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Abstract. Disorder of size (polydispersity) and mass of discrete elements/particles in randomly structured media (e.g. granular

matter like soil) has numerous effects on the materials’ sound propagation characteristics. The influence of disorder on energy

and momentum transport, the sound wave speed and its low pass frequency filtering characteristics is the subject of this study.

Goal is understanding the connection between the particle-micro-scale disorder and dynamics and the system-macro-scale

wave propagation, which can be applied to non-destructive testing, seismic exploration of buried objects (oil, mineral, etc.)5

or to study the internal structure of the Earth. To isolate the longitudinal P-wave mode from shear and rotational modes, a

one-dimensional system of equal size elements/particles is used to study the effect of mass disorder alone via (direct and/or

ensemble averaged) real time signals, signals in Fourier space, energy and dispersion curves. Increase in mass disorder (where

disorder has been defined such that it is independent of the shape of the probability distribution of masses) decreases the sound

wave speed along a granular chain. Energies associated with the eigenmodes are conserved, independent of time, and can10

be used to obtain better quality dispersion relations for disordered chains; these dispersion relations confirm the decrease in

pass-frequency and wave speed with increasing disorder acting opposite to the wave acceleration close to the source.

1 Introduction

Sound wave propagation through matter has been an extensive area of research (as textbook example, see Aki and Richards

(2002)) whether it is applied for the study of earthquakes or the internal structure of the Earth, as well as oil, gas or mineral15

exploration (seismology). Waves can be used for dissecting the human body without using blades, revealing material properties

through non-destructive testing (ultrasonics), studying the structure of lattices or designing metamaterials. There are numerous

applications and uncountable problems which still need to be solved, where the challenge has always been resolving the finest

structures of matter using wave propagation and hence, steps are being taken in the direction of micromechanics of seismic

waves, see e.g. O’Donovan et al. (2016).20

Disordered/Heterogeneous/Random media cause multiple scattering of seismic waves, mechanisms which eventually cause

them to become dispersed, attenuated and localized in space (Sato (2011), Scales and Van Vleck (1997)). The phenomenon of

multiple scattering causes the formation of the so called “coda” which is the tail of a propagating wave pulse. While coda was

earlier treated as noise (Weaver (2005)), now it has given way to coda wave interferometry with multiple applications (Snieder

et al. (2002)). The coda has been studied in detail in laboratory experiments with uniaxial or triaxial devices, for e.g., pulse25
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propagation across glass beads (Jia et al. (1999)), sintered glass beads (Güven (2016)), indicating extreme sensitivity towards

system preparation and configuration and getting washed out on ensemble averaging with only the coherent part of the signal

remaining. In Van Der Baan (2001), it was shown that macroscopic/seismic waves governed by the classical wave equation did

not exhibit localization at lower frequencies but, this idea got repudiated by Larose et al. (2004), where weak localization (a

mesoscopic phenomenon, precursor to wave localization; Sheng (2006)) was experimentally observed at frequencies as low as5

20 Hz, indicating the inadequacy of the classical wave equation.

In recent years, wave propagation through granular materials has attracted a lot of attention. Granular material is a heteroge-

neous media with many discretized units and can be used for modeling geometrically heterogeneous media (Matsuyama and

Katsuragi (2014)). The studies done using ordered/disordered lattices for wave propagation (Gilles and Coste (2003), Coste and

Gilles (2008), etc.) has helped to understand wave propagation in granular materials through dispersion relations, frequency10

filtering, etc. Scaling laws allow to relate various physical parameters like density, pressure, coordination number, etc., with

the moduli, forming an Effective Medium Theory (EMT) for granular matter (Makse et al. (2004)).

Nesterenko (1983) showed the existence of localized wave packets propagating in a non-linear granular chain (one di-

mensional granular material) under the condition of “sonic vacuum” (in the limit of zero acoustic wave speed and vanishing

confining pressure) thus forming supersonic solitary waves; such concepts have been exploited immensely to develop various15

kinds of metamaterials like for shock and energy trapping (Daraio et al. (2006)), an acoustic diode (Boechler et al. (2011))

or for understanding and studying jamming transitions in granular matter (van den Wildenberg et al. (2013), Upadhyaya et al.

(2014)). Some of the open questions and developments related to wave propagation in unconsolidated granular matter, like

higher harmonics generation, non-linear multiple scattering, soft modes, rotational modes, etc., have been addressed by Tour-

nat and Gusev (2010). However, in the following, the focus of attention will not be on solitons and unconsolidated granular20

matter, hence, there will be no occurrence of sonic vacuum during analyses (no opening and closing of contacts of particles).

A striking characteristic of consolidated granular matter is that grain-grain forces are arranged and correlated in a linear

manner known as force chains (Somfai et al. (2005)). Similar to the force chains, Pasternak et al. (2015) showed the existence

of moment chains in granular media, i.e. correlations of grain-grain mutual rotations. These chains are mesoscopic structures

and are just one of the many micro-rotational effects of granules. Cosserat continuum theory can be used to model these25

micropolar/micro-rotational effects, as discussed in detail by Pasternak and Mühlhaus (2005).

The force chains/granular chains which carry the large forces of the system supposedly support faster sound transmission

across granular matter (Ostojic et al. (2006)). In Owens and Daniels (2011), it was seen from experiments with 2-dimensional

photo-elastic disks that vibration propagates along the granular chains, visualized by the brightness due to compression between

the particles; however, the exact mechanisms of propagation of the vibrations are still a matter of ongoing research. Our system30

under investigation will be a single one of such granular chains (Fig. 1); it will assist in isolating the P-wave or the longitudinal

excitation from all other kinds of excitations (S-wave, rotational wave, etc). In Merkel et al. (2010) it was seen that inclusion

or removal of rotation does not significantly affect the longitudinal mode in an ordered granular crystal. However, the situation

is different when rotations become prominent and other wave modes cannot be ignored (see Yang and Sutton (2015), Merkel

and Luding (2016) and the references therein).35
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Figure 1. A granular/force chain from a network (schematic).

Even though very simplistic, a polydisperse granular chain can have two kinds of disorder, mass disorder and stiffness

disorder (Lawney and Luding (2014)), the mass disorder has much stronger contribution towards disorder than stiffness because

mass ∝ radius3 whereas, stiffness ∝ radius1/3 (Achilleos et al. (2016)). Hence, only mass disorder for the disordered granular

chain has been chosen. However, there are processes when stiffness disorder cannot be ignored, for instance, the processes when

the repulsive interaction force between the fragments/elements of the material being modeled has different stiffness during5

compression and tension (bilinear oscillator; Dyskin et al. (2014)), infinite stiffness while compression (impact oscillator;

Dyskin et al. (2012) and Guzek et al. (2016)) or negative stiffness (Pasternak et al. (2014) and Esin et al. (2016)).

In Sect. 2 an impulse propagating across a granular chain is modeled. A similar model was used in Marketos and O’Sullivan

(2013), Lawney and Luding (2014) and Otsubo et al. (2017). Section 2.8 concerns the dispersion relation for wave propagation

across a granular medium, Sect. 2.9 concerns the group velocity and Sect. 2.10 concerns a novel way of computing the disper-10

sion relation in terms of moments of eigenmodal energy. In Sect. 3, the quantities mentioned in Sect. 2 are computed and the

observations are discussed. Sect. 4 summarizes and concludes the observations made in Sect. 3 with Sect. 2 as the foundation

and an outlook of the ongoing as well as possible future research work on wave propagation in granular matter is given.

2 Modeling a general one-dimensional chain

A one-dimensional chain of N + 2 particles is considered. Each particle i has mass m̃(i) and contact stiffness κ̃(i,j) with15

respect to a neighboring particle j. The tilde symbols are used for dimensional quantities. The interaction force experienced by

neighboring particles i and j is

F̃(i,j) = κ̃(i,j)δ̃
1+β
(i,j), δ̃(i,j) ≥ 0 and j = i 6= 1 (1)

with the contact stiffness κ̃(i,j) and the particle overlap δ̃(i,j) = r̃(i) + r̃(j)−|x̃(j)− x̃(i)|, with the radius r̃ and co-ordinates x̃ of

the centers of the particles. The Hertzian and linear model are given by β = 1/2 and β = 0, respectively (Lawney and Luding20

(2014)). This force acting from j on i is directed along n̂=− x̃(j)−x̃(i)

|x̃(j)−x̃(i)| , corresponding in 1D to be positive and negative

for j < i and j > i, respectively. The force resembles the framework of the Discrete Element Method where the overlap of
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At rest :
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During Wave Propagation :
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Figure 2. Pre-stressed chain of granular elements during dynamic wave propagation.

particles substitutes their deformations at the contacts, which would be much more difficult and time consuming to resolve

with a finite element model of deformable bodies. Assume that the chain is pre-compressed by an external applied force F̃o,

the characteristic overlap of the particles in static equilibrium (∆̃o) when all the contact stiffness (κ̃(i,j)) of particles are chosen

as κ̃o (characteristic contact stiffness) is thus defined as

∆̃o =

(
F̃o
κ̃o

)1/(1+β)

, (2)5

where the unit of κ̃ depends on β.

