
Responses to the Comments made by Referee #2

Ranil Basnayake, Erik Bollt, Nicholas Tufillaro, Jie Sun, and Michelle Gierach

April 29, 2017

We thank the reviewer for valuable comments. We highlighted the changes in the revised version
of the manuscript using a blue font.

Referee #2: The paper is overall well-written and describes how to deal with an important problem
when using remote sensing data, especially for using infrarred and visible frequencies for satellite
imagery, that of striping. The paper presents a method which is able to diminish and correct the
impact of striping.
Response: Thank you for providing positive comments about our work.

Referee #2: Despite some minor grammar and orthographic errors, the paper is well-written,
explains the problem clearly, presents the method in a clean manner and provides a sufficient
amount of details of it.
Response: We agree, our original version had grammar and orthographic errors. Hopefully the
current version is free of those errors. We have highlighted the corrections in blue in the revised
version.

Referee #2: My only real concern with this paper is its suitability for Nonlinear processes in
geophysics, as no nonlinear geophysical process is described in all the paper, just a processing
technique (interesting as it is).
Response: We considered NPG as a suitable outlet for our paper especially because of the jour-
nal’s statement that “The editors encourage submissions that apply nonlinear analysis methods
to both models and data.” In this regard, we feel that our paper makes a good candidate for
this journal. In addition, this paper concerns a data issue regarding remote sensing in the field
of geoscience. Both referees have responded positively to this paper, and we believe the general
readership will as well. Therefore it is our opinion that experimental issues related to the theme
of the journal are a good topic for publication here, and we hope the editor and referees will agree
with this point.

Some minor comments:

Referee #2: How is the direction of stripes identified in general?
Response: The stripes are due to details of the optical sensor on board the satellite camera.
Therefore the exact alignment of this cause of the stripes is well known by the known orientation
of the satellite.

Referee #2: What happens if the stripes contain valid information, i.e., there is an offset and/or
a rescaling? Shouldnt they be consider, after readjustement?
Response: This a good question. If an actual stripe contains valid information, we are not able
to do any readjustement in our destriping model. On the other hand, if the real data appears as
a stripe, then the question can be broken into two parts.
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1. If there is a road, or any real signal that is exactly aligned with axis of the known stripes
biased in a part of the image (assume that we have a part of the image with only biased
data). In this case, we can destripe the image by defining the weight matrix L, considering
a piece of image that does not have the horizontal road. We have added an explanation in
page 3 for that.

2. If there is a road, or any real signal that is exactly aligned with axis of the known stripes
biased in the complete image. Then they would be in danger of being regularized to disappear
in a smooth denoised image and our only current protection agains this is the unlikeliness
that a perfectly straight road would be both straight for long stretches, and furthermore
straight and aligned with the sensor error. If this were deemed a general problem however, a
mask to de-emphasize the regularization spatially could be developed in the regularity term
at spatial locations where there is a known mapped road or other perfectly straight feature.

Referee #2: 1) Eq. 9 has more undetermination that just a constant value: any function in the
kernel of the operator Dxx + αLDyy can be added to a solution and will yield a new solution. In
fact, the point is that the matrix A is non-invertible. This is connected with the discussion on
condition numbers in Section 2.3, but prior to go directly to discuss any regularization I think this
point deserves some comments.
Response:This is an excellent comment. We’d like to clarify that even though the matrix A
appears non-invertible, with a non-empty kernel, in this work we have imposed “reflexive” bound-
ary conditions parallel to the stripes and “zero” boundary conditions transverse to the stripes
which makes A a full-rank matrix, thus leading to uniqueness of solution. This important issue is
now explicitly discussed on page 4, (1) last sentence of the first paragraph, (2) in the paragraph
immediate above Section 2.1.

Referee #2: 2) The issue is significant for instance on page 7, when developing the U-curve
method, as one important parameter is the minimum non-zero singular value. How do you decide
that some value is non-zero for a given numerical precision? A threshold is for sure used, and the
point should be clarified, explaining in particular this choice.
Response: Thank you for raising this question and it helped us to provide correct notations for
the definition of U -curve method. We have changed the notations in Eq. (11), Eq. (12) and 5th

line in page 6. In this computation, we used 10−12 as the smallest value in the selection interval
of α. In this way, we can give the threshold for the smallest singular value to be larger than 10−18

as we can find an appropriate α ∈
(
σ

2/3
r , σ

2/3
1

)
.

