
Summary of changes 1 

(Reviewer #1) 2 

First, we would like to thank the reviewer for his interest in our work and for helpful comments 3 

that will drastically improve the paper. As indicated below, we have checked all comments 4 

provided by the reviewer and have addressed necessary changes accordingly to his feedback. 5 

 6 

Below are reviewer’s comments and our responses: 7 

 8 

C1: “There is no "discussion" in the work, where it would be appropriate to discuss in detail the non-9 

linear effects of disturbance propagation obtained in the work and their links to the processes in 10 

nature”.  11 

 12 

R1: The discussion part has been added into the paper. There the non-linear effects are discussed.  13 

C2: In Parts 2 and 3 all the variables and constants used in equations should better be listed once in a 14 

single table instead of repeating the terms in different equations with different meanings.  15 

 16 

R2: We would like to thank the reviewer for this comment. The variables are now listed in Table 1. 17 

C3: In Part 3 the simplest 1D case is considered, so, a disturbance, once emerged, can propagate only 18 

along the rod, and the law of its propagation is defined by the parameters E and ρ, which means that 19 

the disturbance can only propagate at the velocity of p-wave, because no other motion is possible.  20 

 21 

A3: Yes, it is a 1D case, but the shear motion is allowed as well. So, it is not immediately obvious why 22 

it should be just p-wave velocity. To emphasise the point we modified the first sentence in the para after 23 

(9), which now reads “It is seen that despite the presence of shear springs and friction between the rod 24 

and the stiff surface the waves propagate with the p-wave velocity determined by the Young’s modulus 25 

and density of the rod.” 26 

C4: The captions should be revised to make them more substantial, clarifying and informative.  27 

 28 

A4: Thank you for your comment. It has been done. 29 

 30 

Less important remarks:  31 

 32 

C5: “Raw 38. Cohee and Beroza, 1994a → Cohee and Beroza, 1994”  33 

 34 

A5: Thank you. It has been done. 35 

 36 

C6: “Raws 48-49. “However, the faults ... can produce sliding over initially stable 37 

fractures/interfaces” – a citation is needed”. 38 

 39 

A6: Thank you. It has been done 40 

 41 

C7: “Raw 64. The citations should better be replaced by (Brace & Byerlee, 1966)”.  42 

 43 

A7: Thank you.  It has been done. 44 

 45 



C8: “Raw 82, Eq. 2. As a matter of fact, this equation defines the rule of the frictional force action. 46 

When V=0 the frictional force can act on a body only provided that the shear force is not zero. In the 47 

presented system this condition is not true”. 48 

 49 

A8: We agree with the reviewer; it was a misprint.  The system of equations has been corrected. 50 

 51 

C9: “Raw 93, Eq.5. If all the variables are dimensionless, it is unclear, why the relation μN appears? It 52 

misses in the plots presented in Fig.2”. 53 

 54 

A9: Thank you. The Fig. 2 has been replaced.  55 

C10: “Raw 95, Fig.2. Under the action of a frictional force constant modulo, the energy should 56 

dissipate, but it doesn't. This fact should be explained”. 57 

A10: Thank you. This has been added into the paper. Please see below. 58 

 “The energy in the system does not change with time, obviously due to the constant energy influx by 59 

velocity V0 whose excess is dissipated by friction”.  60 

 61 

C11: Raw 105. Fig.2 presents harmonic oscillations, but not the regime of "stick-slip". 62 

 63 

A11: These oscillations resemble stick-slip movement, but they manifest themselves in terms of 64 

sliding velocity rather than displacement. 65 

 66 

C12: “Raw 114. τfr = kμσN. What is k”? 67 

 68 

A12: Wrong formula was used. It has been corrected. 69 

 70 

C13: “Raw 115, Fig.3. There is τf in the figure, but not τfr”. 71 

 72 

A13: Typo was in Eq.6. It has been corrected. 73 

 74 

C14: “Raw 126, Eq.6. It is unclear, what is k – the stiffness of a single spring, of all the springs, or the 75 

specific stiffness of springs per unit length? Attention should be paid to Eq.1, where the same 76 

notation is used”. 77 

 78 

A14: We agree with the reviewer. It has been changed. The details are in the table 1. 79 