2.1 Non-dimensionalization

A length scale ˜̀can be chosen such that the scaled particle overlap δ(i,j) = δ̃(i,j)/˜̀yields

F̃(i,j) = κ̃(i,j)
˜̀1+βδ1+β

(i,j). (3)

There are several length scales ˜̀ that can be chosen, e.g. the particle size, the driving amplitude or the initial overlap10

∆(i,j) =

(
F̃o

κ̃(i,j)
˜̀1+β

)1/(1+β)

(4)

of the particles in static equilibrium. The latter is chosen for computations here so that ∆(i,j) = ∆o ≡ 1 if all κ̃(i,j) = κ̃o. Other

dimensionless quantities are, the mass b= m̃/M̃1, where M̃1 is the first moment of the mass distribution of the particles of the
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media, as shown in Appendix C (the unscaled average mass of the particles), the dimensionless displacement u= ũ/l̃ and the

dimensionless spring constant κ= κ̃/κ̃o. The characteristic time scale becomes

t̃c =

√
M̃1

κ̃o ˜̀β
, (5)

which gives us the dimensionless time t= t̃/t̃c. The displacement of particle i from its equilibrium position x̃(i)
o is ũ(i) =

˜̀u(i) = x̃(i)− x̃(i)
o , so that the overlap becomes, δ(i,j) = ∆(i,j)− (u(j)−u(i)). Finally, the interaction forces scales as5

F(i,j) =
t̃2c

M̃1
˜̀
F(i,j). (6)

2.2 Equation of Motion : Nonlinear (Hertzian)

The equation of motion for any particle i (except the boundary particles at either end of the chain) by using Eq. (3), (4) and

non-dimensionalization (Sect. 2.1) can be written as

b(i)
d2u(i)

dt2
= F(i−1,i) +F(i,i+1) = κ(i−1,i)δ

1+β
(i−1,i)−κ(i,i+1)δ

1+β
(i,i+1), (7)10

which can also be written as

b(i)
d2u(i)

dt2
= κ(i−1,i)

[
∆(i−1,i)− (u(i)−u(i−1))

](1+β)

−κ(i+1,i)

[
∆(i+1,i)− (u(i+1)−u(i))

](1+β)

. (8)

For particles interacting repulsively with Hertzian potential, β = 1/2, Eq. (7) or (8) can be solved numerically, see Sect. 3.1.

2.3 Equation of Motion : Linear

The repulsive interaction force can be expressed as a power series and can be expanded about the initial overlap ∆(i,j) due to15

pre-compression,

F(i,j) = κ(i,j)∆
1+β
(i,j) +κ(i,j)(1 +β)∆β

(i,j)(δ(i,j)−∆(i,j)) +
1

2
κ(i,j)β(1 +β)∆β−1

(i,j)(δ(i,j)−∆(i,j))
2 + . . . (9)

For small displacements from the equilibrium condition (during wave propagation), using the definition of δ(i,j) and after

ignoring higher order non-linear terms, we arrive at

F(i,j) = κ(i,j)∆
1+β
(i,j)−κ(i,j)(1 +β)∆β

(i,j)

(
u(j)−u(i)

)
. (10)20

Inserting the force relation (Eq. (10)) in Eq. (7), we get the general, linearized equation of motion:

b(i)
d2u(i)

dt2
= κ(i−1,i)∆

β
(i−1,i)

[
∆(i−1,i)− (1 +β)(u(i)−u(i−1))

]
−κ(i+1,i)∆

β
(i,i+1)

[
∆(i+1,i)− (1 +β)(u(i+1)−u(i))

]
. (11)

For Hertzian nonlinear repulsive interaction force between the particles, the scaled stiffness κ(i,j) and initial overlap ∆(i,j) are

given as follows (see Appendix B for details):

κ(i,j) =

√
2

b(i)1/3 + b(i)1/3
(b(i)b(j))1/6, (12)25
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and

∆(i,j) = κ
(−2/3)
(i,j) . (13)

The Hertzian nonlinear repulsive interaction force is appropriate for spherical particles (Landau and Lifshitz (1970)). Eq. (11)

can be written in a linearized form as

b(i)

(1 +β)

d2u(i)

dt2
= κ

1/(1+β)
(i+1,i) (u(i+1)−u(i))−κ1/(1+β)

(i−1,i) (u(i)−u(i−1)) (14)5

Since, we are interested only in mass disorder, we can choose all coupling stiffness (κ(i,j)) as 1. Now, Eq. (14) for individual

particles can be written as

b(i)

(1 +β)

d2u(i)

dt2
= u(i+1)− 2u(i) +u(i−1) (15)

The factor 1
1+β becomes 1 for the linear contact model (β = 0) and it becomes 2/3 for the Hertzian contact model (β = 1/2).

It can be observed that the factor 1
1+β has only multiplicative influence on the physical parameters. Since, in our system of10

equations (Eq. (15)) only mass disorder is present, the masses of the particles get multiplied by this factor ( 1
1+β ). For further

analysis, β = 0 has been chosen so that

b(i)
d2u(i)

dt2
= u(i+1)− 2u(i) +u(i−1) (16)

This results in N equations which eventually can be expressed in matrix form:

M
d2u

dt2
= Ku+ f , (17)15

where M is a diagonal mass matrix with entries b(1), b(2), b(3), ..., b(N) and zero otherwise; K is a matrix with diagonal entries

−(κ(i+1,i) +κ(i−1,i)) =−2, superdiagonal (κ(i+1,i)) and subdiagonal (κ(i−1,i)) entries +1 and zero otherwise for κ= 1. f is

the external force which depends on the specified driving. Introducing, A =−M−1K then, Eq. (17) can be written as

−d2u

dt2
= Au−M−1f. (18)

2.4 Analysis in real space/spatial Fourier space :20

Using an ansatz for real space and another ansatz for spatial Fourier space in Eq. (18) (the calligraphic fonts from now onwards

will depict the spatial Fourier transform counterparts of the real space parameters),

u = u
′
eiωt or U = U ′ei(ωt−ku), (19)

one has

Au = ω2u or AU = ω2U , (20)25
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where k is the wavenumber and U =
∞∫
−∞

∞∫
−∞

ue−i(ωt−ku)dtdu is the double Fourier transform (spatial as well as temporal)

ansatz. Equation (20) is a familiar eigen value problem. The eigenvalues ω2
j and eigenvectors s(j) of the matrix A give the

eigendomain of the granular chain that are independent of the external driving. The square roots of the eigenvalues, ωj , are the

natural frequencies of the chain. The set of eigenvectors can be orthonormalised to obey the orthonormality condition:

sT
(i)Ms(j) = δij , (21)5

with δij being the Kronecker delta symbol. The S matrix or the eigenbasis matrix can be constructed with s(j) as the columns

of the matrix, which can be used to transform back and forth from real domain to eigen domain. The columns (s(j)) of the

matrix S are sorted such that the corresponding eigenvalues ωj are in increasing order. The vector of eigenmode amplitudes is

z = S−1u or Z = S−1U . (22)

A matrix G consisting of eigenvalues ωj along the diagonal (in increasing order) is formulated such that G = S−1AS which10

allows the transformation of Eq. (17) into the eigendomain as

d2z

dt2
=−Gz+S−1M−1f =−Gz+h or

d2Z
dt2

=−GZ +S−1M−1F =−GZ +H, (23)

which defines h andH implicitly. The differential equations (23) are decoupled and can be solved to give

z(t) = C(1)a+C(2)b+ zP (t) or Z(t) = C(1)A+C(2)B+ZP (t) (24)

where C(1) is a diagonal matrix with C
(1)
j,j = sin(ωjt), C(2) is a diagonal matrix with C

(2)
j,j = cos(ωjt), and zP (t) or ZP (t) are15

the particular solutions of the differential equations, which depend on h orH and, hence, depend on the external driving force

f or F . The vectors a or A and b or B are determined by the initial conditions from the initial displacement (uo or Uo(k)) and

velocities (vo or Vo(k)).

b = S−1uo− zP (0) or B = S−1uo− zP (0) (25)

and20

a = G−1S−1vo−G−1 dzP (t)

dt

∣∣∣∣
t=0

or A= G−1S−1Vo−G−1 dZP (t)

dt

∣∣∣∣
t=0

(26)

a and b or A and B are column vectors with column elements aj and bj or Aj and Bj , associated with a particular eigenfre-

quency (ωj). The solution in real space can be obtained by the transformation mentioned in Eq. (22) which can be applied on

Eq. (24) to give

u(t) = SC(1)a+SC(2)b+uP (t) or U(t) = SC(1)A+SC(2)B+UP (t). (27)25
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2.5 Initial Conditions : Impulse Driving