Referee #2: 3) Chorophyll images are not as smooth as claimed, chlorophill concentration being
very intermitten. Even SST present strong frontal zones that break smoothness. Along fronts they
are indeed smooth, but not across fronts, so anisotropy is a key ingredient. Some problems may
arise with the parte of the front that is eventually aligned with the stripe direction. Please comment
the issue.
Response: We agree that the images are not always smooth and hence the computation of S
curve may be affected by non-smoothness of the images. In this case, we should not pick the whole
image to compute the S curve, but an image segment that is smooth enough to identify the stripes
from the S curve. We have explained it in second paragraph of Section 3.2 (page 11-12).
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Referee #2: 4) The absolute percentage error on page 10 is not correctly defined, as referring
to a value with a conventional origin is meaningless (imagine how this error would change is you
take the SST in Kelvin or in Celsius, for instance). It is much more customary to compare errors
to the dynamic range of the image (for instance, as measured by the standard deviation of the
values).
Response: We agree that the “absolute percentage error” is not invariant. However, in this
work, we try to define an error metric that can use to visualize the error between the striped and
destriped images. When we work with real world data, we only can compare the data which are
not on the stripes and this “absolute percentage error” shows us how the computations affect such
data. Therefore, we believe that this dentition works well for the our purpose.

Referee #2: 12 is not a magic number; please be more descriptive about how to chosing the
threshold in figure 5. And please provide units.
Response: Thank for pointing out this and the correct number shoud be 18. We have included
an explanation for that in page 10. Also thank you for reminding us to put the units for the
threshold value and it will definetely help reader to understand the concept of the S curve. We
have added units with explanations at the 5th line in page 10, Fig. 5, 2nd line in page 12 and 5th

line in page 15.

Referee #2: Although it is a bit beyond of the scope of the paper, it will be very convenient to
have a in-situ validation dataset for verifiying if the destriped images are of higher quality.
Response: Thank you for suggesting a data set for the validation and absolutely it is beyond of
the scope of the paper. We will surely try it in our future work.
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Abstract. We illustrate the utility of variational destriping for ocean color images from both mulitspectral and hyperspectral

sensors. In particular, we examine data from a filter spectrometer, the Visible Infrared Imaging Radiometer Suite (VIIRS) on the

Suomi National Polar Partnership (NPP) orbiter, and an airborne grating spectrometer, the Jet Population Laboratory’s (JPL)

hyperspectral Portable Remote Imaging Spectrometer (PRISM) sensor. We solve the destriping problem using a variational

regularization method by giving weights spatially to preserve the other features of the image during the destriping process. The5

target functional penalizes ‘the neighborhood of stripes’ (strictly, directionally uniform features) while promoting data fidelity,

and the functional is minimized by solving the Euler-Lagrange equations with an explicit finite difference scheme. We show

the accuracy of our method from a benchmark data set which represents the Sea Surface Temperature off the Coast of Oregon,

USA. Technical details, such as how to impose continuity across data gaps using inpainting, are also described.

1 Introduction10

Striping is a persistent artifact in remote sensing images and is particularly pronounced in Visible-Near Infrared (VNIR) water-

leaving radiance products such as those produced by operational sensors including NPP VIIRS, Landsat 8 Operational Land

Imager (OLI), and Geostationary Ocean Color Imager (GOCI), as well airborne instruments such as NASA’s JPL PRISM

sensor. These sensors cover a temporal sampling range from daily (VIIRS) to hourly (GOCI), and spectral sampling from

multi-spectral (VIIRS, GOCI) to hyperspectral (PRISM). Striping is pronounced in products from all these sensors because15

atmospheric correction for ocean color products typically removes at least 90% of the signal recorded at the Top of Atmosphere

(TOA). Put another way, any artifacts in the TOA signal are amplified by at least a factor of 10 in any derived water products

such as normalized water leaving radiance of a specific spectral band (nLw(λ)), or in product fields such as total suspended

sediment (TSS) concentration maps.

