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Abstract.  Stick-slip sliding is observed at various scales in fault sliding and the accompanied seismic events.  It is 10 

conventionally assumed that the mechanism of stick-slip over geomaterials lies in the rate dependence of friction. However, 11 

the movement resembling the stick-slip could be associated with elastic oscillations of the rock around the fault, which 12 

occurs irrespective of the rate properties of the friction. In order to investigate this mechanism, two simple models are 13 

considered in this paper: a mass-spring model of self-maintaining oscillations and a one-dimensional (1D) model of wave 14 

propagation through an infinite elastic rod.  The rod slides with friction over a stiff base. The sliding is resisted by elastic 15 

shear springs.  The results show that the frictional sliding in the mass-spring model generates oscillations that resemble the 16 

stick-slip motion.  Furthermore, it was observed that the stick-slip-like motion occurs even when the frictional coefficient is 17 

constant. The 1D wave propagation model predicts that despite the presence of shear springs the frictional sliding waves 18 

move with the p-wave velocity, denoting the wave as intersonic. It was also observed that the amplitude of sliding is 19 

decreased with time.  This effect might provide an explanation to the observed intersonic rupture propagation over faults.  20 

1 Introduction  21 

Earthquakes can lead to catastrophic structural failures and may trigger tsunamis, landslides and volcanic activities 22 

(Ghobarah et al., 2006; Bird and Bommer, 2004). The earthquakes are generated at faults, and are either produced by rapid 23 

(sometimes ‘supersonic’) propagation of shear cracks/ruptures along the faults, or originated in the stick-slip sliding over the 24 

fault. The velocity of rupture propagation is crucial for estimating the earthquake damage. The rupture velocities can be 25 

classified by comparison its speed with the speeds of stress waves in the rupturing solid (Rosakis, 2002). There are several 26 

types of rupture propagation: supersonic (V>VP), intersonic (VS<V<VP), subsonic (V<VS), supershear (V>VS), sub-shear 27 

(VR<V<VS) and sub-Rayleigh (V<VR). According to the data obtained from the seismic observation of crustal earthquakes, 28 

most ruptures propagate with an average velocity that is about 80% of the shear wave velocity (Heaton, 1990). However, in 29 

some cases, supershear propagation of earthquake-generating shear ruptures or sliding is observed (Archuleta, 1984; 30 

Bouchon et al., 2000, 2001, 2010; Dunham and Archuleta, 2004; Aagaard and Heaton, 2004). The above observations 31 

introduced the concept of supershear crack propagation (e.g., Bizzarri and Spudich, 2008; Lu at al., 2009; Bhat et al., 2007; 32 

Dunham, 2007).  However, due to the lack of strong motion recording, there are still some debates regarding  the data 33 

interpretation (Delouis et al., 2002; Bhat et al., 2007).  For instance, it was suggested that the 2002 Denali Earthquake was 34 

propagated at a supershear speed of about 40 km (Dunham and Archuleta, 2004). However, the data was based on a single 35 

ground motion record. The joint inversion of the combined data-set provides a more robust description of the rupture. The 36 

recent studies, which are aimed at deriving the kinematic models for large earthquakes, have shown the importance of the 37 

type of data used. It has been shown that slip maps for a given earthquakes may vary significantly (Cotton and Campillo, 38 

1995; Cohee and Beroza, 1994a).  39 



The analytical (e.g., Burridge, 1973) and numerical (e.g., Das and Aki, 1977) research in fracture dynamics indicate that only 40 

the Mode II rupture (shear-induced slip occurring in the direction perpendicular to the crack front) can propagate with 41 

intersonic velocity (Vs<V<Vp) for short durations, as long as the prestress of the fault is high compared to both failure and 42 

residual stresses (Dunham, 2007). Intersonic Mode II crack propagation was first confirmed in laboratory by Rosakis et al. 43 