The initial conditions required to solve various special cases are the initial displacements (uo) and initial velocities (vo) in real

space and Vo and Uo in spatial Fourier space. Besides the sinus driving used in Lawney and Luding (2014), we apply impulse

driving initial condition. For an impulse driving mode, the boundary conditions are as follows:

u(i)(t= 0) = 0, v(i6=1)(t= 0) = 0, v(1)(t= 0) = vo. (28)5

An impulse driven chain has an impulse imparted to the first particle, i= 1 with initial velocity vo. Since the focus of our study

is not on the occurrence of sonic vacuum (Nesterenko (1983)), the initial impulse (vo) should be chosen small enough to avoid

opening of contacts. Using Eq. (27), (25), (26) and the initial conditions for the impulse driven chain i.e. f = 0 (no driving

present), uo = 0 and vo = [vo 0 . . .0]T, we get

a = G−1S−1vo , b = 0, (29)10

and

u = SC(1)G−1S−1vo & v = SC(2)S−1vo, (30)

which implies that displacements and velocities of all particles p are given analytically by

u(p)(t) = vo

N∑
j=1

SpjS1j sin(ω(j)t)

ω(j)
& v(p)(t) = vo

N∑
j=1

SpjS1j cos(ω(j)t). (31)

In wavenumber space (spatial Fourier transform), the initial condition is specified by Vo(k) which can be a sine or cosine15

function in terms of wavenumber (k). Using Eq. (27) and Vo(k), we get

A= G−1S−1Vo(k) , B = 0, (32)

and thus,

U = SC(1)A & V = SC(2)GA, (33)

2.6 Mass Distribution, Disorder Parameter (ξ), Ensemble Averaging & Binning20

The mass distribution of the monodisperse chain has been selected randomly from normal (f (n)(b)), uniform (f (u)(b)) and

binary (f (bi)(b)) distributions whose standard deviations give the measure of the disorder of mass in the chain (ξ). For instance,

the normal distribution is given by

f (n)(b) =
1

ξ
√

2π
e

(b−1)2

2ξ2 . (34)

High disorder means that the difference between the lightest particle and the heaviest particle is very large. It was observed25

in Lawney and Luding (2013) that the three distributions showed quantitatively similar behavior if the first two moments of
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the distributions were the same. Here, the first two moments of the aforementioned three distributions have been matched.

The mathematical details of the distributions are given in Appendix C. Ensembles of chains with different realizations for a

particular disorder and distribution have been taken into consideration. Angular brackets will be used to denote ensemble av-

eraged physical quantities like 〈u〉, 〈Etot〉, etc. The first five moments of the three distributions for different disorder (standard

deviation) ξ = 0, ξ = 0.1, ξ = 0.2, ξ = 0.35, ξ = 0.5 and ξ = 0.8 are given in Table 1 (500 ensembles scaled), Table 2 (5005

ensembles unscaled) and Table 3 (10000 ensembles).

2.7 Participation Ratio & Localization Length

The participation ratio (Pj) (introduced in Bell and Dean (1970) and used previously in Allen and Kelner (1998), Zeravcic

et al. (2009)) is a crucial tool in determining the localization length (L̃j) associated with a particular eigenmode. This local-

ization length can be seen as the length beyond which elastic waves with a particular frequency become evanescent, i.e., they10

decay exponentially in a disordered system (Mouraille (2009)). It is instrumental in determining the length within which the

elastic waves become confined in space and is dependent on the frequency and thus the eigenmode (Anderson (1958)). The

participation ratio of eigenmode j is defined as

Pj =
1

N∑
i=1

(Sij)4

(35)

with the normalization condition on the eigenmodes
N∑
i=1

(Sij)
2 = 1. For one dimension, the localization length is defined as15

L̃= Pj d̃ where d̃ is the particle center distance in equilibrium, i.e. under pre-compression. The localization length can now be

non-dimensionalised by the internal particle scale of separation ∼ d̃ to give Lj ∼= Pj . As discussed and pointed out in Allen

and Kelner (1998), the localization length of the lowest eigenmode is often attributed to the length of the chain (which would

be regarded as a force chain in our analysis) and hence, it becomes important to find the localization length of an ordered chain,

ξ = 0 as reference. For an ordered chain b(1), b(2), b(3), ..., b(N) = 1 and κ= 1, so,20

A =



−2 1 0 0 · · · 0

1 −2 1 0 · · · 0

0 1
. . . 0 · · · 0

0 · · · 0
. . . 0 1

0 · · · 0 0 1 −2


(36)

The eigenvalues of this matrix are ω2
j = 4sin2

(
jπ
2N

)
and its eigenvectors are

s(j) = {sin
(
jπ
N

)
, sin

(
2jπ
N

)
, sin

(
3jπ
N

)
...sin

( (N−1)jπ
N

)
}. After respecting the normalization condition and the definition of the

participation factor, the localization length of the lowest eigenmode (P1) can be analytically calculated from the eigenvectors
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as

Pnorm =

N∑
i=1

sin

(
ijπ

N

)2

, and hence,Pj =
P 2
norm

N∑
i=1

(
sin
(
ijπ
N

))4
(37)

For N = 256, P1 = 170.667≈ 171.

2.8 Dispersion

The analytical expression for the dispersion relation in an ordered chain of particles/elements with linear contact forces are5

given by (Brillouin (1946), Tournat et al. (2004), Lawney and Luding (2014))

ω̃2 = 4
κ̃o

M̃1

sin2
( k̃d̃

2

)
, (38)

where the wavenumber can be non-dimensionalized by the microscopic particle scale of separation (d̃) and frequency by
√

κ̃o
M̃1

giving the non-dimensional dispersion relation:

ω2 = Ω2
π sin2

(k
2

)
, (39)10

with Ωπ = 2 for ordered chains with ξ = 0. Eq. (39) holds for propagative as well as evanescent waves. The positive roots

of this relation correspond to propagative waves and the imaginary roots to evanescent waves (Tournat et al. (2004)). This

expression also holds for longitudinal wave propagation in 3D granular packings (Mouraille and Luding (2008)) and in 1D

chains (Lawney and Luding (2014)). From the dispersion relation, it can be noted that disorder creates a maximum permissible

frequency (Ωπ) for propagating waves, frequencies below Ωπ are propagative and the frequencies above Ωπ are evanescent.15

The dispersion relation (Eq. (39)) for ordered chains (ξ = 0) is
ω = 2sin

(
k

2

)
, (40)

which is the dispersion relation for propagative waves.

2.9 Total Energy Dispersion

From Eq. (A5) it can be observed that the total energy of the eigenmodes is constant with respect to time as given by20

Etot(ωj ,k) =
1

2
Aj(k)2ω2

j . (41)

By taking the first moment of this eigenmodal total energy representation about frequency, a dominant frequency related to a

particular wavenumber can be obtained. Moments of the eigenmodal total energy representation are defined as

M (m)(k) =

∑
ωmj Etot(ωj ,k)

Etot(ωj ,k)
. (42)

The dominant frequency is given by the first moment,25

Ω(k) =M (1)(k) =

1
2

∑
j

A2
jω

3
j

Etot
. (43)
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The dominant frequency can be measured by averaging over all eigenmodes for a single realization withAj(k) as a multiplica-

tive factor which depends on the Fourier initial condition Vo(k) (Eq. (32)). The dispersion relation for the propagating waves

can be obtained by taking ensemble averages of this dominant frequency (〈Ω(k)〉), which will be plotted in Fig. 10(b) below

for different disorder strengths (500 ensembles).

2.10 Group velocity5

The group velocity is given by

vg =
∂ω

∂k
, (44)

for both propagative waves and evanescent waves. It can be obtained by differentiating Eq. (40) that

vg(k) =

√
Ω2
π −ω2

2
. (45)

where Ωπ = Ωπ(ξ) depends on disorder as we will see below.10

3 Results & Discussions

The analytical expressions derived in the previous sections are computed for N = 256 particles long chains. The impulse

imparted to the first particle is vo = 0.05. The time step utilized for the output is, ∆t= 0.0312 and the maximum time up to

which the computations have been carried out is tmax = 256 such that the pulse has just about reached the 256th particle. As it

can be seen from Tables 1 and 3, the scaled average mass of the particles has been kept M1 = 1 and ξ = 0.0,0.1,0.2,0.35,0.515

and 0.8 disorder parameters (standard deviation; see appendix) have been used for analysis. Using the analytical solution of the

linearized system (Eq. (31)), ensembles of 500 and 10000 chains along with representative single realizations will be shown in

this section.

3.1 Nonlinear (Hertz) and Linear Space Time Responses

Equation (8) with Eq. (12) and Eq. (13) has been solved numerically with Verlet integration to get space time responses of20

particles having nonlinear (Hertzian) repulsive interaction force. The time step used for the numerical integration is ∆t=

0.00038147. Fig. 3 shows the space time responses calculated numerically for the nonlinear equation of motion (Eq. (8)) and

the space time responses calculated for the linearized equation of motion (Eq. (14)) using a small initial velocity vo = 0.05. The

space time responses are obtained for a single realization of a granular chain without ensemble averaging. The nonlinear space

time responses coincide with the linear space time responses, confirming that the solution given by Eq. (31) is also appropriate25

for particles with nonlinear repulsive interaction forces for small displacements.

