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General comments The study proposes a new diagnostic for evaluation of the mixing
potential of fluid flows: the trajectory encounter number. This diagnostic is for a given
trajectory defined as the number of other trajectories it approaches to within a pre-defined
distance during a specific time interval. The new diagnostic is demonstrated by way of two
analytical flows and a data-based flow. The proposed approach is certainly of interest for mixing
analyses and, due to its straightforward concept and structure, seems particularly suited for
data-based studies. Moreover, the manuscript overall is well written. However, a number of
scientific and technical issues arise that must be addressed in a revision in order for the
manuscript to become acceptable for publication. Details are below.

Specific comments

1. Line 43: “... property exchange can take place between different water parcels ...”
Mention that this exchange happens by diffusion and therefore relies on a concentration
difference between two parcels. The relevance of tracer non-uniformity and the fact that
mixing potential alone may not suffice is then evident.

We have included this clarification in the revision. The last paragraph of Sec 1(a) now reads:
*“...the presence of a mixing potential does not guarantee that the mixing of a tracer will occur: it
is also essential that the tracer distribution is non-uniform, so that irreversible property exchange
can take place between different water parcels during their encounters. This exchange happens
by diffusion and therefore relies on a concentration difference between two parcels. Thus, the
intensity of mixing would depend on both the tracer distribution and the flow...”

2. Lines 49-50: “Our method does not require the initial spacing between trajectories to be
small ...” Mustn't the spacing always be sufficiently small to detect the relevant spatial

features that determine the mixing properties? In other words, doesn’t your method
therefore require comparable spacings as other methods in order to properly capture the
physics? Your examples in fact employ fairly dense spacings (see also remark below).
Please comment.

We agree with the reviewer and have removed the sentence in question from the revision.

Also, additional simulations have been carried out and included in the revised manuscript, which
investigate the dependence of the encounter volume on the grid spacing. The following
paragraph has been added to the revision at the end of Sec 11(a):

“We have carried out numerical simulations (Fig. 6) to investigate the dependence of the
encounter volume on the grid size, and to come up with a rule of thumb recommendation
regarding the appropriate grid spacing. Our simulations suggest that the encounter volume values
(approximated by V- = N dV) are relatively insensitive to the variations of grid spacing between
1/10 and 1/2 of the encounter radius (with the encounter radius being a fraction of the size of the
feature of interest, as suggested by Fig. 2), and that the major effect of a coarser grid is the
degraded resolution of the resulting VV map, rather than incorrect V values.”
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Figure 1. Encounter volume, V, for the Duffing Oscillator flow for various grids of initial
positions, from dense grid spacing of 0.02 (left), to intermediate grid spacing of 0.04
(middle), to coarse grid spacing of 0.1 (right). Encounter radius, R=0.2, and integration
time, T=6.67, are the same in all 3 simulations.

Encounter Volume

The emphasis on small spacing is also implied in the new text near the beginning of Sec I(b),
where we formally define the encounter volume and number in the limit of infinitesimal particle
spacing.

3. Lines 62—67: encounter number /Vis determined by the /77 encounter of a given
trajectory with other trajectories. This relies on the assumption that in the absence of

sources/sinks “most property exchange will occur during the first encounter” and in other

cases “... the number of first encounters ... should still be relevant.” This is a rather loose
argumentation. May the concentration difference between parcel A and B (also in the

absence of sources/sinks) not just as well be Zrger— causing more property exchange —

on e.g. a second encounter due to property exchange of parcels and A and B with other

parcels in between their first and second encounters? Please provide a stronger physical

rationale for this first-encounter ansatz or present it more explicitly as an assumption or
hypothesis.

Following the reviewer’s suggestion, in the revised manuscript we present this first-encounter
ansatz as an assumption. The following sentence has been added to the revision to address this
question:

“Note that this assumption may not hold if the parcels re-acquire different properties after their
first encounter due to encountering and exchanging properties with other parcels. In this case, or
in the case when tracer variance is being continuously introduced, it may be more reasonable to
count the total number of encounters.”

