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Abstract.	We develop an eigenvector analysis method to locate the centroids of geological structures of full tensor gravity 10 

gradient (GGT) data. Although the boundary detection method for Bouguer gravity and CGGT (curvature gravity gradient 

tensor) has been widely discussed and applied, the source location method for GGT data remains an area of active research. 

In this paper, we first discuss the theoretical basis and physical meaning of the eigenvector analysis on GGT data, and then a 

new source centriod location method is derived.  The proposed method uses eigenvector analysis to extract the source 

centroid information. The interference of multiple and overlapping sources and the parameter identification related with the 15 

multiple scales of the GGT eigenvector analysis are presented in the theoretical and experimental sections. Finally, the 

proposed method is applied to synthetic and field data.  

1 Introduction 

A gravity survey can reflect the response of density contrasts in the subsurface, such as high-density mineral deposit, or low-

density oil deposit, with respect to the host or country rock. The gravity gradient anomaly as defined here is an anomalous 20 

response with respect to the background at the particular scale and magnitude of interest. For example, in geotechnical 

applications, a mass deficit due to a mine would result in a short-wavelength negative anomaly with respect to background 

geological signal of larger wavelength.  Conversely, a mass excess due to an ore body would produce a positive anomaly 

imprinted on the background tectonic/geoid-based signals. Location of source positions is critical in the interpretation of 

gravity gradient data, which has been widely used in mineral exploration and resource surveys (e.g. Dransfield 1994; 25 

Mikhailov et al., 2007).  Various source detection methods for Bouguer gravity anomaly data, such as the derivative filter, 

analytic signal and others, have been proposed to delineate the outline of a geologic target and provide vital information for 



2 
 

data interpretation (Gordell 1989; Wijns et. al., 2005; Li 2006; Cooper and Cowan 2006; Foks 2013; Ma and Li 2012; 

Phillips 2015;).  

In recent years, gravity gradient tensor (GGT) measurement devices and methods have been widely researched (e.g. 

Pedersen and Rasmussen, 1990; Zhdanov et al., 2004; Fedi, et al., 2005;Dransfield, 2010; Beiki et al., 2011). Various 

platforms, such as airborne, ground, and satellites have been utilized for GGT data observation. Although, there are many 5 

boundary delineation methods that perform well in the user coordinate system for potential fields, recent research (Li, 2015) 

shows that rotation of the coordinate system can reveal additional information in GGT data, especially when choosing the 

new coordinate system via eigenvector analysis. Pedersen and Rasmussen (1990) introduced eigenvector analysis on the 

gradient tensor of potential field data and derived the relationship between the eigenvalues and eigenvectors of the potential 

field source parameters. Beiki and Pedersen (2010) combined Euler deconvolution and the eigenvector analysis to estimate 10 

the depth of the geological body. Sertcelik and Kafadar (2012) suggested that the eigenvalues of curvature gravity gradient 

tensor (CGGT) could be used to detect the edges and corners of a subsurface source, while Oruc et al., (2013) applied the 

CGGT eigenvalue analysis on a complex field data interpretation application. Zuo and Hu (2015) proposed the eigenvalue 

analysis method for GGT data incorporating signal normalization. In addition to these eigenvalue methods, Cevallos (2016) 

proved that using tidal tensor theory to analyze the equipotential surface can, to some extent, reach an equivalent result to the 15 

eigenvalue analysis method.  

Although the utility of eigenvalues of GGT data for boundary detection performs well on source boundary detection as 

discussed in previous papers, the corresponding eigenvector analysis for locating the source centriod position has not been 

presented.  Identifying the source position has important utility not only in geologic applications, but also in environmental, 

time-lapse, and engineering applications as well.  In this paper, we apply eigenvector analysis on GGT data to locate the 20 

source centriod positions. The relationship between the proposed eigenvector analysis method and the source parameters is 

developed in detail. Unlike previous Bouguer gravity anomaly boundary location methods that mainly indicate edges and 