 80 

C15: “Raw 129, Eq.9. The formula is presented in a faulty way. If one supposes that ΔV=u is a re-81 

introduced new value, it appears that the increment of velocity equals to displacement, which is 82 

impossible”. 83 

 84 

A15: Awkward notation was used. U was not to be displacement. It has been changed. 85 

 86 

C16: “Raws 137-145. Equations 11-14. All the constants and variables should be clarified”. 87 

 88 

A16: It has been done. Please see table 1. 89 

 90 

C17: “Raw 145. Eq.14. What is the function J0, what are the coefficients i и b, and what is the 91 

difference between the Bessel functions J0 and J0’”? 92 

 93 

A17: i – is imaginary unit; J0 – is Bessel function; J0’– is derivative of Bessel function.   Please see 94 

table 1. 95 

 96 



C18: “Part 3.1. Since the results are presented in the form of time series of dimensional variables, 97 

parameters of the model should be designated, which were used in calculations. The visual 98 

presentation of results is not pictorial enough. To my mind, the grid is too coarse. The dimensionality 99 

of Y-axis is not mentioned”. 100 

 101 

A18: Thank you for suggestion. We have modified the paper structure and data presentation. 102 

 103 

C19: “Raw 152. Fig.3 (right). It is better to plot all the curves using a single X-axis, and one and the 104 

same scale of the Y-axes (may be, it's better to use the logarithmic scale)”. 105 

 106 

A19: Thank you for your suggestion. A confusing figure was used. It has been deleted. 107 

 108 

C20: “Raw 152. Fig.3 (left). Propagation of the disturbance is not seen at all. The Y-axis should be 109 

inverted, or even better, re-calculated for the disturbance when u(t, х) > 0.  110 

The function of pulse shape is specified in a poorly comprehensible way. It's better to give it in a 111 

standard mathematical form”. 112 

 113 

A20: Thank you for your suggestion. The Fig.3 was corrected. A standard mathematical formula 114 

was added, please see equation 15. 115 

 116 

C21: “Raw 155, Fig.4 (left). The disturbance is not seen in the area of big t. The viewing angle should 117 

be changed. No need in the inscriptions in the plot”. 118 

 119 

A21: It has been done. 120 

 121 

C22: “Raw 162, Fig.5. The amplitude of the disturbance is maximal at the initial moment and reduces 122 

with time (raw 158). But, in the figure the amplitude is zero in the range of 0-9 s, then it increases in 123 

the range of 10-14 s, and then it decreases. What really shown in the figure”? 124 

 125 

A22: A confusing figure was used. It has been deleted. 126 

 127 

Summary of changes 128 

(Reviewer #2) 129 

First, we would like to thank the reviewer for his interest in our work and for helpful comments 130 

that will drastically improve the paper. As indicated below, we have checked all comments 131 

provided by the reviewer and have addressed necessary changes accordingly to his feedback. 132 

 133 

C1: “The paper does a poor job of placing the work in a context with previous work that relates fault 134 

slip behavior to elastic oscillations of the rock surrounding the fault. Addressing this comment will 135 

make the paper more readable to a wide earth science audience and place it in better context to other 136 

work that has been done on a similar topic”.  137 

A1:  Thank you for your suggestion. The additional literature review part has been added. 138 

C2: “An application of simple models like the Burridge-Knopoff model and 1D model of an infinite 139 

elastic rod driven by elastic shear spring for the declared purpose should be substantiated in details”. 140 



A2:  The original BK model consists of an assembly of blocks, where each block is connected via the 141 

elastic springs to the next block and to the moving plate.  In the present paper, we simulate the simple 142 

one-dimensional version of BK model, which consists from one block. 143 

Additional details and description of these models were added into the paper. 144 

C3: “The constant friction factor used in the models instead of generally accepted rate-and-state 145 

friction law has to be grounded and supported by lab results and field observations”.  146 

