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Abstract.  Stick-slip sliding is observed at various scales in fault sliding and the accompanied seismic events.  It is 

conventionally assumed that the mechanism of stick-slip over geomaterials lies in the rate dependence of friction. However, 

the movement resembling the stick-slip could be associated with elastic oscillations of the rock around the fault, which 

occurs irrespective of the rate properties of the friction. In order to investigate this mechanism, two simple models are 

considered in this paper: a mass-spring model of self-maintaining oscillations and a one-dimensional (1D) model of wave 

propagation through an infinite elastic rod.  The rod slides with friction over a stiff base. The sliding is resisted by elastic 

shear springs.  The results show that the frictional sliding in the mass-spring model generates oscillations that resemble the 

stick-slip motion.  Furthermore, it was observed that the stick-slip-like motion occurs even when the frictional coefficient is 

constant. The 1D wave propagation model predicts that despite the presence of shear springs the frictional sliding waves 

move with the p-wave velocity, denoting the wave as intersonic. It was also observed that the amplitude of sliding is 

decreased with time.  This effect might provide an explanation to the observed intersonic rupture propagation over faults.  

1 Introduction  

Earthquakes can lead to catastrophic structural failures and may trigger tsunamis, landslides and volcanic activities 

(Ghobarah et al., 2006; Bird and Bommer, 2004). The earthquakes are generated at faults, and are either produced by rapid 

(sometimes ‘supersonic’) propagation of shear cracks/ruptures along the faults, or originated in the stick-slip sliding over the 

fault. The velocity of rupture propagation is crucial for estimating the earthquake damage. The rupture velocities can be 

classified by comparison its speed with the speeds of stress waves in the rupturing solid (Rosakis, 2002). There are several 

types of rupture propagation: supersonic (V>VP), intersonic (VS<V<VP), subsonic (V<VS), supershear (V>VS), sub-shear 

(VR<V<VS) and sub-Rayleigh (V<VR). According to the data obtained from the seismic observation of crustal earthquakes, 

most ruptures propagate with an average velocity that is about 80% of the shear wave velocity (Heaton, 1990). However, in 

some cases, supershear propagation of earthquake-generating shear ruptures or sliding is observed (Archuleta, 1984; 

Bouchon et al., 2000, 2001, 2010; Dunham and Archuleta, 2004; Aagaard and Heaton, 2004). The above observations 

introduced the concept of supershear crack propagation (e.g., Bizzarri and Spudich, 2008; Lu at al., 2009; Bhat et al., 2007; 

Dunham, 2007).  However, due to the lack of strong motion recording, there are still some debates regarding the data 

interpretation (Delouis et al., 2002; Bhat et al., 2007).  For instance, it was suggested that the 2002 Denali Earthquake was 

propagated at a supershear speed of about 40 km (Dunham and Archuleta, 2004). However, the data was based on a single 

ground motion record. The joint inversion of the combined data-set provides a more robust description of the rupture. The 

recent studies, which are aimed at deriving the kinematic models for large earthquakes, have shown the importance of the 

type of data used. It has been shown that slip maps for a given earthquakes may vary significantly (Cotton and Campillo, 

1995; Cohee and Beroza, 1994a).  



The analytical (e.g., Burridge, 1973) and numerical (e.g., Das and Aki, 1977) research in fracture dynamics indicate that only 

the Mode II rupture (shear-induced slip occurring in the direction perpendicular to the crack front) can propagate with 

intersonic velocity (Vs<V<Vp) for short durations, as long as the prestress of the fault is high compared to both failure and 

residual stresses (Dunham, 2007). Intersonic Mode II crack propagation was first confirmed in laboratory by Rosakis et al. 

(1999). 

Sliding over pre-existing fractures and interfaces is one of the forms of instability in geomaterials. It is often accompanied by 

stick-slip – a spontaneous jerking motion between two contacting bodies sliding over each over. It is assumed that the 

mechanism of stick-slip lies in intermittent change between static and kinetic friction and the rate dependence of the 

frictional coefficient (Popp and Rudolph, 2004).  

The investigation of the friction law on geological faults is the key element in the modelling of earthquakes. Rate- and state-

dependent friction laws proposed by Dieterich, Ruina and Rice (Dieterich, 1978; Ruina, 1983; Rice, 1983) have successfully 

modelled frictional sliding and earthquake phenomena. There are two types of frictional sliding between surfaces that 

include the tectonic plates. The first type occurs when two surfaces slip steadily (V=V0 condition, where V - is relative 

velocity, V0 - is the load point velocity) and is analogous to the fault creep (Byerlee and Summers, 1975). In the stable state, 

the sliding over discontinuities (faults and fractures) is prevented by friction. Modelling of the frictional sliding is an 

important tool for understanding the initiation and the development of rupture, and also, the healing of the faults. Many 

models and numerical methods are developed to describe seismic activities and the supershear fracture/rupture propagation 

(Noda and Lapusta, 2013; Lapusta and Rice, 2003; Lu at al., 2009; Lapusta et al., 2000; Sobolev, 2011; Bak and Tang, 1989; 

Harris and Day, 1993). 