CGGT methods that detect the corners, the proposed method is designed to locate the centroid of sources while functioning 

even when sources overlap. In the experimental section, both synthetic and field data sets are used to illustrate the 

effectiveness of the method.  25 

2 Eigenvector analysis of GGT 

The gradient of the gravitational field, T, can be written in the form (Eq. (1)): 
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where   Φ ij
= (i = x, y, z; j = x, y, z; )  denotes the elements of the symmetric gravity gradient tensor. We assumed that the 

gradient tensor is decomposed as:V 'TV = Λ , where V = [v
1
 v

2
 v

3
]  is the eigenvector matrix and Λ=diag[λ1, λ2, λ3] is the 

eigenvalue matrix. Eigenvalue and eigenvector decomposition has been described in many textbooks; we use the notation as 

described in Anton and Rorres (2000). Pedersen and Rasmussen (1990) suggested the eigenvalue decomposition algorithm 5 

for gradient tensor data, and expressed the relationship between the eigenvalue decomposition and coordinate system 

rotation. Dransfield (1994) proposed a method that rotates the coordinate system around the z-axis with a rotation transform, 

and Cevallos (2016) introduced the expression of the eigenvector obtained from 3-D tensor data as Eq. (2) shows: 

v i =

Φ xyΦ yz − Φ xz (Φ yy − λi )[ ] Φ xzΦ yz − Φ xy (Φ zz − λi )[ ]
Φ xzΦ yz − Φ xy (Φ zz − λ i )[ ] Φ xzΦ xy − Φ yz (Φ xx − λi )[ ]
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Eq.(2) is theoretically derived from the classical matrix eigenvector decomposition method, and the numerical calculated 10 

results are equivalent. Pedersen and Rasmussen (1990) illustrated that the eigenvector v1  (corresponding to the largest 

eigenvalue λ1 ) display a relationship between the observer and the source. They deduced the relationship based the classical 

gravity gradient forward equation with a 3D point mass model. Their deduced result shows that the eigenvector v1  indicates 

the direction from the observer to the point source ( v1 = (x ', y ', z ') R , where R  is the distance between the point source and 

observation point). Although the practical geological structure is much complicated than a mass point, it can be considered 15 

as a combination of many point mass cells, and the eigenvector of these sets of cells contains the location information of the 

total anomalous source. Beiki (2010) suggested that the eigenvalue decomposition could be considered as an equivalent 

point source method for a causative gravimetric body. Li (2015) presented theoretical and practical aspects related to the 

eigenvectors and rotations of the gravity gradient tensor. Li (2015) suggested that the rotation of the coordinate system 

aligned with the source direction will lead to the diagonalization of a gravity gradient matrix (in the absence of noise, the 20 

gradient matrix is symmetric positive-semidefinite). The magnitude of 
xyΦ ,  Φ xz

 and  Φ yz
 will be much smaller than the 
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diagonal terms after the transforms. He also discussed the necessity of performing such a spatially-dependent coordinate 

rotation to accurately calculate curvature. 

For every observation point, we assume that the eigenvector v1  is unique, and the diagonalization can be applied for local 

GGT data matrix effectively. Physically, the diagonalization of the GGT data matrix can reduce the value of 

components 
xyΦ ,  Φ xz

 and  Φ yz
. The eigenvector decomposition on every single observation data point can extract the 5 

correct source centroid position direction, and this procedure will not be influenced by complex geological structure and 

noise.  

In this paper, we propose the source location method according to the position vector of the equivalent source with 

eigenvector analysis. The position vector contains the rotated angle φ  and the horizontal vector r . As Fig. 1 shows, angle φ  

rotates along the z-axis with eigenvector decomposition. Physically, the essence of the eigenvector analysis is to decompose 10 

GGT data into two parts – the eigenvector dataset related with the source position, and the eigenvalue data set is related with 

the anomalous intensity of the source. The eigenvector in every observation position ( v1 (x ', y ', z ') ' ) is a unit vector that is 

directly points to a source centroid, while the eigenvalue data sets contain magnitude information of the source. For example, 

changing a point source density can result in a different eigenvalue, but the eigenvector will not be changed. In this paper, 

we utilize the eigenvector v1  to measure the source centroid position from every observation point in observation plane. The 15 

angle φ  is used to measure the position direction along the z-axis. It is the complementary angle between the vector v1  that 

points to the source centroid and the vertical z-axis. In other words, for every observation data point, the eigenvector 

transform can be considered as a rotation from z-axis to z’-axis. r   is the horizontal vector of the equivalent source to the 

observation point in a rotated horizontal plane, while r  is the horizontal magnitude of the eigenvector in the horizontal 

plane. The rotated angle φ  can be identified according to the eigenvector v1 . 20 

As Fig.1 shows, if the buried source is immediately below the observation point, then the angle φ  will reach the maximum 

value (π / 2  radians) and r  will equal zero. Thus, the rotated angle φ  indicates the actual source direction from the 

observation point. We propose to utilize the angle φ  and vector r  to indicate the centroid and the profile of the equivalent 

sources.  