A3: We do not advocate constant friction. We just demonstrated that even with constant friction a stick-147 

slip like behaviour is possible. We now added discussion where we analyse the effect of rate-dependent 148 

friction. 149 

C4: “A discussion section of the manuscript is required for an analysis and comparison of the 150 

numerical results and drawn conclusions with published data obtained under laboratory and natural 151 

conditions”.  152 

A4: We agree with the reviewer. The discussion part has been added. 153 

C5: “Moreover, I realized that the English writing is not good enough, some parts of the text are 154 

difficult for understanding, there are some syntax and spelling errors, and I strongly recommend 155 

reviewing the text by a native English speaker”. 156 

A5: Thank you for your suggestion. This has been done. 157 

List of all relevant changes 158 

1. Discussion part has been added 159 

2. Table 1 has been added 160 

3. The text was modified: “It is observed that despite the presence of shear springs and friction 161 

between the rod and the stiff surface, the waves propagate with the p-wave velocity determined 162 

by the Young’s modulus and density of the rod.” 163 

4. The captions in the paper have been modified 164 

5. Raw 38. Cohee and Beroza, 1994a → Cohee and Beroza, 1994” has been modified 165 

6. “However, the faults ... can produce sliding over initially stable fractures/interfaces” – a 166 

citation is needed”.  Citation has been added 167 

7. “Raw 64. The citations should better be replaced by (Brace & Byerlee, 1966)”. 168 

The citation has been replaced. 169 

8. Equations 1-4 have been corrected. 170 

9. Figure 2 has been replaced. 171 

10. Additional para has been added: “Furthermore, the energy in the system does not change with 172 

time, obviously due to the constant energy influx by velocity V0, where the excess of the V0 is 173 

dissipated by friction”.  174 

11.  “Raw 114. τfr = kμσN. What is k”? Formula has been corrected. 175 

12.  Equation 6 has been corrected 176 

13. Awkward notations were used in eq. 8-14. U was not to be displacement. It has been changed. 177 

14. The paper structure and data presentation have been modified. 178 

15. Figures 1, 2, 3, 4 have been modified. 179 

16. A standard mathematical formula was added, please see equation 15. 180 

17.  Additional literature review has been added. 181 

18.  The references part has been modified. 182 

19.  Additional details and description of present models have been added into paper. 183 
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 192 

Abstract.  Stick-slip sliding is observed at various scales in fault sliding and the accompanied seismic events.  It is 193 

conventionally assumed that the mechanism of stick-slip over geomaterials lies in the rate dependence of friction. However, 194 

the movement resembling the stick-slip could be associated with elastic oscillations of the rock around the fault, which 195 

occurs irrespectiveregardless of the rate properties of the friction. In order to investigate this mechanism, two simple models 196 

are considered in this paperwere considered: a mass-spring model of self-maintaining oscillations Burridge and Knopoff type 197 

(BK model) and a one-dimensional (1D) model of wave propagation through an infinite elastic rodan infinite elastic rod 198 

driven by elastic shear spring.  The rod slides with friction over a stiff base. The sliding is resisted by elastic shear springs.   199 

The results show that the frictional sliding in the mass-spring model generates oscillations that resemble the stick-slip 200 

motioncase of BK model demonstrates stick-slip-like motion even when the friction coefficient is constant.  Furthermore, it 201 

was observed that the stick-slip-like motion occurs even when the frictional coefficient is constant. The 1D wave 202 

propagationrod model predicts that despite the presence of shear springs the frictional sliding waves move with the p-wave 203 

velocity, denoting the wave as intersonicany initial disturbance moves with a p-wave velocity, that is supersonically with the 204 

amplitude of disturbances decreasing with time. It was also observed that the amplitude of sliding is decreased with time.  205 

This effect might provide an explanation to the observed intersonicsupersonic rupture propagation over faults.  206 

1 Introduction  207 

Earthquakes can lead to catastrophic structural failures and may trigger tsunamis, landslides and volcanic activitiesactivity 208 

(Ghobarah et al., 20042006; Bird and Bommer, 2004). The earthquakesThey are generated at faults, and are either produced 209 

by rapid (sometimes ‘supersonic’) propagation of shear cracks/ruptures along the faults, or originated in the stick-slip sliding 210 

over the fault. The velocity of rupture propagation is crucial for estimating the earthquake damage. The Rupture rupture 211 

velocities can be determined classified by comparison its speed with the speeds of stress waves in the rupturing solid 212 