The faults are continuously subjected to variations in both shear and normal stresses, and can produce sliding over initially 

stable fractures or interfaces (Boettcher and Marone, 2004). In the Earth’s crust, the increase in shear stress is an obvious 

consequence of tectonic movement, while oscillations in the normal stress can be associated with the tidal stresses or seismic 

waves generated by other seismic events. These can generate the second dynamic state when the sliding occurs jerkily (slip, 

stick and then slip again). This type of sliding is called “stick-slip” sliding which exhibit cyclic behaviour. Brace and Byerlee 

supposed that the stick-slip instabilities in the tectonic plates are associated with the appearance of earthquakes (Brace and 

Byerlee, 1966).  Both types of sliding are usually investigated using a spring-block model introduced by Burridge and 

Knopoff in 1967 (Turcotte, 1992). The BK model consists of an assembly of blocks, where each block is connected via the 

elastic springs to the next block and to the moving plate.    

In the present paper, we firstly simulate a single element block model, which is one block undergoing frictional sliding on a 

stiff base. The movement is caused by a spring attached to the block. The other end of the spring moves with a constant 

velocity. The paper begins with considering stick-slip-like movement occurring under rate-independent friction due to the 

eigen oscillations of the fault faces and the associated wave propagation. This demonstrates that the rate dependence of 

friction is not necessarily a controlling phenomenon. We also analyse a simple mechanism of unusually high shear fracture 

or sliding zone propagation, also referred as the p-sonic propagation of sliding area over a frictional fault. The analysis is 

based on the fact that accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in 

the velocity of sliding even if the frictional coefficient is constant. We note that Walker and Shearer (2009) found evidence 

of the intersonic rupture speeds close to the local P-wave velocity by analysing the Kokoxili and Denali earthquakes seismic 

data. This paper considers a highly simplified 1-D rod model where many properties of real fault system have been 

neglected. (Considerable fault geometry simplification is in use in analysing intersonic ruptures, e.g., Bouchon et al., 2010.)  

 



2 Single degree of freedom frictional oscillator 

We start with the self-excited oscillations, which resembles the stick-slip-like motion, but occurring under constant friction. 

A single degree of freedom block-spring model is used for this purpose. A block sliding on a rigid horizontal surface is 

driven by a spring whose other end is attached to a driver moving with a constant velocity (Figure 1). All variables and 

constants used in equations are listed below in Table 1. 

 

Table 1: The list of variables and constants 

 

Symbol Meaning Symbol Meaning 

V0 load point velocity  τ shear stress 

V relative velocity of block τf friction stress 

k1 single spring stiffness E Young’s modulus 

m block mass c velocity of longitudinal wave (p=wave) 

N gravity force ω eigen frequency 

T shear force k2 the spring stiffness relating stress and 

displacement discontinuity (the difference 

between the rod displacement and the zero 

displacement of the base) 

µ friction coefficient J0 Bessel function of order 0 

ω0 eigen frequency 
0J   derivative of Bessel function 

t time i imaginary unit 

h thickness of an infinite rod ξ independent variable 

ρ volumetric rod density z integration variable 

σN uniform compressive load f, g arbitrary functions 

σ longitudinal stress   

 

Friction is assumed to be cohesionless: Tcr=N, where Tcr is the force at which sliding starts.  

  
Figure 1: The single block model. 

 

The system of equations representing the motion of the block reads: 
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The appearance of the ( , )f T N  function in the system of equations represents the fact that 0 V  . 
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In order to represent the system of equations (1) in dimensionless form, it is convenient to introduce a dimensionless time 𝑡∗: 
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where 𝜔0 is the eigen frequency of the block-spring system, m is the block mass and k1 is the spring stiffness. 

The governing system of equations in dimensionless form is defined as: 
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where the dot represents the derivative with respect to dimensionless time  𝑡∗ , and V*, T* and N* are the dimensionless 

velocity, shear force and gravity force respectively. 
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2.1 Behaviour of the system  

In order to demonstrate the behaviour of the system at stick-slip-type regime, we consider the block sliding under the 

following set of initial conditions: 

(0) 0,  (0) 0V T                 (6) 

Figure 2 represents the corresponding behaviour of the system (dimensinless velocity vs. dimensionless time). 

 
Figure 2: Block sliding with constant friction coefficient. 

      

It is observed that the system exhibits self-excited oscillations even with constant friction coefficient, which somewhat 

resemble the stick-slip-type sliding. Furthermore, the energy in the system does not change with time, obviously due to the 

constant energy influx by velocity V0, where the excess of the V0 is dissipated by friction. 

A detailed investigation of the behaviour of a system described in a section 2 was undertaken in our previous works 

(Karachevtseva et al., 2014; Karachevtseva et al., 2014). ). It should also be noted that similar oscillation-type movements 

were observed in laboratory experiments on sliding of two granite blocks under biaxial compression (Sobolev et al., 2016). 