(1999). 44 

Sliding over pre-existing fractures and interfaces is one of the forms of instability in geomaterials. It is often accompanied by 45 

stick-slip – a spontaneous jerking motion between two contacting bodies sliding over each over. It is assumed that the 46 

mechanism of stick-slip lies in intermittent change between static and kinetic friction and the rate dependence of the 47 

frictional coefficient (Popp and Rudolph, 2004).  48 

The investigation of the friction law on geological faults is the key element in the modelling of earthquakes. Rate- and state-49 

dependent friction laws proposed by Dieterich, Ruina and Rice (Dieterich, 1978; Ruina, 1983; Rice, 1983) have successfully 50 

modelled frictional sliding and earthquake phenomena. There are two types of frictional sliding between surfaces that 51 

include the tectonic plates. The first type occurs when two surfaces slip steadily (V=V0 condition, where V - is relative 52 

velocity, V0 - is the load point velocity) and is analogous to the fault creep (Byerlee and Summers, 1975). In the stable state, 53 

the sliding over discontinuities (faults and fractures) is prevented by friction. Modelling of the frictional sliding is an 54 

important tool for understanding the initiation and the development of rupture, and also, the healing of the faults. Many 55 

models and numerical methods are developed to describe seismic activities and the supershear fracture/rupture propagation 56 

(Noda and Lapusta, 2013; Lapusta and Rice, 2003; Lu at al., 2009; Lapusta et al., 2000; Sobolev, 2011; Bak and Tang, 1989; 57 

Harris and Day, 1993). 58 

The faults are continuously subjected to variations in both shear and normal stresses, and can produce sliding over initially 59 

stable fractures or interfaces (Boettcher and Marone, 2004). In the Earth’s crust, the increase in shear stress is an obvious 60 

consequence of tectonic movement, while oscillations in the normal stress can be associated with the tidal stresses or seismic 61 

waves generated by other seismic events. These can generate the second dynamic state when the sliding occurs jerkily (slip, 62 

stick and then slip again). This type of sliding is called “stick-slip” sliding which exhibit cyclic behaviour. Brace and Byerlee 63 

supposed that the stick-slip instabilities in the tectonic plates are associated with the appearance of earthquakes (Brace and 64 

Byerlee, 1966).  Both types of sliding are usually investigated using a spring-block model introduced by Burridge and 65 

Knopoff in 1967 (Turcotte, 1992). The BK model consists of an assembly of blocks, where each block is connected via the 66 

elastic springs to the next block and to the moving plate.    67 

In the present paper, we firstly simulate a single element block model, which is one block undergoing frictional sliding on a 68 

stiff base. The movement is caused by a spring attached to the block. The other end of the spring moves with a constant 69 

velocity. The paper begins with considering stick-slip-like movement occurring under rate-independent friction due to the 70 

eigen oscillations of the fault faces and the associated wave propagation. This demonstrates that the rate dependence of 71 

friction is not necessarily a controlling phenomenon. We also analyse a simple mechanism of unusually high shear fracture 72 

or sliding zone propagation, also referred as the p-sonic propagation of sliding area over a frictional fault. The analysis is 73 

based on the fact that accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in 74 

the velocity of sliding even if the frictional coefficient is constant. We note that Walker and Shearer (2009) found evidence 75 

of the intersonic rupture speeds close to the local P-wave velocity by analysing the Kokoxili and Denali earthquakes seismic 76 

data. This paper considers a highly simplified 1-D rod model where many properties of real fault system have been 77 

neglected. (Considerable fault geometry simplification is in use in analysing intersonic ruptures, e.g., Bouchon et al., 2010.)  78 

 79 



2 Single degree of freedom frictional oscillator 80 

We start with the self-excited oscillations, which resembles the stick-slip-like motion, but occurring under constant friction. 81 

A single degree of freedom block-spring model is used for this purpose. A block sliding on a rigid horizontal surface is 82 

driven by a spring whose other end is attached to a driver moving with a constant velocity (Figure 1). All variables and 83 

constants used in equations are listed below in Table 1. 84 

 85 

Table 1: The list of variables and constants 86 

 87 

Symbol Meaning Symbol Meaning 

V0 load point velocity  τ shear stress 

V relative velocity of block τf friction stress 

k1 single spring stiffness E Young’s modulus 

m block mass c velocity of longitudinal wave (p=wave) 