4. Lines 84-86: “... encounter rates ... are locally the largest near a hyperbolic trajectory
and along the segments of its associated stable manifolds ...” This exclusive link with

stable manifolds is unclear. Don’t the high encounter rates result from the rapid
dispersion of fluid parcels due to exponential stretching in the homoclinic/heteroclinic
tangles delineated by interacting (un)stable manifolds of hyperbolic points? In other
words, don't stable and unstable manifolds contribute equally to the high encounter
rates in chaotic regions? Hence, it seems more accurate to correlate regions of high
/Vwith such tangles instead of only with stable manifolds. Please either better explain
the (assumed) role of stable manifolds or link the behaviour with chaotic tangles.

The reviewer might perhaps be referring to long integration times; in the long integration time
limit, both stable and unstable manifolds densely fill the entire chaotic zone, and thus the entire
chaotic zone is characterized by uniformly large encounter volume (equal to the volume of the



chaotic zone). So the reviewer is correct in saying that in the long integration time limit, there
will be correlation between the entire manifold tangle and high encounter volume region.

Over short integration times, however, it is the stable manifold that acts as a pathway for
bringing particles from remote regions into the vicinity of a hyperbolic trajectory, where
particles stay over extended periods of time, and where many encounters occur. The unstable
manifold, on the other hand, will rapidly remove a particle from the hyperbolic region, thus
limiting its presence in the high-encounter region. Of course, the unstable manifolds will
eventually bring a particle back into the vicinity of a hyperbolic region, but it will only do so
intermittently (as the manifold will never reach the hyperbolic trajectory but instead will tangle
around venturing away and coming back), and this process will require traveling along a
significant portion of a homoclinic tangle (i.e., long integration time).

This exclusive link between forward-time integration and stable manifolds is not unique to

encounter volume, but rather is typical for many finite-time methods, including FTLES, which in
forward time highlight stable manifold as maximizing ridges (see Fig. 2 below).
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Figure 2. Comparison between the FTLEs (top) and the encounter volume (bottom; same
as middle row of Fig. 2) for the Duffing Oscillator flow for various integration times, from
T=0.1Tpert= 0.13 (on the left) to T=50Tpert=66.67 (on the right). The same set of
trajectories, deployed on a dense initial grid with 0.02 grid spacing is used in all
simulations. In the bottom panels, R=0.2.
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To further clarify this issue, we have computed both stable and unstable manifolds for the
Duffing Oscillator using a direct method, where we grew manifolds from a small segment
starting at the hyperbolic trajectory (which in this example stays at the origin at all times.) Both
manifolds were then superimposed on a forward-time encounter volume plot (see fig. 3 below). It
is clear from this new simulation that in forward time high encounter volume correlates well
with the stable (and not the unstable) manifolds.
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Figure 3. Encounter Volume (color; the same as 2" row and 2™ column subplot of Fig 2 in
the paper) and stable (black) and unstable (white) manifolds for the Duffing Oscillator
flow.

We have added the following 3 paragraphs to Sec I(b) and 11(a) of the revised paper to address
this question:

“In the infinite time limit, T — oo, when all parcels within a chaotic zone (or turbulent region) of
finite extent encounter all other parcels within the same chaotic zone, the encounter volume

V (%o, to; T — o) approaches a constant equal to the volume (or area in 2d) of the chaotic zone.
For 2D, incompressible flow, the encounter rates over finite T are locally the largest near a
hyperbolic trajectory and along the segments of its associated stable manifolds. The stable
manifolds serve as pathways that bring water parcels from remote regions into the vicinity of the
hyperbolic trajectory, where parcels stay for extended periods of time, and where many
encounters occur. Note that the unstable manifolds, on the other hand, will rapidly remove a
particle from a hyperbolic region, thus limiting its exposure to the high-encounter region near the
hyperbolic trajectory. For this reason, the unstable manifolds are not revealed by encounter
volume calculation performed in forward time and require a backward-time calculation instead.
This exclusive link between forward/backward in time calculation of trajectories and
stable/unstable manifolds, respectively, is not specific to the encounter volume diagnostic, but
rather is typical for many finite-time methods from the dynamical systems theory, including
finite-time Lyapunov exponents (FTLESs), which in forward time approximate segments of stable
manifold as maximizing ridges (Haller, 2002; Shadden et al., 2005; Lekien and Ross, 2010).”