In order to observe the limitation of the linear space time responses obtained from Eq. (31), Fig. 4 is plotted. The difference

between the maximum value (upeak) of the space time responses for Hertzian and linear repulsive interaction force (u(p)
diff =

u
(p)
peak(hertz)−u

(p)
peak(linear)) is chosen as a parameter to judge the appropriateness of linear space time response for the nonlinear

11
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Figure 3. The displacement as a function of time is shown for the 100th particle in a chain of particles with disorder parameter ξ = 0.1 in (a)

and the 130th particle in a chain of particles with disorder parameter ξ = 0.35 in (b) and vo = 0.05.
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Figure 4. The nonlinear increase in u(p)
diff (a parameter which shows dissimilarity between linear and nonlinear space time responses) with

initial impulse velocity (vo). The value vo = 0.05 is in the zone where linear and nonlinear space time responses are almost identical.

equation of motion (Eq. (8)). The difference between nonlinear (Hertz) and linear space time response increases nonlinearly

irrespective of particle position and disorder parameter of the granular chain.

3.2 Displacement Response of three mass distributions

The mass disorder of the particles in the chain with length 256 is taken into consideration only and κ is chosen as 1 (Sect. 2.3).

Figure 5 shows the displacement as a function of time of the 150th particle (Fig. 1(a) & 1(c)) and of the 220th particle (Fig. 1(b)5

& 1(d)), which are placed before and after the reference localization length (the maximum possible, Lmax = 171, Sect. 3.7)

for two disorder parameters ξ = 0.1 and ξ = 0.5 with three mass distributions (normal, uniform and binary). For weak disorder

(ξ = 0.1), it is observed that the displacement wave packets are perfectly superposed affirming what was concluded in Lawney

and Luding (2013) & Lawney and Luding (2014) that the shape of the distribution has no effect on the propagating pulse if the

first two moments of the distribution are the same (Table 1). For stronger disorder (ξ = 0.5), the wave packets are not collapsing10

perfectly (Fig. 1(c) & 1(d)). As it can be seen in Table 1 there is a numerical mismatch between the unscaled moments of the
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Figure 5. Ensemble averaged displacements (500 times) of 150th ((a) and (c)) and 220th ((b) and (d)) particle with respect to time. (a)

and (b) have disorder parameter ξ = 0.1, (c) and (d) have disorder parameter ξ = 0.5. The red plot is the space time response from a single

realization of a chain with normally distributed masses. ∀ single realization, normal distribution is used with M̃1 = 0.9971 and M̃2 = 1.1274

for ξ = 0.1, M̃1 = 0.9971 and M̃2 = 1.1274 for ξ = 0.5 and M̃1 = 0.9958 and M̃2 = 1.2636 for ξ = 0.5

distributions leading to a dissimilarity between the second scaled moments (〈M2〉). This also causes the real standard deviation

(disorder; ξ) which has been numerically calculated (Ξ; Table 1) to deviate a little bit from it’s intended value. It can also be

observed from Fig. 5 (c) and (d) that the pulse shapes of binary distribution and uniform distribution are closer to each other

in comparison to normal and binary or normal and uniform, since, the scaled second moments (〈M2〉) of binary and uniform

distributions for ξ = 0.5 are closest to each other (Table 1). Similar conclusions about similarity, dissimilarity and closeness5

can be drawn about pulse shapes of different distributions for different disorder parameters (ξ (intended), Ξ (numerically

obtained)) on the basis of moments of the mass distribution. For larger ξ, higher moments (as listed in Tables 1, 2 and 3) have

to be considered (Ogarko and Luding (2013)), but discussing these higher moments and their consequences go beyond the

scope of this study.
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3.3 Displacement Response for Different Disorder Parameters (ξ)

Mechanical waves propagating through disordered media or granular media like soil (on the receiver end) can be divided into

two parts, the coherent part and the incoherent part (Jia et al. (1999), Jia (2004)). The coherent part is the leading wave packet

and self averaging in nature (it maintains its shape after ensemble averaging) and it is used for determining the bulk sound

wave velocity. In contrast, the incoherent part is the scattering, non-self averaging part, which is strongly system configuration5

dependent, also known as coda or tail of the mechanical wave. Figure 6 contains the displacement of the same particles (150th

& 220th particles) used in subsection 3.2 for consistency. Here, attention has been given to the effect of the mass distribution on

the time of arrival/flight and hence, the wave velocity of the initial wave packet. Figures 6(a) and 6(b) contain the displacements

of the 150th and 220th particle (before and after Lmax, Sect. 3.7) for single realizations, 500 ensembles and 10000 ensembles.

The leading wave packet is the same for 500 ensembles and 10000 ensembles in both figures, i.e. the coherent part of the wave10

which maintains its shape after averaging. The coda is more or less pronounced at 150 or 220, respectively and vanishes due to

ensemble averaging. Figures 6(c) and 6(d) show the displacement response of the 150th and the 220th particle with respect to

time for chains with different mass disorder. The speed of the coherent wave packet (from source to receiving particle, peak of

signal) is increasing with disorder. Higher disorder leads to higher coherent wave (peak) speed, irrespective of the localization

length (Lmax). However, this increase in wave speed can also be attributed to sound wave accelaration near the source as15

pointed out by Mouraille et al. (2006) and may not be generalized as effect of mass disorder in the chain, as investigated in the

next section.

3.4 Coherent Wave Speed and Disorder

Table 4 and Fig. 7 contain the velocity of the peak of the coherent wave, the velocity of the rising part of the coherent wave

packet when the displacement of the particle has attained 5%, 10%, 70%, 90% of the peak value and the first time when the20

displacement of the particle becomes 0 after it has attained the peak value of the coherent wave (zero crossing), all constituting

the coherent wave packet. The velocities were determined through velocity picking (particle position divided by the time of

arrival). The particles used for computing the velocities were 130, 150, 200 and 220 (Table 4; 2 before localization length and

2 after localization length, Lmax = 171). It can be observed that irrespective of the rising part of the coherent wave packet

(5%, 10%, of the peak value etc.) and the peak (Fig. 7(a), (b), (c), (d)), the wave velocity increases with disorder. However,25

for zero crossing (Fig. 7(e)), the velocity decreases with increase in disorder and the same can be said for the part of the

coherent wave packet which lies after the peak value, this can be attributed to the increased spreading of the wave packet with

increase in disorder. Notably, the speed measured at particle 130 is larger/smaller if the earlier/later parts of the signal are

considered. Fig. 7(f) shows the velocity of the peak value of the coherent wave packet of all the particles of the granular chain

for different disorder parameters and it also exhibits a similar kind of acceleration of signal/mechanical wave near the source30

as was observed in Mouraille et al. (2006). This acceleration is caused by self-demodulation of the initial impulse imparted

to the granular chain and the noteworthy point is that the acceleration increases with increase in disorder. However, due to

this observation we cannot generalize the effect of disorder on wave speed. The sudden rise in velocity of the peak value in
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Figure 6. Displacements of 150th ((a) and (c)) and 220th ((b) and (d)) particle with respect to time for different ensembles ((a) and (b)) of

disorder ξ = 0.5 and of multiple disorder parameters ((c) and (d); for 500 ensembles).

Fig. 7(f) after the 250th particle is due to the boundary effect as well as due to the presence of the coherent wave front of the

traveling wave around that position as the maximum time window used is tmax = 256. For practical purposes, we remark the

wave speed measured varies by a few percent up and down, dependent on which part of the signal is used for measurement.

15



ξ
0 0.2 0.4 0.6 0.8

v 5 
%

1.03

1.04

1.05

1.06

1.07

1.08

1.09
(a)

130th particle
220th particle

ξ
0 0.2 0.4 0.6 0.8

v 70
 %

0.98

0.99

1

1.01

1.02

1.03

1.04
(b)

130th particle
220th particle

ξ
0 0.2 0.4 0.6 0.8

v 90
 %

0.99

0.995

1

1.005

1.01
(c)

130th particle
220th particle

ξ
0 0.2 0.4 0.6 0.8

v pe
ak

0.98

0.985

0.99

0.995

1
(d)

130th particle
220th particle

ξ
0 0.2 0.4 0.6 0.8

v ze
ro

 c
ro

ss
in

g

0.92

0.93

0.94

0.95

0.96

0.97

0.98
(e)

130th particle
220th particle

p
0 50 100 150 200 250 300

v pe
ak

0.8

0.85

0.9

0.95

1

1.05
(f)

ξ = 0.0
ξ = 0.35
ξ = 0.8

Figure 7. Coherent Wave Velocities determined through Velocity picking. The peak of the coherent wave packet’s velocity ((d)) and the

rising part of the packet ((a), (b) and (c)) as well as the falling part ((e)) are taken into consideration. (f) plots the peak velocity for all the

particles in a granular chain with different ξ. Note that (a), (b) and (e) have a different axis range as (c) and (d).