(Rosakis, 2002). There are several types of rupture propagation: supersonic (V>VP), intersonic (VS<V<VP), subsonic 213 

(V<VS), supershear (V>VS), sub-shear (VR<V<VS) and sub-Rayleigh (V<VR). According to the data obtained from of the 214 

seismic observation of crustal earthquakes, most ruptures propagate with an average velocity that is about 80% of the shear 215 

wave velocity (Heaton, 1990). However, iIn some cases, however, supershear propagation of earthquake-generating shear 216 

ruptures or sliding is observed (Archuleta, 1984; Bouchon et al., 2000, 2001, 2010; Dunham and Archuleta, 2004; Aagaard 217 

and Heaton, 2004). The abovese observations gave riseintroduced to the concept of supershear crack propagation (e.g., 218 

Bizzarri and Spudich, 2008; Lu at al., 2009; Bhat et al., 2007; Dunham, 2007).  However,, due to the lack of strong motion 219 

recording there, there is are still some debates regarding to the data interpretation (Delouis et al., 2002; Bhat et al., 2007) due 220 

to the lack of strong motion recording.  For instance, it was suggested that the 2002 Denali Earthquake was propagated at a 221 

supershear speed of about 40 km (Dunham and Archuleta, 2004). This conclusionHowever, the data was based on a single 222 

ground motion record. However, the separate inversion of the individual data sets may provide only a partial image of the 223 



rupture process of an earthquake. The joint inversion of the combined data- sets gives provides a more robust description of 224 

the rupture. The recent studies, which are aimed at deriving the kinematic models for large earthquakes, have shown the 225 

importance of the type of data used. It has been shown that slip maps for a given earthquakes may vary significantly (Cotton 226 

and Campillo, 1995; Cohee and Beroza, 1994a).  227 

The analytical (e.g., Burridge, 1973) and numerical (e.g., Das and Aki, 1977) research in fracture dynamics indicate that only 228 

the Mode II rupture (shear-induced slip occurring in the direction perpendicular to the crack front) can propagate with 229 

intersonic velocity (Vs<V<Vp) for short durations, as long as the prestress of the fault is high compared to both failure and 230 

residual stresses (Dunham, 2007). Intersonic Mode II crack propagation was first confirmed in laboratory by Rosakis et al. 231 

(1999). 232 

Sliding over pre-existing fractures and interfaces is one of the forms of instability in geomaterials. It is often accompanied by 233 

stick-slip – a spontaneous jerking motion between two contacting bodies, sliding over each over. It is assumed that the 234 

mechanism of stick-slip lies in intermittent change between static and kinetic friction and the rate dependence of the 235 

frictional coefficient (Popp and Rudolph, 2004).  236 

The investigation of the friction law on geological faults is the key element in the modelling of earthquakes. Rate- and state-237 

dependent friction laws proposed by Dieterich, Ruina and Rice (Dieterich, 1978; Ruina, 1983; Rice, 1983) have successfully 238 

modelled frictional sliding and earthquake phenomena. These laws were proposed by Dieterich, Ruina and Rice (Dieterich, 239 

1978; Ruina, 1983; Rice, 1983). There are two types of frictional sliding between surfaces that include the, including the 240 

tectonic plates. The first type occurs when two surfaces slip steadily (V=V0 condition, where V - is relative velocity, V0 - is 241 

the load point velocity) and is an analogue analogous to the fault creep (Byerlee and Summers, 1975). In the stable state, the 242 

sliding over discontinuities (faults and, fractures) is prevented by friction. Modelling of the frictional sliding is an important 243 

tool for understanding the initiation and the development of rupture, and also, the healing of the faults. Many models and 244 

numerical methods are developed to describe seismic activities and the supershear fracture/rupture propagation (Noda and 245 