Striping is ubiquitous and difficult to remove because it has many possible origins. The detectors themselves are subjected to20

small amplitude variations in both sensitivity and calibration. The view angles (azimuthal and zenith) also vary from detector

to detector and
::::
from

:
pixel to pixel. Other differences in the instrument’s optical path, components (e.g. mirrors), asynchronous

readout, and so on, also cause striping. Not unexpectedly, the magnitude of the striping varies from image to image. Striping is
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particularly problematic when comparing a sequence of images, since any difference
::
in computations between images produces

spurious results in the neighborhood of stripes.

Ocean products from NPP VIIRS have shown problematic striping since its launch, which has led to focused
::::
focus

:
efforts

at both NASA and NOAA to find corrections
::::::::
correction

:::::::
methods. NASA created a vicarious destriping method for VIIRS

images based on a collection of long term on-orbit image data, including solar and lunar calibrations. NASA’s Ocean Biology5

Processing Group (OBPG) began serving operational products with their vicarious calibrations and destriping for VIIRS in

2014 ?. In contrast, a method for
:::::::::::
hierarchically

:
destriping VNIR images based on a single scene , using a hierarchical approach,

was proposed in ?. This particular variational method was more recently augmented with filtering using a hierarchical image

decomposition ?, and that algorithm has also been implemented by scientists at NOAA for operations with images from

VIIRS ??. Scene based processing methods are advantageous for sensors which do not have dedicated calibration subsystems10

such as a solar diffuser, or where the data sets are limited in scope (such as airborne sensors) and do not include uniform scenes

for vicarious calibration.

2 Regularization Destriping: the Functional and its Minimization

The method described here is closely related to the destriping functional described in ?. Our work differs in its exact func-

tional form, and its method
:::::::
principle

:
of solution. In particular, we formulate a solution for destriping in an inverse-problem15

framework, and keep only the part of the functional in ? that smooths the stripes. This
:::
new formulation allows us to provide an

explicit numerical solution instead of an iterative one, the former being more
:::::::
efficient

:::
thus

::::::
better suited for operational codes.

We explicitly introduce a regularization parameter that controls the relative balance between the data term (“fitting the original

image") and the regularity term (“smoothing out the stripes"). Solutions of this kind are
::::
Such

::::::::::::
regularization

:
is
::
a common prac-

tice in inverse problems ?, and fall under the rubric of Tikhonov regularization theory. As a further improvement to
:::::::::
refinement20

::
of the destriping functional, we specifically define weights for the regularization term so that the algorithm applies only to the

stripes while preserving the other features.

Assuming that the stripes are parallel to one another in the image plane, we take the direction of the stripes as the x

(horizontal) direction. Thus the data term representing the horizontal gradient difference between the original and the destriped

images is given as25

ED(u) =

∫
Ω

(
∂

∂x
(u− f)

)2

dΩ, (1)

where Ω is the image domain on xy plane, f(x,y) is the original image with stripes, and u(x,y) is the destriped image.

The regularization term emphasizes the smoothness in the vertical direction, which is assumed to be free of stripes. This

regularization term is given by

ER(u) =

∫
Ω

(
∂u

∂y

)2

dΩ. (2)30
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The regularization parameter α > 0 balances the data term and the regularization term. The resulting destriping functional is

EC(u) =

∫
Ω

(
∂

∂x
(u− f)

)2

dΩ +α

∫
Ω

(
∂u

∂y

)2

dΩ. (3)

This is the x-directional destriping functional proposed by Bouali in ?, and it is equivalent to the basic form of our destriping

functional when α= 1. The choice of α, as we show later, is key to achieving the balance of
:::::::
between matching the original

image and removing stripes. However, our approach differs from ? and our goal is to develop a destriping method which
:::
that5

is easy to implement while preserving the other features of the image.