To understand the effect of disorder on wave speed without taking into account this “source effect”, the velocity based on

the time taken by the pulse for propagating a common distance of 7 particles has been computed in Table 6 and the results have

been plotted in Fig. 8. The reason for selecting such a low common distance of separation was to keep the effect of the source

as minimal as possible; the sets of points (130 to 137, 150 to 157, 220 to 227 and 240 to 247 particles) were used with different

reference points of the coherent wave front (5%, 10%, 70%, 90%, peak value and zero crossing). From Fig. 8 and Table 6 it5

can be observed that follow the same trend, except the velocity computed using the zero crossing reference point, which are

more or less constant with little fluctuations (Table 6). Fig. 8(a) shows a consistent increase of velocity as it is the closest to the

source (dominated by the source effect), however, as the set of particles is selected farther away from the source, the velocity

trend shows a slight decrease and then an increase with increasing ξ (Fig. 8(b) and (c)). Fig. 8(d) exhibits a consistent decrease
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Figure 8. Wave speed for common distance of separation (7 particles/elements) with different disorder ξ.

of velocity with increase in ξ because the set of particles (247-240) are far from the source (source effect is weak). From Fig.

8(d), it can be interpreted that higher disorder results in decrease in wave velocity.
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3.5 Frequency Response & Dispersion

In Fig. 9(a) & Fig. 9(c) a Fast Fourier Transform (FFT) with respect to time is carried out on the displacement response of a

256 element long chain for disorder, ξ = 0.01 and ξ = 0.35, respectively (when an impulse of vo = 0.05 has been applied to

the first particle) to observe the frequency content with distance, (the sampling frequency is ωsample = 2π
∆t ) and responses upto

half of the sampling frequency were taken into account to avoid aliasing (Nyquist criterion). The first 5 particles have been5

excluded from the Fourier transform to avoid an overwhelming driving signal effect. Fig. 9(a) exhibits the existence of cut-off

frequency (ω = 2) above which the waves become evanescent. The bending of the intensity with distance (particle number),

especially at large distances, is attributed to dispersion and the finite time window. Using the group velocity (p is the particle

number)

vgtmax = p, (46)10

for an ordered chain (ξ = 0), Ωπ = 2 and using Eq. (45), the frequency envelope is

ω(p) = 2

√
1− p2

t2max
, (47)

which is the red curve plotted in Fig. 9(a).

A spatial as well as temporal 2D FFT is carried out for a single realization of a 256 element long chain with disorder15

ξ = 0.01 and ξ = 0.35 to observe the dispersion relation (Fig. 9(b) & 9(d); ω v/s k). 2D FFT has been used previously for one-

dimensional and three dimensional polydisperse granular packings for obtaining dispersion relations (Luding and Mouraille

(2008), Lawney and Luding (2014), O’Donovan et al. (2015)) but strong frequency filtering due to the disordered system

resulted in ambiguous dispersion relations (flat bands and absence of certain frequencies below the cut-off frequency, which

indicates the non-propagative bands due to the presence of defect modes). This can also be observed from Fig. 9(b) and Fig.20

9(d). Eq. (40) (the dispersion relation for an ordered chain) has been plotted in Fig. 9(b) which gives a perfect fit for the denser

regime in the figure. However for the disordered chain, ξ = 0.35, as proposed earlier in Sect. 2.9, the dispersion relation is

better given by 〈Ω(k)〉 by ensemble averaging the dominant frequencies with respect to different wavenumbers. 〈Ω(k)〉 for

500 ensembles with disorder ξ = 0.35 has been plotted in Fig. 9(d) (the green curve). For low frequencies the green curve

perfectly superposes the dense regime in the displacement’s temporal and spatial Fourier transform; for higher frequency25

(ω〉1.5) due to the appearance of a flat band (defect mode) the intensity is not present near the green curve, which holds true

for low and intermediate frequencies/wavenumbers.
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Figure 9. (a) is the temporal Fourier transform of displacement of particles for normal distribution and disorder parameter ξ = 0.01 (single

realization) with group velocity (vg) depicting the propagation of wave front and (b) is the temporal as well as spatial Fourier transform

(2D FFT, single realization) calculated for obtaining the dispersion relation of a chain, while 〈Ω(k)〉 gives the true ensemble averaged (500)

dispersion relation from Eq. (43). (c) and (d) are the higher disorder ξ = 0.35 counterparts of (a) and (b), respectively.

3.6 Total Energy Dispersion in Disordered Chains

The 〈Ω(k)〉 from Eq. (43) which was plotted for ξ = 0.35 in Fig. 9(b) is plotted for ξ = 0.1,0.2,0.35,0.5 and 0.8 in Fig.

10(a). It is observed that the maximum permissible frequency (Ωπ) above which the waves become evanescent decreases with

increasing disorder. The slope of ω v/s k curves indicates the wave speed which clearly can be observed to be decreasing with

increasing disorder, confirming what was observed in Sect. 3.4.5

3.7 Participation Ratio & Localization length

Figure 11 shows the participation ratio (〈P 〉), i.e. the localization length (〈L〉, from Sect. 2.7) for binned 500 ensemble averaged

realizations of chains (with 0.0781 as frequency bin size) and with different disorder parameters ξ. The lowest frequencies have

the same localization length Lmax = 171, independent of the disorder of the chain, see Sect. 2.7. Towards higher frequency the

localization length decays to zero more rapidly with increasing disorder, characterised by a particular frequency (cross-over or10

pass frequency) where p= Lmax/2. Unlike infinitely long chains, where L∝ ω−2 (as suggested in Azbel (1983)), the finite
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Figure 11. Participation Ratio or localization length with respect to different frequencies for 500 ensembles with ξ = 0.1,0.2,0.35,0.5 and

0.8 and bin size = 0.0781.

disordered chains for higher frequencies have L∝ ω−q where q� 2, decreasing with increasing disorder. For understanding

the effect of disorder on the pass-frequencies (ωpass) associated with the localization length (L), ωpass(1/2) (the frequency

associated with Lmax/2) for different disorder parameters have been plotted in Fig. 12(a) and L associated with ω = 1, scaled

with Lmax, for multiple disorder parameters has been plotted in Fig. 12(b), selected from the dashed line crossings in Fig.

11(a). Both quantities exhibit a decreasing trend with increase in disorder as characterized by the empirical fits:5

ωpass(1/2) = ωo + (2−ωo)exp−ξ/ξω (48)

where ωo = 0.3502 and ξω = 0.2536.

L(ω = 1) = Lo + (Lmax−Lo)exp−ξ/ξL (49)

where Lo = 2.7668 and ξL = 0.3165, with some errors of the order of±5%. Both curves saturate for large ξ values. More data

and a closer analysis are necessary for improving this analysis and put a better basis to the fits.10
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Figure 13. (a) Density of States (DOS) and (b) energies of the binned frequencies for different disorder ξ ∀ bin size in ω.

3.8 Total Energy of Eigenmodes

The Density Of States (DOS) or density of vibrational modes is an important quantifying factor in studying the vibrational

properties of materials like jammed granular media (Schreck et al. (2014)), etc. However, it tells us only about the number

of vibrational modes but, does not paint the complete picture of spectral properties of energy transport. Eq. (A5) gives us the

energies of individual eigenmodes and shows that the energy is constant with respect to time. Figure 13(a) plots the ensemble5

averaged density of states for 500 mass disordered granular chains with frequency bins of size 0.0781. The peak of the density

is decreasing with increasing disorder and shifting to smaller ω. Figure 13(b) gives the ensemble averaged energy spectrum for

the same frequency bins used in the previous plot (500 realizations) giving an energy distribution over frequency. The shape

of the energy distribution is wider over frequency for lower ξ. For larger ξ, the energy distribution becomes more sharp with

increasing disorder and shifting to smaller ω. In both plots Fig. 13 (a) and (b), the tails are broader for larger ξ, where the10

shapes in (a) are independent of driving, while the shapes in (b) depend on the initial condition.
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4 Conclusions

An impulse driven wave propagating through a precompressed mass disordered granular chain has been studied. Motivation

comes from the existence of force chains which form the backbone network for mechanical wave propagation in granular mate-

rials like soil. The scaled standard deviation of the mass probability distribution of the elements/particles of the granular chain

has been identified as the relevant disorder parameter (ξ; see Sect. 2.6), as suggested already in Lawney and Luding (2014).5

Chains with normal, binary and uniform mass distributions have quantitatively identical signal transmission characteristcs as

long as the first two moments of the mass distribution are the same and ξ is not too large.

Interestingly, on first sight, the dependence of wave speed on magnitude of disorder looks non-monotonous. This surprising

increase of wave-speed for weak disorder, and decrease for stronger disorder, is due to two different effects overlapping: The

increase of wave-speed takes place close to the source, see Fig. 7, i.e. our 1D granular chain has the ability to model the10

physics of accelerating waves, as observed in complex higher dimensional granular structures (Mouraille et al. (2006)). The

competing mechanism of decreasing wave-speed with disorder is only clearly observed when the velocities are measured as

travel time with maintaining constant separation far away from the source (Fig 8 and Table 6). The group velocity given by

Eq. (45) also shows a decrease in wave-speed with increase in disorder. When the travel time is measured from the source,

the two mechanisms overlap and interfere, causing the non-monotonous behavior, but possibly allowing for tuning particular15

propagation characteristics in short chains.