Lapusta, 2013; Lapusta and Rice, 2003; Lu at al., 2009; Lapusta et al., 2000; Sobolev, 2011; Bagk and Tang, 1989; Harris 246 

and Day, 1993). 247 

T However, the faults are continuously subjected to variations in both shear and normal stresses, and can produce sliding 248 

over initially stable fractures or /interfaces (Boettcher and Marone, 2004). . In the Earth’s crust, the increase in shear stress is 249 

obviously aan obvious consequence of tectonic movement, while oscillations in the normal stress can be associated with the 250 

tidal stresses or seismic waves generated by other seismic events. These can generate the second dynamic state when the 251 

sliding occurs jerkily jerkily (slip, stick and then slip again). This type of sliding is calleding “stick-slip” sliding and 252 

haswhich exhibit cyclic behaviour. Brace and Byerlee supposed that the stick-slip instabilities in the tectonic plates are 253 

associated with the appearance of earthquakes (Brace and Byerlee, 1966).  Both types of sliding are usually investigated 254 

using aa simple spring-block model introduced by Burridge and Knopoff in 1967 (Turcotte, 1992). The BK model consists 255 

of an assembly of blocks, where each block is connected via the elastic springs to the next block and to the moving plate.    256 

In the present paper, we firstly simulate a single element block model, which is one block undergoing frictional sliding on a 257 

stiff base. The movement is caused by a spring attached to the block. The other end of the spring moves with a constant 258 

velocity. The paper begins with considering stick-slip-like movement occurring under rate-independent friction due to the 259 

eigen oscillations of the fault faces and the associated wave propagation. This demonstrates that the rate dependence of 260 

friction is not necessarily a controlling phenomenon. We also analyse a simple mechanism of unusually high shear fracture 261 

or sliding zone propagation, also referred as the p-sonic propagation of sliding area over a frictional fault. The analysis is 262 

based on the fact that accumulation of elastic energy in the sliding plates on both sides of the fault can produce oscillations in 263 

the velocity of sliding even if the frictional coefficient is constant. We note that Walker and Shearer (2009) found evidence 264 



of the intersonic rupture speeds close to the local P-wave velocity by analysing the Kokoxili and Denali earthquakes seismic 265 

data. This paper considers a highly simplified 1-D rod model where many properties of real fault system have been 266 

neglected. (Considerable fault geometry simplification is in use in analysing intersonic ruptures, e.g., Bouchon et al., 2010.)  267 

Modelling of frictional sliding is an important tool for understanding the initiation, the development of rupture, and the 268 

healing of faults. Many models and numerical methods were developed to describe seismic activity and the supershear 269 

fracture/rupture propagation (Noda and Lapusta, 2013; Lapusta and Rice, 2003; Lu at al., 2009; Lapusta et al., 2000; 270 

Sobolev, 2011; Bag and Tang, 1989; Harris and Day, 1993). 271 

In this paper, we however concentrate on the stick-slip-like movement occurring under rate-independent friction due to the 272 

eigen oscillations of the fault faces and the associated wave propagation. Also a simple mechanism of unusually high shear 273 

fracture or sliding zone propagation is considered. This is the p-sonic propagation of sliding area over a frictional fault. It is 274 

based on the fact that the accumulation of elastic energy in the sliding plates on both sides of the fault can produce 275 

oscillations in the velocity of sliding even if the frictional coefficient is constant. Brace and Byerlee noticed in 1966 that the 276 

stick-slip instabilities in the tectonic plates are associated with the appearance of earthquakes (Feeny et al., 1998; Byerlee, 277 

1970).  278 

2 Single degree of freedom frictional oscillator 279 

This study We starts with the self-excited oscillations, which which may resembles look like the stick-slip-like motion, but 280 

occurring under constant friction. For this purpose aA single degree of freedom block-spring model is used for this purpose. 281 

A block sliding on a rigid horizontal surface is driven by a spring whose other end is attached to a driver moving with a 282 

constant velocity (Figure 1). All variables and constants used in equations are listed below in Table 1. 283 

 284 

Table 1: The list of variables and constants 285 

 286 

Symbol Meaning Symbol Meaning 

V0 load point velocity  τ shear stress 

V relative velocity of block τf friction stress 

k1 single spring stiffness E Young’s modulus 

m block mass c velocity of longitudinal wave (p=wave) 

N gravity force ω eigen frequency 

T shear force k2 the spring stiffness relating stress and 

displacement discontinuity (the difference 

between the rod displacement and the zero 

displacement of the base) 