N gravity force ω eigen frequency 

T shear force k2 the spring stiffness relating stress and 

displacement discontinuity (the difference 

between the rod displacement and the zero 

displacement of the base) 

µ friction coefficient J0 Bessel function of order 0 

ω0 eigen frequency 
0J   derivative of Bessel function 

t time i imaginary unit 

h thickness of an infinite rod ξ independent variable 

ρ volumetric rod density z integration variable 

σN uniform compressive load f, g arbitrary functions 

σ longitudinal stress   

 88 

Friction is assumed to be cohesionless: Tcr=N, where Tcr is the force at which sliding starts.  89 

  90 
Figure 1: The single block model. 91 

 92 

The system of equations representing the motion of the block reads: 93 

 94 

01

( , )

( )

mV f T N

T k V V



 





                 (1) 95 
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In order to represent the system of equations (1) in dimensionless form, it is convenient to introduce a dimensionless time 𝑡∗: 99 
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where 𝜔0 is the eigen frequency of the block-spring system, m is the block mass and k1 is the spring stiffness. 101 

The governing system of equations in dimensionless form is defined as: 102 
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where the dot represents the derivative with respect to dimensionless time  𝑡∗ , and V*, T* and N* are the dimensionless 104 

velocity, shear force and gravity force respectively. 105 
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2.1 Behaviour of the system  107 

In order to demonstrate the behaviour of the system at stick-slip-type regime, we consider the block sliding under the 108 

following set of initial conditions: 109 

(0) 0,  (0) 0V T                 (5) 110 

Figure 2 represents the corresponding behaviour of the system (dimensinless velocity vs. dimensionless time). 111 

 112 
Figure 2: Block sliding with constant friction coefficient. 113 

      114 

It is observed that the system exhibits self-excited oscillations even with constant friction coefficient, which somewhat 115 

resemble the stick-slip-type sliding. Furthermore, the energy in the system does not change with time, obviously due to the 116 

constant energy influx by velocity V0, where the excess of the V0 is dissipated by friction. 117 

A detailed investigation of the behaviour of a system described in a section 2 was undertaken in our previous works 118 

(Karachevtseva et al., 2014; Karachevtseva et al., 2014). ). It should also be noted that similar oscillation-type movements 119 

were observed in laboratory experiments on sliding of two granite blocks under biaxial compression (Sobolev et al., 2016). 120 

 121 

3 Stress wave propagation in frictional sliding (generalisation 1D solid) 122 

In the previous section, we showed the stick-slip-like motion occurring even when the friction coefficient is constant. In this 123 

section we  will expand our understanding to incorporate the slide over a fault where a stick-slip phenomenon is traditionally 124 
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flagged as a mechanism of earthquakes. We shall keep assuming the constant friction law, which will permit us to obtain an 125 

analytical solution.  For this purpose, following Nikitin (1998), we consider the simplest possible 1D model of fault sliding, 126 

which takes into account the rock elastic response and the associated dynamic behaviour. The model is shown in Figure 3. It 127 

consists of an infinite elastic rod of height (thickness) h, and of unit length in the direction normal to the plane of drawing in 128 

Figure 3. The linear density is  and the rod is assumed to be able slide over a stiff surface. The sliding is resisted by 129 

friction. The stiff surface can be described as a symmetry line such that instead of the (horizontal) fault, only the upper half 130 

of the line is considered. The rod is connected to a stiff layer moving with a constant velocity V0. The connection is achieved 131 

through a series of elastic shear springs. Both the elastic rod and the elastic springs describe the model of the elasticity of the 132 

rock around the fault, as shown in Figure 3. We assume that the system is subjected to a uniform compressive load 
N  such 133 

that the friction stress is kept constant, which is  assumed equal to f N const   .  134 

 135 

Figure 3: The model of infinitive elastic rod driven by elastic shear spring. 136 

Equation of movement of the rod reads: 137 
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Where   is the longitudinal (normal) stress in the rod,   is the contact shear stress, f is the frictional stress, V0  is the load 139 

point velocity and V(x,t) is the velocity of point x of the rod at time t, as shown in Figure 3. 140 