As another main result, Eq. (43) gives an effective, weighted dispersion relation as the normalized first moment of eigen-

modal (total) energies with frequency. This gives a much better signal to noise ratio for ω v/s k in comparison to 2D FFT

of displacement or velocity signals, reported previously ((Mouraille et al., 2006), O’Donovan et al. (2015)). Figure 10 shows

that the upper limit (maximum permissible) frequency due to the discreteness of the system slightly decreases with increasing20

disorder, ξ, and consistently, waves propagate slightly slower with increasing disorder if scaled by mean mass, i.e. an effect of

ξ. From the energy content one also observes (in disordered systems) that waves above a low frequency pass-band (ωpass) be-

come evanescent after they have traversed a localization length, L= L(ω), associated with a particular pass frequency (ωpass)

for which (yet) no analytical prediction is known to the authors (Otsubo et al. (2017)).

The energy analysis presented in this article can be used for understanding pulse propagation in disordered, weakly or25

strongly non-linear granular chains and its attenuation, widening and acceleration (experimentally and numerically investigated

in Langlois and Jia (2015)). It would also be interesting to understand the effect of damping on the eigenmodes, velocity of the

propagating wave, changes in frequency filtering and the energy of the eigenmodes. Also, a different kind of averaging (micro-

macro transition) should be developed using frequency bands to develop a Master Equation for propagation (or localization)

of total energy in terms of wavenumber and frequency at different regimes of disorder, non-linearity, and material properties.30

Such macro-models, taking into account multiple scattering, dispersion, attenuation, etc. will allow for modeling of realistic

wave propagation in granular materials like soil on large scales.
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5 Data availability

Data has been generated using the aforementioned theoretical model. The readers can reproduce it by using the equations

mentioned in their respective sections.
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Appendix A: Total Energy Harmonic Evolution

The Energy of the system (chain) can be calculated by vector multiplications at a particular instance of time, the non-unitary

dimension of the vector gives the respective information of the individual particles. The Kinetic Energy of the chain at a

particular instant of time is

Ekin(t) =
1

2
vTMv (A1)5

Starting from the impulse initial condition in Sect. 2.5, using v = SC(2)Ga (Eq. (29) and (30)) and the orthonormality

condition STMS = I (Eq. (21)), where I is the identity matrix, the above equation becomes

Ekin(t) =
1

2
(SC(2)Ga)TM(SC(2)Ga)

=
1

2
aTGT(C(2))TSTMSC(2)Ga =

1

2
aTG{C(2)}2Ga =

1

2

∑
j

a2
jω

2
j sin2(ωjt) (A2)

Since C(1), C(2) and G are diagonal matrices, hence their transposition are equal to their original matrices. Note that there is

no summation convention applied here. The Potential Energy of the chain at a particular instant of time is10

Epot(t) =−1

2
uTKu, (A3)

Using u = SC(1)a, v = SC(2)Ga, Eq. (30), and orthonormality, the above equation can be written as,

Epot(t) =−1

2
uTKu

=−1

2
uTM

d2u

dt2

=−1

2
(SC(1)a)TM

dv

dt

=−1

2
(SC(1)a)TM

dSC(2)Ga

dt

=
1

2
aTC(1)STMSC(1){G}2a

=
1

2
aTG{C(1)}2Ga =

1

2

∑
j

a2
jω

2
j cos2(ωjt). (A4)

Hence, the Total Energy becomes a sum over all eigenmode energies:

Etot(t) =
1

2

∑
j

a2
jω

2
j , (A5)15

which is independent of time (the energy of our chain is conserved). This equation (A5) also gives us energy with respect to

different eigenmodes of the chain (if we drop the summation). Hence, Etot(ωj) = 1
2a

2
jω

2
j . Now, by replacing u, v, a with their

spatial Fourier transform counter parts U ,V and A (calligraphic) by using the ansatz in spatial Fourier space as in Eq. (19) for

Eq. (18), we obtain the harmonic total energy (in terms of wavenumber):

Etot(ωj ,k) =
1

2
A2
j (k)ω2

j . (A6)20
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Figure A1. Multiplicative Factor aj for normal distribution obtained after ensemble averaging (500).

Appendix B: Hertz contact model

If a Hertzian repulsive interaction force is taken into consideration between particles (Landau and Lifshitz (1970), Lawney and

Luding (2014))

κ̃(i,j) = Ỹ(i,j)

[ r̃ir̃j
r̃i + r̃j

]1/2
, (B1)

where5

Ỹ −1
(i,j) =

3

4

(1− ν2
i

Ẽi
+

1− ν2
j

Ẽj

)
. (B2)

Ẽi and νi are the elastic modulus and Poisson’s ratio, respectively, of particle i. If the particles are made up of the same

material, Ỹ(i,j) and ν become same for all the contacts,

Ỹ −1 =
3

2

(1− ν2

Ẽ

)
. (B3)

The characteristic stiffness of the contact is10

κ̃o =
Ẽ

1− ν2

[ 2m̃o

243πρ̃

]1/6
. (B4)

The characteristic initial overlap becomes

∆̃o =
( F̃o
κ̃o

)2/3

. (B5)

The characteristic time is

t̃c =
1

∆̃
1/4
o

√
1− ν2

Ẽ

[243πρ̃m̃5
o

2

]1/12

. (B6)15
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The scaled stiffness ratio is

κ(i,j) =
κ̃(i,j)

κ̃o
=

√
2

b(i)1/3 + b(j)1/3

(
b(i)b(j)

)1/6

. (B7)

The initial overlap during static equilibrium can be formulated as

∆(i,j) =
∆̃(i,j)

∆̃o

= κ
−2/3
(i,j) . (B8)

Appendix C: Matching the first two moments of different distributions (normal, uniform and binary).5

The raw nth moment of a probability distribution f (q)(m̃) is defined as

M̃ (q)
n =

∞∫
−∞

m̃nf (q)(m̃)dm̃, (C1)

where, f (q)(m̃) is the distribution, q is the type of distribution and m̃ is the variable for which the distribution has been defined.

q is n for normal distribution, u for uniform distribution and bi for binary distribution. The scaled moment is defined as

M (q)
n =

M̃
(q)
n

(M̃
(q)
1 )n

,

=

∫∞
−∞ m̃

nf(m̃)dm̃

(
∫∞
−∞ m̃f(m̃)dm̃)n

=

∫∞
−∞ m̃

nf(m̃)dm̃

(M̃1)n
, (where first raw moment is the average of the distribution(M̃1))

=

∞∫
−∞

(
m̃

M̃1

)n
f(m̃)dm̃ =

∞∫
−∞

bn{M̃1f(m̃)}db, where b= m̃/M̃1 is the scaled mass (Sect. 2.1)

=

∞∫
−∞

bnf(b)db, with f(b) as the scaled mass distribution (C2)10

In case of particle mass distributions, only positive values can be considered so that the lower limit is to be replaced by zero,

which has consequences for larger ξ.

C1 Normal Distribution

The unscaled normal distribution is given as

f (n)(m̃) =
1

ξ̃(n)
√

2π
e
− (m̃−M̃1)2

2(ξ̃(n))2 , (C3)15

where, ξ̃(n) is the standard deviation and M̃1 is the average of the distribution. The scaled normal distribution is given as

f (n)(b) = M̃1f
(n)(m̃) =

1

ξ(n)
√

2π
e
− (b−1)2

2(ξ(n))2 . (C4)

where b= m̃/M̃1 is the scaled mass and ξ(n) = ξ̃(n)/M̃1 is the scaled standard deviation which is the disorder parameter for

the one dimensional chain.
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C1.1 First Moment

The first scaled moment of the normal distribution is given as

M
(n)
1 =

∞∫
−∞

b
1

ξ(n)
√

2π
e
− (b−1)2

2(ξ(n))2 db,=

∞∫
−∞

(b− 1)
1

ξ(n)
√

2π
e
− (b−1)2

2(ξ(n))2 db

︸ ︷︷ ︸
non-even power of b

+

∞∫
−∞

1

ξ(n)
√

2π
e
− (b−1)2

2(ξ(n))2 db

︸ ︷︷ ︸
even power of b

,

= 0 +
1√
π
×√π = 1. (C5)

Hence, the first scaled moment of the normal distribution is 1.

C1.2 Second Moment5

The Gaussian integral (normalizing condition) can be used, differentiated with respect to (ξ(n))2 to get

− 1

2(ξ(n))2
√

2π(ξ(n))2

∞∫
−∞

e
− (b−1)2

2(ξ(n))2 db+
1√

2π(ξ(n))2

∞∫
−∞

(b− 1)2

2(ξ(n))4
e
− (b−1)2

2(ξ(n))2 db= 0,

Multiplication by 2(ξ(n))4 yields

⇒ 1√
(ξ(n))22π

∞∫
−∞

(b− 1)2e
− (b−1)2

2(ξ(n))2 db=
(ξ(n))2√
2π(ξ(n))2

∞∫
−∞

e
− (b−1)2

2(ξ(n))2 db

︸ ︷︷ ︸
Normalizing condition = 1

,

⇒M
(n)
2 = 1 + (ξ(n))2. (C6)

Taking ξ(n) = ξ, the second scaled moment of the normal distribution is 1 + ξ2.