µ friction coefficient J0 Bessel function of order 0 

ω0 eigen frequency 
0J   derivative of Bessel function 

t time i imaginary unit 

h thickness of an infinite rod ξ independent variable 

ρ volumetric rod density z integration variable 

σN uniform compressive load f, g arbitrary functions 

σ longitudinal stress   

 287 



Friction is assumed to be cohesionless: Tcr=N, where Tcr is the force at which sliding starts. The system consists of mass m, 288 

spring of stiffness k and a driver that moves with the constant velocity V0.  Friction is assumed to be cohesionless: Tcr=N, 289 

where Tcr is the force at which sliding starts, N is the normal force and  is the friction coefficient.  290 

 291 

292 

 293 

Figure 1: The simple single block model. 294 

 mass-spring model of Burridge and Knopoff type. 295 
 296 

The system of equations representing the motion of the block reads: 297 

 298 
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The appearance of the ( , )f T N  function in the system of equations represents the fact that 0 V  . 300 

The function ( , )f T N  is defined as: 301 
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where m is the mass of block, k is the spring stiffness, V0 is the load point velocity, V is the relative velocity, N is gravity 303 

force, T is the shear force, µ is the friction coefficient. 304 

The appearance of the sign function in the system of equations represents the fact that friction always acts against velocity. 305 

Here function sgn(V) is defined as follows: 306 
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In order to represent the system of equations (1) in dimensionless form, it is convenient to introduce a dimensionless time 𝑡∗: 308 

*

0

2 1
0,    t t

k

m
                    (3) 309 

where 𝜔0 is the eigen frequency of the block-spring system, m is the block mass and k1 is the spring stiffness. 310 

The governing system of equations in dimensionless form readsis defined as: 311 

* *

*

(

1

, )V f T N

T V



 





                    (4) 312 

1

(0) *

(0) (0) sgn( *)

V V

V V

V T V N

 



 





   313 

          (4) 314 

Here where the dot represents the derivative with respect to dimensionless time  𝑡∗ , V T  and V*, T* and N* are the 315 

dimensionless velocity, shear force and gravity force respectively. 316 
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 318 

2.1 Behaviour of the system  319 

under different initial conditions 320 

In order to demonstrate the behaviour of the system at stick-slip-type regime, we consider the block sliding under the 321 

following set of initial conditions: 322 

(0) 0,  (0) 0V T                 (5) 323 

Figure 2 represents the corresponding behaviour of the system (dimensinless velocity vs. dimensionless time). 324 



 325 

Figure 2: Block sliding with constant friction coefficient. 326 

 under different initial conditions leading to the steady sliding and stick-slip-type regimes we assume velocity V >0 and 327 

consider the block sliding under the following two sets of initial conditions: 328 

(0) 1,  (0) ;    (0) 0,  (0)

(0) 1,  (0) 0;         (0) 0,  (0) 0

(0) 1,  (0) ;     (0) 0,  (0)
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      (5) 329 

Figure 2 represents the corresponding two types of behaviour of the system (dimensinless velocity vs. dimensionless time). 330 

       331 

 a)    b)   332 

    333 

Figure 2: Block sliding under different initial conditions. 334 
It is seen thatobserved that the system exhibits self-excited oscillations even with constant friction coefficient, which 335 

somewhat resemble the stick-slip-type sliding. Furthermore, the energy in the system does not change with time, obviously 336 

due to the constant energy influx by velocity V0, where the excess of the V0 is dissipated by friction. 337 

This is a harmonic motion with the frequency is equal to the eigen frequency of the system. The friction coefficient only 338 

affects the initial conditions. In moreA detailed investigation of the behaviour of such a system described in a section 2 was 339 

undertaken in our previous works is investigated in our previous works (Karachevtseva et al., 2014; Karachevtseva et al., 340 

