asymptotic being based on the DJL equation for waves without a priory limitation on amplitude.15

This approach has started from the pioneering work by Benney and Ko (1978). Let us consider the stratification in the form

ρ0 (z) = ρ00(1−σ(z+ δf(z))), δ << 1,σ << 1,f ∼ 1, (1)

where σ denotes Boussinesq parameter. In (Derzho and Velarde, 1995) it was shown that for this case the dimensionless

(primed) streamfunction ψ′ = −ψ/cH of a solitary disturbance obeys the equation

ψzz +µ2ψxx +λ(ψ− z)− σ

2
(ψz

2 − 1− 2ψλ(ψ− z)) + δλ(ψ− z)fψ(ψ) = o(σ,δ,µ2), (2)20

where µ is the aspect ratio H/L and λ= σgH
c2 .

In Eq.(2) z denotes the vertical axis, taken positive upwards and x corresponds to the horizontal axis; z and x are scaled

with H and L, the given vertical and horizontal scales respectively. Expecting no confusion we have, for simplicity, dropped

the primes in Eq.(2). Let us locate the bottom and the surface at the dimensionless heights z = −0.5 and z = 0.5 + η(x),

respectively, where η(x) denotes surface displacement. The boundary conditions at the bottom and surface are25

ψx = 0 at z = −0.5 (3)

σ(ψxψzψzz −ψ2
zψzx) +λψx = o(σ) at z = 0.5 + η(x) (4)

ψx = −ηxψz (5)30
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The solution of Eqs.(2-5) is sought in the form

ψ = ψ(0) +µ2ψ(1) + ...,λ= λ(0) +µ2λ(1) + ...,η = η(0) +µ2η(1) + ..., (6)

where zeroth order variables are of order unity. Below we shall provide solution for the first mode, which is most frequently

observed in nature. The analysis for the higher modes is similar. In the zeroth order

ψ(0) = z+A(x)cos(πz), λ(0) = π2,η(0) = 0, (7)5

where the amplitude function A(x) is to be determined at a higher order. For the solution to the first order equation to exist

the solvability condition (Fredholm alternative) demands

Axxx +λ(1)Ax−
σ

µ2
(2Ax− 8πAAx + 2π2A2Ax) + 2

δ

µ2
Qx(A) = 0 (8)

Q(A) = A

0.5∫
−0.5

cos2(πz)fψ(ψ = ψ(0))dz (9)10

In order to (locally) balance nonlinearity and dispersion we have to require max(σ/µ2, δ/µ2) ∼ 1 thus determining L.

Benney and Ko (1978) suggested to consider the nonlinear terms as power series in the Boussinesq parameter instead of the

small amplitude parameter. Derzho and Velarde (1995) somewhat extended this idea to account a more general undisturbed

flow state. After straightforward integrations for remaining solitary wave solution, Eqs.(8-9) can be reduced to

A2
x +λ(1)A2 + 2

δ

µ2

A∫
0

Q(A′)dA′+A2(
8πA

3
− 2− π2A2

3
) = 0. (10)15

The Weierstrass approximation theorem states that every continuous function defined on a closed interval can be uniformly

approximated as closely as desired by a polynomial function. Recent account on the topic is reviewed in Hazewinkel (2001).

Thus, the integral below can be represented with the help of some N th-order polynomial according to the Weierstrass ap-

proximation theorem. In the current study only polynomial formula for stratification is considered, thus it directly leads to

nonlinearities in the polynomial form.20

A∫
0

Q(A′)dA′ =A2PN (A), (11)

For the wave of amplitude A0 Eq.(10) yields
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A2
x

A2
= (A0 −A)Φ(A,A0), (12)

(13)

Φ(A,A0) = 2
δ

µ2

PN (A0)−PN (A)

A0 −A
+

σ

µ2

π2

3
(

8

π
−A−A0) (14)

λ(1) =
σ

µ2
(−8πA

3
+ 2 +

π2A2

3
)− 2

δ

µ2
PN (A0) (15)

Equations (12-14) determine completely both profile and phase velocity of a solitary wave with amplitude A0.5