The eigenvector v1  can be calculated from the gravity tensor components directly (Eq. (2)); this eigenvector should be unit 25 

vectors. However due to systematic and random errors, usually eigenvectors v1  calculated in this manner are not unit 

vectors. Therefore, we apply a balance operator n(⋅)  on v1  to reduce it to a unit vector. According to Eq. (2) and above 

analysis, we locate the source centroid and the outlines by using tanφ  and r , as in Eq.(3) 
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tanφ = n Φ xyΦ yz − Φ xz (Φ yy − λ1 )( ) Φ xzΦ xy − Φ yz (Φ xx − λ1 )( )( ) r

r = n Φ xzΦ yz − Φ xy (Φ zz − λ1 )( ) (Φ xyΦ yz − Φ xz (Φ yy − λ1 )) + (Φ xzΦ xy − Φ yz (Φ xx − λ1 ))( )( )
，

                                               (3) 

Briefly, tanφ  can be also expressed as tanφ = v̂1
z (v̂1

x + v̂1
y ) . From the view of the eigenvector, if there exists only a single 

point source, r  will equal 0 at the position of source centroid in the observation plane.  Since v1  is a unit vector, z’ (Eq. (2)) 

will nearly equal 1 and tanφ → ∞ . As is known, in practical data processing and interpretation, the sources are 

inhomogeneously distributed in all directions, and multiple sources commonly overlap one another, so the modulus of vector 5 

r  when directly over the source will not exactly equal 0. tanφ  will present a relative large value above the centroid of 

sources on observation plane. With the considering of negative and positive anomaly in data, we add the vertical gravity data 

Φ z  in and define GTA (Gradient Tensor Angle) as expressed in Eq. (4): 

GTA = Φ z * tanφ⎡ ⎤ββ，
                                                                                                                                                       (4) 

where Φ z = ∂U ∂z . Φ z  is the spatial change rate of gravitational acceleration in the vertical direction. Although Φ z  10 

commonly is not directly measured in GGT survey, it can be calculated by using the measured vertical gravity gradient (Φ zz ) 

and regional ground gravity data (Dransfield, 2010). 

Small sources, or inhomogeneous distribution of a source can present some small local tanφ  peak values. ⋅⎡ ⎤ββ  is design for 

filtering out these local small values. The filter threshold parameter β  can be automatically identified, as in Eq.(5)  

β = arg max
β i

∂(PeakNum(β i )) ∂β( )

where   β i ⊂ min(tanφ), max(tanφ)[ ]，
                                                                                                                             (5) 15 

where PeakNum(⋅)  is the function to calculate the number of the local peak values in  tanφ . The anomalous values of noise 

and small sources have large distances with the values of primary anomalous sources in tanφ . So the parameter β  can be 

identified by measuring the change tendency of the number of different local peak values in  tanφ .   

GTA is designed for mapping the source centroids position on the observation plane. The direct physical meaning can be 

derived from the quantity tanφ . φ  is the complementary angle between the vertical z-axis and eigenvector v1 , which is the 20 

vector from observation point to the sub-surface source centroid. A large angle φ  will result in a large value of GTA. A peak 

GTA value indicates that there is the position of a source centroid. A relatively large peak GTA value indicates the centroid 

of a large anomalous source, while a small peak represents the centroid of a relative small local anomalous source. 

According to Eq. (4), GTA value dramatically decreases with the distance increasing from the centroid position. 
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The value of tanφ  will decay dramatically with an increasing |r|. In the multiple source condition, the GTA value of at every 

source centroid position will be influenced by others sources. It will not reach an infinitely large value, but it still relates with 

the mess of the source strongly. To proving this point, we deduce the following analysis on the basis of Eq. (4) 

Assuming there is a point source s1  and its horizontal direction vector is rs1  ( rs1 → 0 ), we add another similar point source 

s2  nearby in the same plane. This action produces an eigenvector calculation value change ( rs2
d ) for rs1 . Then, the horizontal 5 

direction vector of s1  can be expressed as rs1 ' = rs1 + rs2
d , where rs2

d  (0< rs2
d <1, rs2

d << rs1 ). Then according to Eq.(3), the 

tanφ  of source s1  at the centroid position can be expressed as: 

tanφs1
' =

1− rs2
d

rs1 + rs2
d

，

                                                                                                                                                          (6) 

As Eq.(6) shows, with the rs2
d  added in the calculation of Eq. (3), tanφ  will not reach infinitely large values.  