C2 Binary Distribution

The unscaled binary distribution is given by10

f (bi)(m̃) =
δ(m̃− (M̃1 + ξ̃(bi)))

2
+
δ(m̃− (M̃1− ξ̃(bi)))

2
, (C7)

with the Kronecker δ(0) = 1 and the scaled binary distribution is given as

f (bi)(b) = M̃1f
(bi)(m̃),

=
δ{b− (1− ξ(bi))}+ δ{b− (1 + ξ(bi))}

2
(C8)

where b= m̃/M̃1 is the scaled mass and ξ(bi) = ξ̃(bi)/M̃1 is the scaled standard deviation, which is the disorder parameter for

the one dimensional chain.15
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C2.1 First Moment

The first scaled moment of the distribution is given as

M
(bi)
1 =

∞∫
−∞

bf (bi)(b)db=
1− ξ(bi)

2
+

1 + ξ(bi)

2
= 1. (C9)

Hence, the first scaled moment of the binary distribution is 1.

C2.2 Second Moment5

The second scaled moment of the binary distribution is given as follows :

M
(bi)
2 =

∞∫
−∞

b2f (bi)(b)db=
(1− ξ(bi))2

2
+

(1 + ξ(bi))2

2
= 1 + (ξ(bi))2. (C10)

Taking ξ(n) = ξ(bi) = ξ, the second scaled moment of the binary distribution is 1 + ξ2.

C3 Uniform Distribution

The unscaled uniform distribution for the mass distribution is given by10

f (u)(m̃) =


1

2ξ̃(u)
for M̃1− ξ̃(u) ≤ m̃≤ M̃1 + ξ̃(u)

0 for m̃ < M̃1− ξ̃(u) or m̃ > M̃1 + ξ̃(u)
(C11)

The value of the mass is 1
2ξ̃(u)

in the interval
[
M̃1− ξ̃(u),M̃1 + ξ̃(u)

]
and 0 elsewhere. The scaled uniform distribution is given

as

f (u)(b) = M̃1f
(u)(m̃),

=


1

2ξ(u)
for 1− ξ(u) ≤ b≤ 1 + ξ(u)

0 for b < 1− ξ(u) or b > 1 + ξ(u)
(C12)

The scaled masses (b) are selected from the interval [1− ξ,1 + ξ] to approximately p-reserve symmetry about the scaled mean.15

C3.1 First Moment

The first scaled moment of the distribution is given as

M
(u)
1 =

∞∫
−∞

bf (u)(b)db=

1+ξ(u)∫
1−ξ(u)

b

2ξ(u)
db=

b2

4ξ(u)

⌋1+ξ(u)

1−ξ(u)
= 1. (C13)

Hence, the first scaled moment of the uniform distribution is 1.

28



C3.2 Second Moment

The second moment of the distribution is given as

M
(u)
2 =

∞∫
−∞

b2f (u)(b)db=

1+ξ(u)∫
1−ξ(u)

b2

2ξ
db=

b3

6ξ(u)

⌋1+ξ(u)

1−ξ(u)
= 1 +

(ξ(u))2

3
(C14)

Taking ξ(u) =
√

3ξ(n) =
√

3ξ(bi) =
√

3ξ and using Eq. (C14) yields

M
(u)
2 = 1 +

(ξ(u))2

3
= 1 + ξ2, (C15)5

thereby, placing a limit on the uniform distribution ([1−
√

3ξ,1+
√

3ξ]) so that the first two moments of three distributions are

identical except for large ξ.

From equations (C4), (C9) and (C13), it can be said that the first moment of the distributions have been matched. From

equations (C6), (C10) and after a placing a limit on the uniform distribution. Equation (C15) shows that the second moments10

of the distributions are matched. However, for large disorder, there is a need for correction as b > 0 cannot be negative.
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Table 1. Scaled Moments of ensemble averaged distributions (500 ensembles) used for the one-dimensional chain (256 element long).

Distribution Disorder <M1 > <M2 > <M3 > <M4 > <M5 > Ξ Ξ2

Normal

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0000 1.0099 1.0298 1.0600 1.1010 0.1 0.0100

ξ = 0.2 1.0000 1.0398 1.1194 1.2436 1.4219 0.1999 0.0400

ξ = 0.35 1.0000 1.1190 1.3590 1.7630 2.4184 0.3462 0.1195

ξ = 0.5 1.0000 1.2053 1.6366 2.4335 3.8973 0.4661 0.2061

ξ = 0.8 1.0000 1.3055 2.0104 3.5037 6.7333 0.6415 0.3067

Binary

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0000 1.0100 1.0299 1.0599 1.1001 0.1000 0.0100

ξ = 0.2 1.0000 1.0398 1.1196 1.2408 1.4068 0.2000 0.0400

ξ = 0.35 1.0000 1.1221 1.3666 1.7489 2.2998 0.3501 0.1226

ξ = 0.5 1.0000 1.2495 1.7497 2.5653 3.8255 0.5002 0.2505

ξ = 0.8 1.0000 1.6413 2.9323 5.3034 9.6263 0.8014 0.6438

Uniform

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0000 1.0100 1.0300 1.0602 1.1009 0.1002 0.0100

ξ = 0.2 1.0000 1.0400 1.1201 1.2431 1.4148 0.2004 0.0402

ξ = 0.35 1.0000 1.1227 1.3682 1.7639 2.3646 0.3508 0.1232

ξ = 0.5 1.0000 1.2508 1.7529 2.6212 4.0859 0.5011 0.2517

ξ = 0.8 −−− −−− −−− −−− −−− −−− −−−

34



Table 2. Unscaled Moments of ensemble averaged distributions (500 ensembles) used for the one-dimensional chain (256 element long).

Distribution Disorder < M̃1 > < M̃2 > < M̃3 > < M̃4 > < M̃5 > Ξ̃ Ξ̃2

Normal

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0000 1.0100 1.0299 1.0601 1.1013 0.0999 0.0100

ξ = 0.2 1.0000 1.0399 1.1197 1.2443 1.4232 0.1999 0.0400

ξ = 0.35 1.0022 1.1242 1.3689 1.7807 2.4492 0.3462 0.1195

ξ = 0.5 1.0274 1.2728 1.7768 2.7163 4.4725 0.4661 0.2061

ξ = 0.8 1.1581 1.7540 3.1363 6.3458 14.1470 0.6415 0.3067

Binary

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0001 1.0102 1.0303 1.0605 1.1010 0.1000 0.0100

ξ = 0.2 1.0002 1.0404 1.1206 1.2424 1.4091 0.2000 0.0400

ξ = 0.35 1.0003 1.1232 1.3686 1.7516 2.3022 0.3500 0.1225

ξ = 0.5 1.0005 1.2510 1.7516 2.5650 3.8162 0.5000 0.2500

ξ = 0.8 1.0008 1.6416 2.9229 5.2548 9.4573 0.8000 0.6400

Uniform

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0001 1.0102 1.0304 1.0608 1.1017 0.1002 0.0100

ξ = 0.2 1.0001 1.0405 1.1210 1.2446 1.4170 0.2004 0.0400

ξ = 0.35 1.0003 1.1236 1.3699 1.7665 2.3674 0.3508 0.1232

ξ = 0.5 1.0004 1.2519 1.7545 2.6211 4.0781 0.5011 0.2517

ξ = 0.8 −−− −−− −−− −−− −−− −−− −−−
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Table 3. Moments of ensemble averaged distributions (10000 ensembles) used for the one-dimensional chain (256 element long).

Distribution Disorder <M1 > <M2 > <M3 > <M4 > <M5 > Ξ Ξ2

Normal

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0000 1.0100 1.0299 1.0601 1.1011 0.0999 0.0100

ξ = 0.2 1.0000 1.0399 1.1196 1.2439 1.4225 0.1998 0.04

ξ = 0.35 1.0000 1.1192 1.3598 1.7648 2.4222 0.3456 0.1197

ξ = 0.5 1.0000 1.2093 1.6491 2.4617 3.9545 0.4579 0.2101

ξ = 0.8 1.0000 1.3319 2.0893 3.6833 7.1170 0.5767 0.3332

Binary

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0000 1.0100 1.0299 1.0599 1.1001 0.1000 0.0100

ξ = 0.2 1.0000 1.0399 1.1196 1.2409 1.4069 0.2000 0.0400

ξ = 0.35 1.0000 1.1222 1.3668 1.7494 2.3006 0.3501 0.1226

ξ = 0.5 1.0000 1.2496 1.7502 2.5665 3.8279 0.5004 0.2506

ξ = 0.8 1.0000 1.6417 2.9340 5.3080 9.6373 0.8017 0.6442

Uniform

Distribution

ξ = 0.0 1.0000 1.0000 1.0000 1.0000 1.0000 0.0000 0.0000

ξ = 0.1 1.0000 1.0100 1.0299 1.0600 1.1006 0.1000 0.0100

ξ = 0.2 1.0000 1.0399 1.1197 1.2422 1.4134 0.2000 0.0400

ξ = 0.35 1.0000 1.1223 1.3670 1.7616 2.3605 0.3501 0.1227

ξ = 0.5 1.0000 1.2499 1.7507 2.6167 4.0775 0.5005 0.2509

ξ = 0.8 −−− −−− −−− −−− −−− −−− −−−
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Table 4. Scaled Coherent Wave Velocity Picking for different particles before and after localization length for a disordered chain with normal

distribution (256 element long, 500 ensembles).