3 Multiscaling

The function f in the form of a M th-order polynomial generates PN with the index N =M − 1. The power index of Φ is

thus max(1,M − 2). The condition for Eq.(8) to possess a multiscaled solution reduces to the condition that Φ(A,A0) must

be sign-defined with several extrema within [0,A0 ] . Thus it must have more than two imaginary roots on that interval. It

determines M ≥ 4 , i.e. for a stratification in the form of cubic polynomial or if wave amplitude is small enough to neglect A410

and higher order nonlinearities, multiscaled solitary waves do not exist because f has no imaginary roots for this case. This is

why classical KdV or mKdV can not provide multiscaled solitary waves over flat bottom. Let us consider wave structures for

the density stratification in the form,

ρ0(z) = ρ(1−σz+ 0.5σ2z2 +ασ2z4), (16)

which produces quadratic, cubic and quartic terms in Eq.(8). Thus Eq. (12) for this case of stratification becomes15

Φ(A,A0) =
σ

µ2
[
−8π

3
(
1

3
+ 2α− 160α

9π2
) +

π2

3
(A+A0) +

128απ2

75
(A2 +A2

0 +AA0)] (17)

Two humped solitary waves for the stratification given by Eq.(17) exist in the domain shown in Fig.1.

Two-humped solitary wave with amplitude A0= 0.1885 for the particular stratification profile Eq.(16) with α= −1.39 and

σ = 0.01 is shown in Fig. 2 and Fig. 3.

Indeed, the maximum derivative on x in the dimensionless coordinates is of order unity. However, the wave has a pronounced20

two-scale structure with typical length scales, which are much larger than the length L used to scale the derivative. A solitary

wave with three typical length scales ( three-humped one) is shown in Fig. 4.

For this case the stratification profile is

ρ0(z) = ρ(1−σz+σ2(1.206z2 − 4.37z3 − 3.435z4 − 33.407z6)),

which produces in Eq. (8) nonlinear terms up to A6. Generally, one can expect at most M/2 different scales for a stratification25

in the form of polynomial with even power index M , and (M − 1)/2 otherwise.
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Figure 1. Existence domain for two-humped solitary wave.

Figure 2. Amplitude function and surface displacement for two-humped solitary wave, α=−1.39.

Further, we wish to examine the structure of solitary waves of permanent form for the stratification given by Eq.(16). We

only consider the case α= −1.39 and focus on the waves of permanent form under free surface, their domain of existence,
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Figure 3. Streamlines for two-humped solitary wave, α=−1.39,A0= 0.1885.

Figure 4. Amplitude function for three-humped solitary wave.

limiting forms and structural stability. Other values of α lead to more extensive consideration with a number of particular

cases. Such study is beyond the scope of the present paper. First, for α= −1.39 there exist only permanent waves with positive

amplitudes. Wave phase velocity is defined by the following expression

c(1)(A0) =
c− c(A0 = 0)

µ2
=

4A0

3π
(2α+

1

3
− 160α

9π2
)− A2

0

6
+

64αA3
0

75π
, (18)

Fig.5 shows that the phase velocity is an increasing function for 0<A0 <A2 and A0 >A1. For A1 <A0 <A2 the phase5

velocity decreases with amplitude and there are no steady solitary wave solutions. When 0<A0 <A2 solitary waves are
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Figure 5. Phase velocity versus wave amplitude. Solid line - c(1)(A0 , dashed lines 0<A0 =A1 andA0 =A2, dotted lineA0 =A∗ = 1/π,

critical amplitude above which the model does not work as a vortex core arises inside the wave. A2 = 0.1311,A1 = 0.1793.

Figure 6. Profiles of stable solitary wave are shown by solid lines. Dashed lines correspond to A2 = 0.1311,A1 = 0.1793. Limiting ampli-

tude reaches when A0 =A2.

widening as amplitude increases with a table top limiting shape with a local maximum for the wave velocity as shown in Fig.5

and Fig.6.

Such waves are structurally stable according to Bona et al. (1987) as both the wave energy E =
∫∞
−∞A

2dx and the wave

velocity increase as amplitude increases.