2014). ). It should also be noted that similar oscillation-type movements were observed in laboratory experiments on sliding 341 

of two granite blocks under biaxial compression (Sobolev et al., 2016). 342 

 343 

3 Stress wave propagation in frictional sliding (generalisation 1D solid) 344 
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In tThe previous section, we showeds the stick-slip-like motion occurring even when the friction coefficient is constant. In 345 

this section we  Now this understanding will will expand our understanding to incorporate the be generalised to slide over a 346 

fault where a stick-slip phenomenon is traditionally flagged as a mechanism of earthquakes. We shall keep assuming the 347 

constant friction law, which will permit us to obtain an analytical solution.  For this purpose, following Nikitin (1998), we 348 

consider the simplest possible 1D model of fault sliding, which takes into account the rock elastic response and the 349 

associated dynamic behaviour, shown in Figure 3. The model is shown in Figure 3. It consists of  350 

To this end, an infinite elastic rod of height (thickness) h, and of per unit length in the direction normal to the plane of 351 

drawing in Figure 3.  and linearThe linear density is    and the rod is assumed to be able sliding slide over a stiff surface is 352 

considered. The sliding is resisted by friction. The stiff surface can be described as a symmetry line such that instead of the 353 

(horizontal) fault, only the upper half of the line is considered.though of as a symmetry line, such that instead of the 354 

(horizontal) fault only the upper half of it is considered. The rod is connected to a stiff layer moving with a constant velocity 355 

V0. The connection is achieved through a series of elastic shear springs. Both the elastic rod and the elastic springs describe 356 

the model of the model the elasticity of the rock around the fault, as shown in Figure 3. We assume that the system is 357 

subjected to a uniform compressive load 
N n  such that the friction stress is kept constant, which is ; it is assumed equal 358 

to
fr n const   f N const   .  359 

 360 

Figure 3: The model of infinitive elastic rod driven by elastic shear spring. 361 

 362 

Let the longitudinal (normal) stress in the rod be σ and the contact shear stress be τ, friction stress τf and the load point 363 

velocity V0.   The Eequation of movement of the rod reads: 364 

1
( )f

V

x h t


  

 
  

 
                  (6) 365 

Where   is the longitudinal (normal) stress in the rod,   is the contact shear stress, f is the frictional stress, V0  is the load 366 

point velocity and V(x,t) is the velocity of point x of the rod at time t, as shown in Figure 3. 367 

V(x,t) is the velocity of point x of the rod at time t, Figure 3. 368 

If the Young’s modulus of the rod is E, then According to the Hooke’s law: gives  369 

u
E

x






                    370 

(7),  371 

where u(x,t) is the displacement and E is the Young’s modulus of the rod. After differentiating, we have: 372 



. After differentiating the Hooke’s law is expressed as: 373 

V
E

t x

 


                      374 
(78) 375 

The elastic reaction of the shear springs is expressed through the following equationas: 376 

2 0 ( )k V V
t


 


                   377 

(89) 378 

where k2 is the spring stiffness relating stress and displacement discontinuity (the difference between the rod displacement 379 

and the zero displacement of the base). In the usual way system of equations (6)-(8) produces the wave equation: 380 

Defining 0V V V    and solving the system of equations (6)-(9), we get the following wave equation: 381 

2 2
2 2

2 2
  

V V
c V

t x


   
  

 
                382 

(910) 383 

where c Eh   is the velocity of the longitudinal wave (p-wave), 2 ( )k h   is what can be regarded as  eigen 384 

frequency of the system consisting as a unit length of the rod considered as a lamp mass on the shear springs. 385 

It is seen observed that despite the frictional sliding between the rod and the stiff surface presence of shear springs and 386 

friction between the rod and the stiff surface, the waves propagate with the p-wave velocity determined by the Young’s 387 

modulus and density of the rod. So Thereforeaccording, according to the terminology described in Introductionthe  388 

introduction, the wave should be named p-sonic wave. It should be highlighted emphasizes that while such waves look like 389 

the shear waves, they are in fact compressive waves propagation along the rod, hence denoted as the p-wave velocity. 390 

In order to analyse the way the pulse propagates, equation (910) is complemented by the initial conditions as: 391 

0 0( , ) ( );    ( )
d V

V x t f x F x
dt


                  (11)392 

         393 

          (10) 394 

Solution of wave equation (109) can be found by using the Riemann method (e.g., Koshlyakov, 1964). 395 

1 1
( , ) [ ( ) ( )] ( , , )