Considering a condition of sources overlapping, a relatively large anomaly source s3  and a small anomaly source s4  with 10 

horizontal vectors rs3 , rs4 ( rs3 → 0 , rs4 → 0 ), respectively. We overlap source s4  on the source s3 . The horizontal and 

vertical distance between the equivalent points of , s4  are h and d. With the sources overlapping, the fields interfere with 

each other. Assuming rs3
b  and rs4

b  ( m ⋅ rs4
b = rs3

b ,  rs4
b ≪ rs3

b ) are the horizontal distance changes of rs3  and rs4  while the two 

sources are overlapped.  Then the ratio of tanφ  for source s3 ,  s4  can be expressed as: 

tanφs3

tanφs4

=
(1− rs3 − rs3

d )( rs3
d + m rs3

d )

( rs3 + rs3
d )(1− rs3

d − m rss
d )

≈ m
，

                                                                                                                        (7) 15 

According to Eq. (7), in the overlapping condition the tanφ  of the two sources does not interfere with each other 

dramatically, the tanφ  ratio of them still is equal to value m approximately.  Both the local maximum values of weak 

anomaly sources and strong anomaly sources can be easily located.  

3  Experiments 

3.1 Synthetic Experiments 20 

In this section, the performance of the proposed method is tested with synthetic data. The selection of the scalar parameter 

( β ) is discussed in detail in the field example.  

Considering the multiple-source scenario, we design a synthetic model that contains nine sources which are distributed in 

s3
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different depths, as shown in Fig.2. The depth to the top of the nine sources ranges from 1km to 2.6km, each with equal 

depth extents of 0.2km. The density contrast of each source is 0.3 g/cm3. There are 200x200 observation points involved in 

this experiment, and both x-y direction lateral extent of this synthetic model are set as 100m. The data are simulated as a full-

tensor gradiometer response observed at ground. 

The vertical gravity data Φ z  and the tensor component Φ zz  are shown in Fig.3 with a 0.1km spaced observation grid. We 5 

calculate GTA according to Eq. (4) with β  =10 (Fig. 4). The value of β  is identified according to Eq. (5). 

As Fig.4 shows, although there are multiple sources and the anomalies are weak for the deep sources, the result of GTA is 

not obviously influenced by this complexity. The GTA value at the centroid of the 1st (shallowest) source reaches a value of 

73.0557, while the GTA value at the centroid of the 9th (deepest) source is 8.673. This GTA map shows all of the centroids of 

these sources with high precision.  10 

To test the stability and robustness of the GTA map with noise, we add Gaussian noise with a standard deviation equal to 30% 

of the max magnitude of the tensor components to all of the gravity gradient components. The data added noise and the 

output GTA map are shown in Fig.5. 

As Fig. 5 shows, there is obvious noise in the tensor data (Fig.5), but the source centroid location results (Fig. 6(a)) are the 

same as the GTA map produced by the clean data (Fig. 4(a)). The noise interferences that show in the contour map (Fig. 6 (b)) 15 

mainly come from the product of the vertical gravity data (Φ z )(Eq. (4)), which are not amplified in the GTA map calculation. 

In practice, the sources are distributed in various depths and may overlap each other. Here we design another synthetic 

model to test the performance of the GTA method in this condition. The deeper source (label A) is buried at a depth of 2km 

with depth extent 1km. Two shallow sources (label B and C) overlap on the top of source A with a depth extent of 0.2km. 

The three sources are joined with each other, so these synthetic models can alternatively be considered as one whole source 20 

with an undulating upper surface. The 3D view, the plan view and the Φ zz  data of the synthetic model are shown in Fig. 7.  

The gravity gradient anomaly shown in Fig. 7(d) is simulated based on a 0.1 km regular grid, and the gradients of the 

synthetic model are derived according to the formulas that were proposed by Cooper (2006). We calculate the eigenvector 

v1 , and then locate the source centroids (Fig. 8) with the GGT data using Eq.(3) and Eq.(4). 