According to the Hooke’s law:  141 
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where u(x,t) is the displacement and E is the Young’s modulus of the rod. After differentiating, we have: 143 

V
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The elastic reaction of the shear springs is expressed as: 145 
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where k2 is the spring stiffness relating stress and displacement discontinuity (the difference between the rod displacement 147 

and the zero displacement of the base).  148 

Defining 0V V V    and solving the system of equations (6)-(9), we get the following wave equation: 149 
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where c Eh   is the velocity of the longitudinal wave (p-wave), 
2 ( )k h   is regarded as  eigen frequency of 151 

the system consisting as a unit length of the rod considered as a lamp mass on the shear springs. 152 

It is observed that despite the presence of shear springs and friction between the rod and the stiff surface, the waves 153 

propagate with the p-wave velocity determined by the Young’s modulus and density of the rod. Therefore, according to the 154 

terminology described in the introduction, the wave should be named p-sonic wave. It should be highlighted that while such 155 

waves look like the shear waves, they are in fact compressive waves propagation along the rod, hence denoted as the p-wave 156 

velocity. 157 

In order to analyse the way the pulse propagates, equation (10) is complemented by the initial conditions as: 158 
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         160 

Solution of wave equation (10) can be found by using the Riemann method (e.g., Koshlyakov, 1964). 161 
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The integral from (12) can be found by using the Chebyshev-Gauss method  165 
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 169 

3.1 Propagation of an initial sliding 170 

Figures 3-4 represent the propagation of initial sliding under the different initial conditions. Particularly, a triangular velocity 171 

impulse, equation (16) and zero acceleration were used as initial conditions for Figure 3. As shown in Figure 4, linear and 172 

harmonic functions are used for velocity and acceleration as initial conditions.  173 
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where x is the vector, a, b, c are scalar parameters.  175 



 176 

Figure 3: Propagation of initial sliding in the form of a triangular function f(z) of zero area.    177 

            178 

Figure 4: Propagation of initial sliding with different initial conditions. 179 

It is seen that the initial sliding (impulse) propagating with p-wave velocity keeps its width but the amplitude reduces with 180 

time. It is also observed that as the impulse propagates, it loses energy which goes to increase the energy of shear springs.  181 

4 Discussion 182 

This paper introduced the notion that the frictional movement resembling the stick-slip sliding, which are often observed and 183 

usually attributed to the rate dependence of friction, can be obtained with constant friction by taking into account the 184 

elasticity of the surrounding and its self-oscillations. This understanding is applied to propagation of slip over infinitely long 185 

fault leads to a simple model that predicts that the slip will propagate with p-wave velocity. This conclusion is made under 186 

the assumption of constant (rate-independent) friction. Relaxing this assumption, that is taking into account that  187 
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It is seen that when the sliding rate changes slowly, the propagation speed of rupture c1 can be approximated as: 190 
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Furthermore, it is observed that when the friction increases with the sliding rate, c1 becomes smaller than p-wave velocity. If 192 

the rate dependence of friction is lowered further, the slip propagation can become intersonic. 193 

 194 

5 Conclusions 195 

In this paper, it is shown that the accumulation of elastic energy in the sliding plates on both sides of the fault can produce 196 

oscillations in the velocity of sliding even when the friction is constant. These oscillations resemble stick-slip movement, but 197 

they manifest themselves in terms of sliding velocity rather than displacement. The sliding exhibits wave-like propagation 198 

over long faults. Furthermore, the 1D model shows that the zones of sliding propagate along the fault with the velocity of p-199 

wave (the propagation speed can however be lower if the rate dependence of friction is taken into account). The mechanism 200 

of such fast wave propagation is the normal (tensile/compressive) stresses in the neighbouring elements (normal stresses on 201 

the planes normal to the fault surface) causing a p-wave propagating along the fault rather than the shear stress controlling 202 

the sliding. This manifests itself as a p-sonic propagation of an apparent shear rupture. 203 

 204 
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