A drawback of scene-based detriping are unintended changes in the values of all the pixels and not just the stripes. If we

apply the regularization term for the whole image as it is in Eq. (3), the entire image is effected. This could modify the original

features of the image, in addition to recovering stripes. Therefore, we further develop our functional in Eq. (3) to regularize10

only the stripes. We introduce a mask (L) to the regularization term, to limit the smoothing affects
:::::
effects

:
to the stripes. To

obtain L from the image, we first compute the slope of the image transverse to the stripes using first order finite differences.

Then we sum the absolute differences parallel to the stripes. This yields the total value (S) corresponding to each row. From

the peaks of graph S vs
:::::
versus

:
r, where r is the row index, we can identify the stripes and select a threshold “

::::::::
threshold” to

separate the stripes from the other features.
:::
To

:::::::
compute

:::
the

:
S
::::::
curve,

:::
we

::
do

:::
not

::::
need

::
to

:::::::
consider

:::
the

::::::::
complete

:::::
image

::::
and

::::::
instead15

::
we

::::
can

:::::::
consider

:
a
:::::::
vertical

:::::
image

:::::::
segment

::::
that

:::::::
contains

::::
some

::::
part

::
of

:::
all

::
the

::::::
biased

::::
data.

:::
In

:::
this

::::
case,

:::
we

:::
can

::::::::
preserve

::
the

::::::
actual

::::::
features

::::
such

:::
as

::::
roads

:::
or

:::
any

:::::
other

:::
real

::::::
signals

::::
that

:::
are

::::::
exactly

::::::
aligned

::::
with

:::::::
stripes.

The mathematical expression for the computation of S for an image f , of size m-by-n, with suitable a
:
a
:::::::
suitable boundary

condition, can be written as20

S(r) =

n∑
c=1

|f(r,c)− f(r+ 1, c)| , (4)

where r = 1,2, ...,m and f(m+1, c) is the introduced boundary row. Now defining the threshold value from “
:::::::
threshold”

:::::
value

::::
from

:::
the

:
S ,

:::::
curve,

:::
we obtain the sparse matrix L with onesindicating

::
by

:::::::::
assigning “

::::
ones”

::
for

:
the locations of the stripes.

:::
We

:::
will

:::::::
explain

:::
the

:::::::::
procedure

::
of

::::::::
selecting

:::
an

:::::::::
appropriate

:
“
:::::::
threshold”

::::
value

:::::
using

:::::::::
examples

::
in

::::
Sec.

:::
??.

:
Any row r, where

r = 1,2, ...,m of matrix L with size m-by-n can be defined as25

L(r,c) =

1, if S(r)≥ threshold

0, otherwise,
(5)

where c= 1,2, ...,n.

Then the new destriping functional, with the spatially weighted regularization term, is written as

E(u) =

∫
Ω

(
∂

∂x
(u− f)

)2

dΩ +α

∫
Ω

L

(
∂u

∂y

)2

dΩ. (6)
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The destriped image is obtained by minimizing the functional after choosing
::
an

::::::::::
appropriate regularization parameter. Note

that the functionalE(u) is invariant under constant shift. That is,E(u+a) = E(u) for any constant a, implying that minimiza-

tion of E(u) leads to an infinite number of solutions. Because we want to keep the average intensity of the original and the

destriped images the same, we assert 〈u〉= 〈f〉
::
In

:::
this

:::::
work,

:::
we

::::::
impose

::::::::::
appropriate

::::::::
boundary

:::::::::
conditions

:::
(as

::::::::
discussed

::::::
below)

:::
that

::::::
ensure

:::::::::
uniqueness

::
of

:::
the

:::::::
solution.5

We create a destriped image by minimizing the energy functional in Eq. (6) using the Euler-Lagrange equation. For a

functional of the form

J(u) =

∫
Ω

F (x,y,u,ux,uy) dΩ,

on the bounded domain Ω, the Euler-Lagrange equation is given as

∂F

∂u
− ∂

∂x

(
∂F

∂ux

)
− ∂

∂y

(
∂F

∂uy

)
= 0. (7)10

Applying
::
As

:::::::::
explained

::
in

:::
??,

:::
the

:::::::::::::
Euler-Lagrange

:::::::
equation,

:

uxx +αLuyy = fxx
::::::::::::::::