Numerically, the values of tanφ  are related to the source size--larger sources will show larger tanφ  values. The tanφ  value 25 

of the primary source (label A) is 8290, while the other sources are 1245 and 1109 (label B and label C), respectively. As we 

analyze in Eq.(6), a single source may produce a large value tanφ , if it is less influenced by other sources.  From an 

alternative perspective, the largest tanφ  value ( tanφ =8290) can be considered as the calculation result of the aggregate 

model (all three blocks). With decreasing threshold value β , more and more details of the buried sources are shown in the 

GTA map. It may be difficult to encapsulate the centroids of such varied sources with one GTA map; however, a series of 30 

maps (Fig. 8) with different threshold values will show the centroids of varying sources.    
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3.2 Field data experiment 

In the field data experiment, we apply the proposed method to a high-resolution airborne gravity gradient dataset over 

northeast Iowa and southeast Minnesota, U.S. (Drenth, et al., 2015). This GGT data is collected by FTG-003 Full Tensor 

Gradiometer (FTG) system in 2013. The survey contains 94 east-west traverse-flying lines in 400 m apart. The field data 

were acquired with an 80m nominal flight height and subsequently terrain corrected (2400kg/m3). The GGT data contain 5 

481x481 observation points in the study region. The Φ z  and Φ xy  gravity gradient components and the Proterozoic 

geophysical interpretation map (Drenth et al. 2015) of the survey area are shown in Fig. 9 and Fig. 10. 

In the center of the survey area, there exists an obvious low-density source (unit Ysp in Fig.10). Drenth et al.  (2015) 

interpreted the geophysical characteristics of it as a silicic pluton. They suggested that the large-amplitude gravity response 

of the Decorah complex has notable geophysical similarities to Keweenawan alkaline ring complexes. In this paper, we 10 

apply the GTA method on this data set with the various β  parameter selections. The results are shown in Fig. 11.  

In this experiment, the value of tanφ  map distributes in the range of [0,1.472e+03]. While the vertical gravity data (Φ z ) 

contains both positive and negative anomalies within the numerical range of [-18, 21](mGal/km). As Fig. 11 shows, the GTA 

locates the centroids of positive and negative causative sources of varying scales simultaneously. With a smaller threshold 

value ( β <=80), Fig.11 (a)-(d) locates Proterozoic and part of Decorah complex source centroids in detail. While using the 15 

larger threshold value ( β  >160), the results indicate the centroid position of the primary sources in the survey area, as Fig. 

11 (e)-(k) shows. The results show that there are 5671, 329, 82, 20, 4 peak values display for the parameter Beta set as 10, 40, 

80,160 and 320, respectively. The number of local relative small peak value (e.g. 5671 for Beta>10) is much larger than the 

overall peak value (e.g. 4 for Beta>320). With the value of Beta increasing, the centroid positions of larger sources start to 

appear in GTA map, while the small sources, or noise are filtered out gradually. By increasing the value of β , the proposed 20 

eigenvector analysis method will become more insensitive to the presence of noise. Both of the lower density unit Ysp and 

the higher density gabbro of the Decorah complex can be well located in this procedure. 

The parameter β  is identified according to Eq.(5) to local the primary anomalous source centroids. We also display the 

procedure of this strategy with this field data, as shown in Fig.12. 

The index of the β  parameter is incremented in powers of 2. As shown in Fig.12, the maximum curvature is reached at 25 

nearly 80, which is coincident with the experimental results in Fig.11(e) that shows the detail source centriods that are 

related with the primary sources. With a β  value larger than 128, the number of detected sources is less than 10, and these 

points are mainly indicators of the position of the two primary source centroids.  

In addition, a lower bound for the β  parameter can be identified via data resolution--if the approximate depth to sources of 

interest is known, minimum resolvable feature width can be used to place a lower bound on the parameter. For example, in 30 

this experiment, the Proterozoic features of interest are at approximately 500 meters depth; therefore features smaller than 
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approximately 750 meters to a kilometer are not resolvable. So the distance between the detected source centroids should not 

be less than 750 meters. According to this standard, the parameter β  should be set equal or larger than 80 for outputting 

credible results.  

3.2.1 Comparison with alternative source location algorithms 
We compare the proposed algorithm with another GGT data source detection algorithm NGTE, and the usual Bouguer 5 

gravity data boundary detection algorithms on Φ z  data, such as Tilt Angle (Miller & Singh, 1994), as Fig.13 shows. 