 

3 Stress wave propagation in frictional sliding (generalisation 1D solid) 

In the previous section, we showed the stick-slip-like motion occurring even when the friction coefficient is constant. In this 

section we will expand our understanding to incorporate the slide over a fault where a stick-slip phenomenon is traditionally 
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flagged as a mechanism of earthquakes. We shall keep assuming the constant friction law, which will permit us to obtain an 

analytical solution.  For this purpose, following Nikitin (1998), we consider the simplest possible 1D model of fault sliding, 

which takes into account the rock elastic response and the associated dynamic behaviour. The model is shown in Figure 3. It 

consists of an infinite elastic rod of height (thickness) h, and of unit length in the direction normal to the plane of drawing in 

Figure 3. The linear density is  and the rod is assumed to be able slide over a stiff surface. The sliding is resisted by 

friction. The stiff surface can be described as a symmetry line such that instead of the (horizontal) fault, only the upper half 

of the line is considered. The rod is connected to a stiff layer moving with a constant velocity V0. The connection is achieved 

through a series of elastic shear springs. Both the elastic rod and the elastic springs describe the model of the elasticity of the 

rock around the fault, as shown in Figure 3. We assume that the system is subjected to a uniform compressive load 
N  such 

that the friction stress is kept constant, which is assumed equal to f N const   .  

 

Figure 3: The model of infinitive elastic rod driven by elastic shear spring. 

Equation of movement of the rod reads: 
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Where   is the longitudinal (normal) stress in the rod,   is the contact shear stress, f is the frictional stress, V0  is the load 

point velocity and V(x,t) is the velocity of point x of the rod at time t, as shown in Figure 3. 

According to the Hooke’s law:  
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where u(x,t) is the displacement and E is the Young’s modulus of the rod. After differentiating, we have: 
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The elastic reaction of the shear springs is expressed as: 
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where k2 is the spring stiffness relating stress and displacement discontinuity (the difference between the rod displacement 

and the zero displacement of the base).  

Defining 0V V V    and solving the system of equations (7)-(10), we get the following wave equation: 
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where c Eh   is the velocity of the longitudinal wave (p-wave), 
2 ( )k h   is regarded as  eigen frequency of 

the system consisting as a unit length of the rod considered as a lamp mass on the shear springs. 

It is observed that despite the presence of shear springs and friction between the rod and the stiff surface, the waves 

propagate with the p-wave velocity determined by the Young’s modulus and density of the rod. Therefore, according to the 

terminology described in the introduction, the wave should be named p-sonic wave. It should be highlighted that while such 

waves look like the shear waves, they are in fact compressive waves propagation along the rod, hence denoted as the p-wave 

velocity. 

In order to analyse the way the pulse propagates, equation (11) is complemented by the initial conditions as: 
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Solution of wave equation (11) can be found by using the Riemann method (e.g., Koshlyakov, 1964). 
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The integral from (13) can be found by using the Chebyshev-Gauss method  
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3.1 Propagation of an initial sliding 

Figures 4-5 represent the propagation of initial sliding under the different initial conditions. Particularly, a triangular velocity 

impulse, equation (17) and zero acceleration were used as initial conditions for Figure 4. As shown in Figure 5, linear and 

harmonic functions are used for velocity and acceleration as initial conditions.  
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where x is the vector, a, b, c are scalar parameters.  



 

Figure 4: Propagation of initial sliding in the form of a triangular function f(z) of zero area.    

            

Figure 5: Propagation of initial sliding with different initial conditions. 

It is seen that the initial sliding (impulse) propagating with p-wave velocity keeps its width but the amplitude reduces with 

time. It is also observed that as the impulse propagates, it loses energy which goes to increase the energy of shear springs.  

4 Discussion 

This paper introduced the notion that the frictional movement resembling the stick-slip sliding, which are often observed and 

usually attributed to the rate dependence of friction, can be obtained with constant friction by taking into account the 

elasticity of the surrounding and its self-oscillations. This understanding is applied to propagation of slip over infinitely long 

fault leads to a simple model that predicts that the slip will propagate with p-wave velocity. This conclusion is made under 

the assumption of constant (rate-independent) friction. Relaxing this assumption, that is taking into account that  
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It is seen that when the sliding rate changes slowly, the propagation speed of rupture c1 can be approximated as: 
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Furthermore, it is observed that when the friction increases with the sliding rate, c1 becomes smaller than p-wave velocity. If 

the rate dependence of friction is lowered further, the slip propagation can become intersonic. 

 

5 Conclusions 

In this paper, it is shown that the accumulation of elastic energy in the sliding plates on both sides of the fault can produce 

oscillations in the velocity of sliding even when the friction is constant. These oscillations resemble stick-slip movement, but 

they manifest themselves in terms of sliding velocity rather than displacement. The sliding exhibits wave-like propagation 

over long faults. Furthermore, the 1D model shows that the zones of sliding propagate along the fault with the velocity of p-

wave (the propagation speed can however be lower if the rate dependence of friction is taken into account). The mechanism 

of such fast wave propagation is the normal (tensile/compressive) stresses in the neighbouring elements (normal stresses on 

the planes normal to the fault surface) causing a p-wave propagating along the fault rather than the shear stress controlling 

the sliding. This manifests itself as a p-sonic propagation of an apparent shear rupture. 
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