(8)

:
is
::::::::
obtained

::
by

::::::::
applying Eq. (7) to Eq. (6), the Euler-Lagrange equation, as explained in ?? is the partial differential equation

uxx +αLuyy = fxx,

where subscripts represent the argument variable(s) of the partial derivatives. We can rewrite the Eq. (8) as15

(Dxx +αLDyy)u=Dxxf, (9)

where , the operators D•• are two dimensional arrays of size k× k used to compute the partial derivatives of a given vector of

size k× 1 with respect to the indices ••.
We use finite difference approximations with suitable boundary conditions for each derivative to directly represent these

differential operators. In
:::
this

:::::
work,

:::
we

:::::
apply

:
“
:::::::
reflexive”

:::::::
boundary

:::::::::
conditions

:::::::
parallel

::
to
::::

the
::::::
stripes

:::
and

:
“
:::
zero”

::::::::
boundary20

::::::::
conditions

:::::::::
transverse

::
to

:::
the

:::::
stripes

:::::
when

:::
we

:::
the

:::::::
generate

::::::::
derivative

::::::::
operators.

:::::
These

::::::::
boundary

:::::::::
conditions

::::
lead

::::::::::::::
(Dxx +αLDyy)

::
to

:
a
:::
full

::::
rank

::::::::
operator

:::
and

:::::
hence

:::
we

:::::
reach

:
a
::::::
unique

::::::::
solution.

::
In Eq. (9) we stack the given image of size p× q onto

:::
into k× 1

vector, where k = pq. We can now use the differential operators to write the linear Euler-Lagrange equation in the form of

Au= b, and solve for u using an appropriate numerical method rather than solving the Euler-Lagrange equation for u from an

iterative scheme such as Gradient decent method.25

2.1 Construction of the Differential Operator

We construct the operator Dxx using finite difference approximations. The operator Dyy is built by taking the transpose of the

finite difference stencil. Suppose we have a function M(x,y) ∈ Rp×q . We need to compute the second order partial derivative
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of M with respect to x. We use a fourth-order finite difference approximation and compute the point-wise second partial

derivative of the array M with respect to x.

As an example, take an array M (x,y) of size 3× 5 where we want to compute Mxx (x,y). We index the elements in the

array in the form of a column vector as shown in Table 1, with two added boundary columns for each side.

Table 1. An array of 3× 5 with boundary points in red
::::
bold

m4 m1 m1 m4 m7 m10 m13 m13 m10

m5 m2 m2 m5 m8 m11 m14 m14 m11

m6 m3 m3 m6 m9 m12 m15 m15 m12

The boundary points are highlighted in red
:::
bold. If we compute the partial derivative of m1 with respect to x, the resulting115

approximation is obtained as

∂2m1

∂x2
=

1

12h2
[−m4 + 16m1− 30m1 + 16m4−m7] =

1

12h2
[−14m1 + 15m4−m7] .

Continuing this manner for all the elements
:::::::::
Computing

:::
the

:::::
finite

::::::::
difference

:::::::::::::
approximations

:::
for

:::::
each

:::::::
element

::
in

:::
the

::::
array, we

can compute
:::::
obtain

:
the differential operator Dxx . Using a multiplication factor of 12h2, we obtain a

:::::::::::
corresponding

:::
to

:::
the120

::::
3× 5

:::::
array

::
in

:::::
Table

:::
??.

::::
The

:::::::
resulting

:::::::
operator

::
is
::
a sparse matrix with only five non-zero diagonals (Table ?? )

:::
and

:
it
::
is

::::::
shown

::
in

::::
Table

:::
??

::::
with

:
a
::::::::::::
multiplication

:::::
factor

::
of

:::::
12h2.

Similarly, Dyy and the other derivatives can be estimated as needed. The boundary points are highlighted as bold entries. If

we compute the partial derivative of m1 with respect to x, the resulting approximation is obtained as

∂2m1

∂x2
=

1

12h2

[
−m4+16m1−30m1 + 16m4−m7

]
=

1

12h2
[−14m1 + 15m4−m7] .125

Continuing this manner for all the elements, we can compute the differential operator Dxx. Using a multiplication factor of

12h2, we obtain a sparse matrix with only five non-zero diagonals (Table ??).