As Fig. 13 (a)-(d) shows, although many of the methods commonly show good performance on the Bouguer gravity anomaly 

data processing, they are not designed for the GGT data. Fig.13 (f) shows the tanφ  map that is defined in Eq.(3). For 

visibility, the maximum value is limited to 12. This map shows that there is a huge negative-density source (Ysp) in the 

centroid and the positive-density sources comprising the Decorah complex in the southern direction.  10 

Conclusions 

We have introduced a new method to locate the centroids of sources for full gravity gradient tensor data across different 

scales. Based on the eigenvector decomposition of GGT data, we describe the theoretical basis and derive the procedure of 

the proposed method in detail. In the context of realistic source geometries, the interference of multiple sources has been 

specially discussed.  We use two different synthetic models to demonstrate the efficacy and robustness of the method in the 15 

presence of multiple, overlapping sources with noise.  These synthetic experiments also demonstrate the insensitivity of the 

method to the amplitude of the anomaly, working effectively even for weak anomalies. 

We applied the technique to a field GGT dataset from northeast Lowa to test the proposed method, and two strategies to 

choose the scale parameter were derived and discussed in detail. The proposed method locates centroid positions of sources 

in varying scales, for both positive and negative anomalies. Compared with conventional potential field data methods, our 20 

proposed method utilizes more dimensions and information that are contained in GGT data, and provides a clear map of the 

buried source bodies.  This method is essentially based on an eigenvector analysis, so individual small sources or random 

noise do not interfere significantly with the result. However, like other detection methods it is also difficult to clearly detect 

individual small sources, which is an area of future research.   

Ultimately, the proposed method is feasible and reliable to locate source centroids with full gravity gradient tensor data, even 25 

in areas where the sources overlap.  This can be used as an effective tool for geological interpretation, locating the positions 

of exploration wells, or in seeding 3D density inversion algorithms (e.g. Uieda and Barbosa,2012). 
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Fig.1: The coordinate rotation and angles. 
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                              (a)                                                                       (b)	

Fig. 2: The synthetic model with nine sources (a) 3D view; (b) plan section view. 

 	
                                    (a)                                                                              (b)	5 
Fig. 3: (a) The vertical gravity data of the model given in Fig. 2; (b) Φ zz  tensor component. 

 

  	
                              (a)                                                                              (b) 
Fig.4: (a) GTA map (Locating the centroids of sources) of simulated data in Fig.3; (b) Contour map of Figure (a). (The dash line 10 
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indicates the edge of synthetic model.) 
 

 
                                     (a)                                                                              (b) 
Fig. 5:  (a) The vertical gravity data ( Φ z ) of the model given in Fig. 2 added 30% noise; (b) Φ zz  tensor component added 30% 5 
noise. 
	

 
                                     (a)                                                                              (b) 
Fig. 6: (a) GTA map  (Locating the centroids of sources) of simulated data in Fig.5; (b) Contour map of Fig.6 (a) . 10 
 



14 
 

	
                                  (a)                                                                (b)	

	
                                             (c)                                                                            (d)	
Fig. 7: The synthetic model and associated vertical gravity data; (a) 3D view; (b) Plain view; (c) Cross section view; (d) Φ zz  tensor 5 
component. 

			 	
                                         (a)                                                                                 (b)	
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                                              (c)                                                                              (d)	

	 	 	
                                        (e)                                                                             (f)	
Fig. 8: The GTA maps (Locating the centroids of sources) using the synthetic model in Fig. 7, and the corresponding contour maps; 5 
(a) GTA map with β = 200 ;(b) Contour map of Figure (a); (c) GTA map with β =1200;(d) Contour map of Figure (c); (e) GTA 

map with β =2000 ;(f) Contour map of Figure (e). 
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          (a)                                                                 (b) 

Fig. 9 (a) The Φ z  data with terrain corrected using a density of 2400 kg/m3. (b) Φ xy  tensor component.(1E = 0.1 mGal/km, 1Gal= 
1cm/s2); 
 5 

 
  



17 
 

Fig. 10 The interpretation of Proterozoic geology;   (Drenth et al., 2015);  
	

	
                                    (a)                                                                                  (b)	

	5 
                                      (c)                                                                                 (d)	

	
                                      (e)                                                                                    (f)	
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                                     (g)                                                                                  (h)	

	
                                      (j)                                                                                   (k)	
Fig. 11 The GTA maps and contours map with different β  values; 5 
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Fig. 12  Identification of Parameter β ; 
 

	
                                     (a)                                                                                (b)	5 

	
                                     (c)                                                                                 (d)	
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                                      (e)                                                                                 (f)	
Fig.13:  (a) Analytic Signal; (b) Horizontal Gradient; (c) Theta map; (d) Tilt Derivative; (e) Tilt Angle; (f) tanφ  (Eq.(3)); 
 