ForA0 >A1 wave profiles are shown in Fig.7. Waves evolve from the table top solution to solitary waves with a single scale5

via multiscaled structures.
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Figure 7. Profiles of unstable solitary wave are shown by solid lines. Dashed lines A2 = 0.1311,A1 = 0.1793. Lower limiting wave ampli-

tude is A0 =A1.

For the particular stratification considered here waves are structurally unstable (Bona et al., 1987) since wave energy de-

creases as shown in Fig.8 but the wave velocity increases with the increasing of wave amplitude. Interesting observation is

these waves of sufficiently large amplitude could be stable as the energy is eventually increased as shown in Fig.8. For the

stratification considered here, it does not matter because solution with vortex core appears at lower amplitude when energy

is still the decreasing function of amplitude. However it leads to the interesting phenomenon - waves with vortex core could5

stabilise the wave. The idea is that the vortex core leads to widening of wave (Derzho and Grimshaw , 1997) and consequently

to the increase of its energy, thus the structural stability criterion will be satisfied. For the considered particular stratification

waves with vortex core are initially unstable as increase of energy due to the vortex core and associated widening does not

compensate the decrease of energy in the wave outside the vortex core. Nonetheless, above some amplitude waves become

structurally stable. When wave amplitude further increases the permanent wave of limiting amplitude becomes infinitely wide10

as shown by Derzho and Grimshaw (1997).

The theory described above is valid for wave amplitudes below A∗, a certain amplitude at which a vortex core started to

appear inside the wave. For nearly linear density profile A∗ = 1/π. Derzho and Grimshaw (1997) have shown that

B2
x ∼R(A∗)(1−B)− 8ν

15
(1−B5/2), (19)

where ν is the supercriticality parameter defined such that B varies from zero to one as wave amplitude does from A∗ to the15

maximum value allowed predicted there. R(A∗) depends on stratification profile and is fixed. It is straightforward to notice

that B(x) is monotonic and therefore multiscaling in the vortex core area does not exist when A>A∗.

Multiscaling effects similar to the discussed above, could be observed in various physical media. Derzho and Grimshaw

(2005) reported that solitary Rossby waves in channels obey the same KdV type equation with complicated nonlinearity due
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Figure 8. Energy versus wave amplitude. Dotted line corresponds to A0 =A∗.

to the mean shear variations. Coriolis force for Rossby waves plays the same role as gravitational force for the internal gravity

waves. The results on multiscalng for Rossby waves with and without trapped core will be reported elsewhere.

4 Conclusion

For the particular case of a nonlinear dispersive medium like a shallow stratified fluid embedded in the gravity field, we

have addressed multiscaled solitary waves which are predicted when there exists competition of several different types of5

nonlinearity. The mechanism leading to these solutions differs from the mechanism of multiscaling due to the competition of

different types of dispersion or effects due to the dissipation. We have shown that the length used to scale the x-derivative does

not simply coincide with the typical length scale of the wave, as for KdV. Moreover, multiscaled (multi humped) disturbances

exist for sufficiently large amplitudes, at least terms in forth order of waves amplitude should be accounted. Multiscaling

(multi humped) phenomenon exists or does not exist for almost identical density profiles, two pycnoclines case studied earlier10

is not necessary for the existence of multiscaling. Continuous stratification given by Eq.(16) was studied in more detail. The

structure of permanent solitary waves and how multiscaling appeared were presented. Structural stability was examined using

the criterion proposed by Bona et al. (1987). It was shown that both stable and unstable solutions of the KdV type equation

with quadratic, cubic and quartic nonlinearities are available. Multscaled waves without trapped core belong to the unstable

solutions. Trapped core inside the wave prevents appearance of such multiple scales within the core area. However, trapped15

core could stabilise the multiscaled solution in the sense of structural stability. The case when trapped core and multiscaling

are combined together is beyond the scope of the present study and will be presented elsewhere. It is noted that multiscaling

phenomena exist for solitary waves in various physical origins, for example, for Rossby waves on a shear flow.
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