2.2 Solution to the Euler-Lagrange Equation

Now we can determine the solution to Eq. (9). We rewrite the Eq. (9) as130

Au= b, (10)

where A=Dxx +αLDyy and b=Dxxf . If the size of the given striped image f is p× q, then A is a k×k sparse array and b

is a k× 1 array, where k = pq.
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Table 2. A discretized derivative operator Dxx × 12h2 for a 3× 5 matrix.

Using a suitable value for the regularization parameter, Eq. (??) can be solved as a linear system. The system is sparse

and hence the computation time for an image with n pixels is of O(n) for each iteration. Clearly, at this stage, for a given α,135

Eq. (??) is straightforward to solve, however in terms of the image processing, the specific choice of α plays an important role.

To achieve “the most appropriate solution,” we need to determine the best regularization parameter α.

2.3 Selection of the Regularization Parameter

The condition number of the resulting matrix quantifies the amplification of computational errors seen while solving the

problem by direct computation. The condition number may be computed as the ratio between the largest singular value and140

the smallest singular value of the coefficient matrix. If the condition number is large, then the coefficient matrix is said to

be ill-conditioned and hence the corresponding system is ill-posed. In an ill-posed system, the solution is highly sensitive to

perturbations of the input data. Regularizing an ill-posed system, emphasizing a desired property of the problem, introduces

a stable way to define a desirable solution ???. This is the standard trade-off between regularity and stability in Tikhonov

regularization terms.145

We regularize our computed solution by emphasizing the expected physics. To damp the accumulated errors from the resid-

uals, we must make sure that we add sufficient regularity. The balance between the data term and the regularization term is

very important: if we add too much regularity, it will divert the solution from the desired solution. Stated in terms of Tikhonov

regularization, α serves the role to select a unique optimizer u, from what would be and otherwise ill-posed system had only

the data fidelity had been chosen. In terms of the images, the data fidelity states that the optimizer image u should “appear as”150
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Figure 1. Image (a) shows (simulated) variations of Sea Surface Temperature off the coast of Oregon, USA on 1 August 2002. The image was

generated from a Regional Ocean Model System (ROMS, Courtesy of John Osborne, Oregon State University), using the data assimulation

:::::::::
assimilation from the Geostationary Operational Environmental Satellite (GOES). Image (b) is created by adding artificial stripes every 20th

row.

The S curve corresponding to the SST image is shown in graph (a) in Fig. ??. The “threshold” value for this problem is

also shown on
:::
the same graph and it is 12

::
18

:
in this case.

:
If

:::
we

:::::::
consider

::::
the

::::
units

::
of

:::
the

::::
Sea

:::::::
Surface

::::::::::
Temparature

:::::
data,

:::
the

:::::::
threshold

:::::
value

::::
can

::::::
written

::
as

:::::::::::::::::::::::
842 C◦longitude/latitude.

:::
To

::::::::
determine

:::
the

::::
best

:
“

:::::::
threshold”

:::::
value

:::
that

:::::
does

:::
not

:::::
affect

::
to

:::
the180

:::::
image

::::::
regions

:::::
with

::
no

:::::::
stripes,

:::
we

:::::
begin

:::
the

::::::::::
proceedure

::
by

:::::::::
assigning

:::
the “

::::::::
threshold”

:::::
value

::
to

:::
the

:::::::::
maximum

::::
peak

:::
of

:::
the

::
S

:::::
curve.

:::::
Then

:::
we

:::::
apply

:::
the

::::::::
destriping

::::::::
algorithm

::::
and

:::::
check

:::
the

::::::::
solution.

::
If

::
at

::::
least

:::
one

:::::
stripe

::
is
::::
still

::::::
visible,

:::
we

::::::
assign

:::
the

::::
next

::::::
highest

::::
peak

::
of

:::
the

::
S
:::::
curve

::
as

:::
the

:
“
:::::::
threshold”

::::
value

:::
and

::::::
check

::
for

:::
the

:::::::
stirpes.