2 2

x ct

x ct

V x t f x ct g x ct x t z dz





                    (12) 396 

       (11) 397 

where 398 

2 2 2

1
( , , ) ( , , )

( )
x t z x t z

c t z x
 

 
               399 

(1213) 400 

The integral from (121) can be found by using the Chebyshev-Gauss method  401 
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     (13) 403 

where 404 

2 2 2 2 2 2 2 2 2

0 0

1 1
( , , ) ( ) ( ) ( ) ( ) ( )x t z F z J i c t z x c t z x tf z J i c t z x

c c i c
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                 
     

       405 

(1415) 406 

 407 

 408 

3.1 Propagation of an initial disturbance sliding 409 

Figures 3-5 4 represent the propagation of initial disturbance sliding under the different initial conditions. Particularly, a 410 

triangular displacement velocity impulse, equation (16) and zero velocity acceleration were used as initial conditions for 411 

Figure 3. As shown Finor Figure 4, linear and harmonic functions were are used for displacement velocity and velocities 412 

acceleration as initial conditions.  413 

 414 

 415 

( ; , , ) max min , ,0
x a c x

f x a b c
b a c b

    
   

   
               (16) 416 

where x is the vector, a, b, c are scalar parameters.  417 
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Figure 3: Propagation of initial sliding in the form of a triangular function f(z) of zero area.   disturbance (f (z) = 419 

trimf (z, [0 2]); F(z)=0). 420 

          421 

  422 

a) f(z)=2z; F(z)=cos(z);   b) f(z)=sin(z); F(z)=1+z; 423 

   424 

Figure 4: Propagation of initial disturbancessliding with different initial conditions. 425 

It is seen that the initial disturbance sliding (impulse) propagating with p-wave velocity keeps its width but the amplitude 426 

reduces with time. It is also observed that as Obviously as the impulse propagates, it loosesloses energy which goes to 427 

increaseing the energy of shear springs.  428 

Figure 5 shows the peak of initial disturbance changing with time (here the triangular displacement and zero velocity were 429 

set as initial conditions). 430 
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 431 

 Figure 5: Maxima of initial disturbance. 432 

4 Discussion 433 

This paper introduced the notion that the frictional movement resembling the stick-slip sliding, which are often observed and 434 

usually attributed to the rate dependence of friction, can be obtained with constant friction by taking into account the 435 

elasticity of the surrounding and its self-oscillations. This understanding is applied to propagation of slip over infinitely long 436 

fault leads to a simple model that predicts that the slip will propagate with p-wave velocity. This conclusion is made under 437 

the assumption of constant (rate-independent) friction. Relaxing this assumption, that is taking into account that  438 

( )f f

V

t
 





 leads to the following equation replacing equation (10): 439 

2 2
2 2

2 2

1
1 ,

f

t

d V V V
c V V

h d V t x t
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    
             (17) 440 

It is seen that when the sliding rate changes slowly, the propagation speed of rupture c1 can be approximated as: 441 

1

2 2

1

1
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f

t

d
c c

h d V







 
  

 
                (18) 442 

Furthermore, it is observed that when the friction increases with the sliding rate, c1 becomes smaller than p-wave velocity. If 443 

the rate dependence of friction is lowered further, the slip propagation can become intersonic. 444 

 445 

4 5 Conclusions 446 

In this paper, it is shown that theThe accumulation of elastic energy in the sliding plates on both sides of the fault can 447 

produce oscillations in the velocity of sliding even when the friction is constant. These oscillations resemble stick-slip 448 

movement, but they manifest themselves in terms of sliding velocity rather than displacement. The sliding exhibits wave-like 449 

propagation over long faults. Furthermore, an infinite elastic rod the 1D model shows that the zones of disturbances sliding 450 

propagate along the fault with the velocity of p-wave (the propagation speed can however be lower if the rate dependence of 451 

friction is taken into account). The mechanism of such fast wave propagation is the normal (tensile/compressive) stresses in 452 

the neighbouring elements (normal stresses on the planes normal to the fault surface) causing a p-wave propagating along the 453 

fault rather than the shear stress controlling the sliding. This manifests itself as a p-sonic propagation of an apparent shear 454 

rupture. 455 
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