Particle Number Disorder Average Mass 5% Peak 10% Peak 70% Peak 90% Peak Peak Zero Crossing

130th particle

ξ = 0.0 1.0000 1.0462 1.0365 1.0002 0.9911 0.9808 0.9560

ξ = 0.1 1.0000 1.0462 1.0365 1.0002 0.9911 0.9817 0.9560

ξ = 0.2 1.0000 1.0508 1.0409 1.0032 0.9938 0.9839 0.9560

ξ = 0.35 1.0000 1.0623 1.0515 1.0100 0.9994 0.9881 0.9525

ξ = 0.5 1.0000 1.0735 1.0616 1.0155 1.0035 0.9906 0.9449

ξ = 0.8 1.0000 1.0841 1.0713 1.0211 1.0079 0.9933 0.9328

150th particle

ξ = 0.0 1.0000 1.0402 1.0317 0.9990 0.9910 0.9825 0.9597

ξ = 0.1 1.0000 1.0419 1.0332 1.0003 0.9920 0.9835 0.9599

ξ = 0.2 1.0000 1.0464 1.0373 1.0032 0.9946 0.9855 0.9597

ξ = 0.35 1.0000 1.0574 1.0475 1.0095 0.9998 0.9894 0.9566

ξ = 0.5 1.0000 1.0678 1.0569 1.0146 1.0036 0.9917 0.9500

ξ = 0.8 1.0000 1.0782 1.0664 1.0199 1.0076 0.9939 0.9387

200th particle

ξ = 0.0 1.0000 1.0330 1.0258 0.9991 0.9924 0.9856 0.9665

ξ = 0.1 1.0000 1.0342 1.0271 1.0001 0.9933 0.9862 0.9666

ξ = 0.2 1.0000 1.0376 1.0303 1.0023 0.9954 0.9878 0.9665

ξ = 0.35 1.0000 1.0459 1.0380 1.0073 0.9995 0.9910 0.9642

ξ = 0.5 1.0000 1.0537 1.0450 1.0113 1.0025 0.9929 0.9587

ξ = 0.8 1.0000 1.0620 1.0526 1.0155 1.0056 0.9947 0.9494

220th particle

ξ = 0.0 1.0000 1.0308 1.0242 0.9992 0.9930 0.9864 0.9685

ξ = 0.1 1.0000 1.0320 1.0253 1.0000 0.9937 0.9870 0.9686

ξ = 0.2 1.0000 1.0350 1.0282 1.0020 0.9954 0.9884 0.9685

ξ = 0.35 1.0000 1.0426 1.0352 1.0066 0.9993 0.9914 0.9665

ξ = 0.5 1.0000 1.0500 1.0419 1.0105 1.0022 0.9933 0.9619

ξ = 0.8 1.0000 1.0575 1.0487 1.0142 1.0050 0.9949 0.9542
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Table 5. Unscaled Coherent Wave Velocity Picking (
√
M̃1) for different particles before and after localization length for a disordered chain

with normal distribution (256 element long, 500 ensembles).

Particle Number Disorder Average Mass 5% Peak 10% Peak 70% Peak 90% Peak Peak Zero Crossing

130th particle

ξ = 0.1 1.0000 1.0462 1.0366 1.0002 0.9912 0.9818 0.9560

ξ = 0.2 1.0000 1.0509 1.0409 1.0033 0.9939 0.9840 0.9560

ξ = 0.35 1.0022 1.0614 1.0505 1.0091 0.9985 0.9872 0.9515

ξ = 0.5 1.0274 1.0595 1.0477 1.0022 0.9904 0.9776 0.9322

ξ = 0.8 1.1581 1.0081 0.9962 0.9496 0.9373 0.9237 0.8668

150th particle

ξ = 0.1 1.0000 1.0420 1.0332 1.0003 0.9921 0.9835 0.9599

ξ = 0.2 1.0000 1.0465 1.0374 1.0032 0.9946 0.9856 0.9597

ξ = 0.35 1.0022 1.0564 1.0465 1.0086 0.9989 0.9885 0.9556

ξ = 0.5 1.0274 1.0539 1.0431 1.0013 0.9905 0.9787 0.9373

ξ = 0.8 1.1581 1.0026 0.9917 0.9485 0.9370 0.9243 0.8723

200th particle

ξ = 0.1 1.0000 1.0343 1.0271 1.0001 0.9934 0.9862 0.9666

ξ = 0.2 1.0000 1.0377 1.0304 1.0024 0.9954 0.9879 0.9665

ξ = 0.35 1.0022 1.0449 1.0370 1.0064 0.9985 0.9901 0.9631

ξ = 0.5 1.0274 1.0399 1.0313 0.9981 0.9894 0.9799 0.9458

ξ = 0.8 1.1581 0.9876 0.9788 0.9443 0.9351 0.9250 0.8822

220th particle

ξ = 0.1 1.0000 1.0320 1.0253 1.0000 0.9937 0.9870 0.9686

ξ = 0.2 1.0000 1.0320 1.0253 1.0000 0.9937 0.9870 0.9685

ξ = 0.35 1.0022 1.0417 1.0343 1.0057 0.9984 0.9905 0.9654

ξ = 0.5 1.0274 1.0362 1.0283 0.9972 0.9891 0.9803 0.9490

ξ = 0.8 1.1581 0.9834 0.9752 0.9431 0.9346 0.9252 0.8867
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Table 6. Coherent Wave Velocity calculated from the time taken by the pulse to travel a common distance of separation (7 particles/elements)

with time calculated in reference to 5%,10%,70%,90% of the peak value and the peak value of the coherent wave packet.

Particle Number Disorder 5% Peak 10% Peak 70% Peak 90% Peak Peak Zero Crossing

27th particle -

20th particle

ξ = 0.0 1.0466 1.0321 0.9954 0.9867 0.9780 0.9571

ξ = 0.1 1.0466 1.0369 0.9999 0.9910 0.9823 0.9613

ξ = 0.2 1.0515 1.0417 0.9999 0.9910 0.9823 0.9613

ξ = 0.35 1.0665 1.0565 1.0089 0.9999 0.9910 0.9654

ξ = 0.5 1.0820 1.0665 1.0135 0.9999 0.9910 0.9696

ξ = 0.8 1.0925 1.0820 1.0227 1.0135 0.9999 0.9531

157th particle

- 150th

particle

ξ = 0.0 1.0135 1.0089 0.9999 0.9954 0.9954 0.9867

ξ = 0.1 1.0107 1.0082 0.9982 0.9960 0.9930 0.9867

ξ = 0.2 1.0105 1.0080 0.9974 0.9957 0.9928 0.9867

ξ = 0.35 1.0072 1.0054 0.9984 0.9965 0.9948 0.9910

ξ = 0.5 1.0056 1.0041 0.9983 0.9964 0.9940 0.9867

ξ = 0.8 1.0106 1.0072 0.9947 0.9917 0.9880 0.9780

227th particle

- 220th

particle

ξ = 0.0 1.0135 1.0089 0.9999 0.9954 0.9954 0.9910

ξ = 0.1 1.0090 1.0073 0.9969 0.9959 0.9948 0.9867

ξ = 0.2 1.0074 1.0056 0.9968 0.9951 0.9934 0.9867

ξ = 0.35 1.0056 1.0039 0.9957 0.9939 0.9917 0.9867

ξ = 0.5 1.0059 1.0039 0.9968 0.9950 0.9926 0.9867

ξ = 0.8 1.0122 1.0111 1.0062 1.0049 1.0031 0.9867

247th particle

- 240th

particle

ξ = 0.0 1.0089 1.0089 0.9999 0.9999 0.9954 0.9910

ξ = 0.1 1.0087 1.0060 0.9975 0.9966 0.9953 0.9910

ξ = 0.2 1.0073 1.0047 0.9964 0.9952 0.9925 0.9910

ξ = 0.35 1.0041 1.0019 0.9946 0.9928 0.9909 0.9954

ξ = 0.5 1.0017 1.0002 0.9928 0.9916 0.9903 −−−−

ξ = 0.8 0.9937 0.9919 0.9860 0.9846 0.9847 −−−−
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