

Interactive comment on “Full-tensor gravity gradient eigenvector analysis for locating complex geological source positions” by Boxin Zuo et al.

Boxin Zuo et al.

boxzuo@163.com

Received and published: 2 March 2017

Reply: The purpose to introduce ΦZ in GTA is to distinguish the negative and positive anomaly in a data. As Fig.13 f. shows, $\tan\varphi$ will always be a positive value. To distinguish both of the negative and positive source in GTA, we added ΦZ in. We did not design GTA as an amplification filter of ΦZ . Because the numerical rang of $\tan\varphi$ is relatively very large. For example, in field data experiment, $\tan\varphi$ in the rang of [0,1.472e+03]. While ΦZ in the range of [-18,21] which nearly 1% of $\tan\varphi$. The main contribution of ΦZ is identify the anomaly is positive of negative at a corresponding position. Yes, $\tan\varphi$ is used to local the centers of sources. But the edge information is also extracted from $\tan\varphi$. $\tan\varphi$ display a peak value at the source center, and it will also display as a relative small value which in the position nearby the source centers. So we utilize these small $\tan\varphi$ values to delineate the contours of sources. Yes, ΦZ

provides more detail information of source than Φ_z . But in this research, for the goal of distinguishing the negative and positive source, Φ_z can provide enough information. Thanks for your valuable suggestion, in further research, we want add Φ_{zz} in and utilizes it to extract more detail source information.

Interactive comment on Nonlin. Processes Geophys. Discuss., doi:10.5194/npg-2016-75, 2017.

Interactive
comment

[Printer-friendly version](#)

[Discussion paper](#)