:::::::::
Continuing

::::
this

::::::
manner

::::
until

:::
all

:::
the

::::::
stripes

:::
are

:::::::
removed,

:::
the

::::
best

:
“

:::::::
threshold”

::::
value

:::
can

:::
be

::::::::::
determined. The peak points that has crossed by

:::
have

:::::::
crossed the threshold value

are the stripes. As a comparison of the full destriping image, the absolute percentage error between the striped and destrieped185

:::::::
destriped

:
image is shown in the image (b) in Fig. ??. This is computed by,

Absolute Percentage Error =
|f −u|
f

× 100,
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Figure 2. These three images represent the destriped image of the image shown in Fig. ??(b) from three different ways. Image (a) and (b) are

obtained with α= 1 and α= 3× e−1
::::::::::
α= 3× 10−1

:
from the functional in Eq. (3). Image (c) is obtained with α= 7× e−1

:::::::::::
α= 7× 10−1

from the functional with spatially weighted regularization term as shown in Eq. (6).

1-2093.205
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Figure 3. This figure presents three different reconstructions of the stripe at the 110th row of the image shown in Fig. ??(b). The graphs

show the actual data in blue, striped data in black and the destriped data in red. Graphs (a) and (b) represent the reconstructions from the

functional in Eq. (3) with α= 1 and α= 3× e−1
::::::::::
α= 3× 10−1, respectively. The graph (c) shows the reconstruction from the functional in

Eq. (6) with α= 7× e−1
:::::::::::
α= 7× 10−1.

Figure 4. This figure shows the effects of destriping on the places where ‘no stripes’. We randomly picked the 67th row for this comparison.

When α= 1 in the un-weighted regularization functional, the image is more smoothed and affects destriping to the whole image. Much better

results can be obtained from the the un-weighted regularization functional with α= 3× e−1
::::::::::
α= 3× 10−1 which is the U−curve solution

and shown in graph (b). Spatially weighted regularization term with α= 7× e−1
:::::::::::
α= 7× 10−1 provides less effect to the other features of

the image and we can observe that from the graph (c).
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Figure 5. Image (a) shows the S function values against the column numbers. The peak points represent the stripes. When “treshold
:::::::
threshold”

is set at 12
:
18, only stripes can be included for the regularization but excludes all the other features of the image.

::::
With

::
the

::::
units

::
of

:::
the

:::::
image

:::
data,

:::
the

:::::::
threshold

:::::
value

:::
can

:::::
written

::
as

::::::::::::::::::::::
842 C◦longitude/latitude. Then the percentage error between the striped and destriped image are

shown in the image (b). The error where there are no stripes is always closer to the zero

Figure 6. The image shows the chlorophyll concentration in mg/(m3) near the Santa Monica region in Southern California as viewed by

VIIRS on November 07, 2014. Green represents the land and dark blue represents the dropped data due to bow-tie effects and missing data

due to clouds. For a detailed discussion, we next consider the subset of the image that is covered by the pink square in the image.
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Figure 7. Image (a) shows the cropped region shown in Fig. ?? and the graph (b) shows the S curve with the threshold and the image piece

:::::::
(columns

:::
137

::
to

::::
148) that we used compute the values of S curve. The images (c), (d

:
) and (e) represent the destriped images of (a) with

α= 1 with unweighted regularization term and α= 10−5 and α= 10−2 with weighted regularization term respectively. Image (e) provides

the best solution for the destrped image. Image (c) is over regularized whereas image (d) is not sufficiently regularized. Image (f) represents

the percentage error between images (a) and (e).
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Figure 8. Image (a) shows the destriped image scene of the image (a) in Fig. ?? from NASA’s vicarious calibration of L2 (*.nc) products

method. While the NASA’s vicarious calibration of L2 (*.nc) products method does improve over the raw image, there are still stripe artifacts

present. The following image (b) represents the destriped image of the image (a) from our method.

Figure 9. Image (a) is band 22 (4̃10 nm) of a hyperpectral image which was taken from JPL PRISM ?. The stripe pattern is vertical and the

destriped images shown in image (b). Green represents the land of the observed region.
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