“In the long integration time limit, when each manifold, either stable or unstable, densely fills the
entire chaotic zone forming a dense homoclininc or heteroclinic tangle, the whole tangle will be
characterized by high encounter volumes in both forward and backward time. Again, this is
similar to how the maximizing ridges of the forward time FTLESs elongate and sharpen with
increasing integration time.”

“In order to more clearly highlight the link between high values of IV and stable (rather than
unstable) manifolds, we have computed both stable and unstable manifolds for the Duffing
Oscillator flow using a direct method, where we grew manifolds from a small segment starting at
the hyperbolic trajectory. For the Duffing Oscillator this computation is straightforward since the
the hyperbolic trajectory stays at the origin at all times. Both stable and unstable directly-
computed manifolds were then superimposed on a forward-time encounter volume plot in Fig. 4.
The comparison shows that, as anticipated, the encounter volume diagnostic clearly highlights
stable manifolds as maximizing ridges of V. computed in forward time.”

5. Lines 93-94: “... will reveal longer segments of stable manifolds ... illustrated numerically
in the next section.” It actually more and more seems to reveal the abovementioned
homoclinic/ heteroclinic tangles instead of the stable manifolds. Consider to this end the
Duffing oscillator in Sec. Ila. Here the stable and unstable manifolds of the hyperbolic point
form a pair symmetric about 2 = 0 (as remarked on line 126). Their interaction yields a
homoclinic tangle that delineates a figure-8 region about the two islands in Fig. 1. This
tangle — and thereby 4o#2 manifolds — coincides with the region of highest encounter rates in
Fig. 2. Results on the Bickley jet in Fig. 4 further seem to support this; here correlation
actually occurs with the heteroclinic tangles delineated by the interacting (un)stable
manifolds of the 3 hyperbolic points instead of only with the stable manifolds. Please
comment and, if necessary, modify the discussion.

Please see our answer to the previous comment and Figs. 2 and 3(Figs. 4 and 5 in the revised
paper) above.

6. The discussion of Fig. 2 implies that the encounter number indeed adequately captures

the dynamics. However, to this end rather smooth distributions (as e.g. in Figs. 2—4)
seem necessary, suggesting that the method requires a dense spacing of initial parcel
positions in order to work properly. This contradicts the statement “... does not require

the initial spacing between trajectories to be small ...” (lines 49-50). Moreover, this
suggests that mixing analyses by the encounter number may in fact be far more
expensive than standard Poincarje sectioning (typically requiring only a few dozen
parcels). Please comment and, if necessary, modify the discussion.

We have removed the sentence in question about the grid size and included numerical
simulations that explore the dependence of encounter volume on the grid spacing (see our
answer to comment 2 and Fig. 1 above).

We agree with the reviewer that the Poincare section is a powerful tool for revealing regular
regions and chaotic zones in time-periodic flows. We also agree that it only requires a small
number of parcels. However, its application is limited to time-periodic flows, and it requires



trajectories to be computed over very long integration times, typically thousands of periods of
perturbation. The encounter volume, on the other hand, is not limited to time-periodic flows, and
works with much shorter segments of trajectories (longest integration time in our simulations is
only 50 periods of perturbation). It also is better suited for identifying the manifolds as it does
not require any apriory knowledge about the location of the hyperbolic trajectory. The encounter
volume, however, requires many more parcels to be released in order to map out the phase space
than the Poincare section analysis. Thus, both methods have their own advantages and
limitations. We have added this discussion to the revised paper.

At the end of Sec I1(a) of the revised paper, we added a discussion of advantages and limitations
of the Poincare section and encounter volume methods.

“With a variety of dynamical systems techniques available, it is important to understand the
advantages and limitation of the different methods. We compared the encounter volume to two
well-established and commonly-used methods, the Poincare section (Fig. 3) and the FTLEs (Fig.
5). Since the Poincare section requires stroboscopic sampling of trajectories in time, it can only
be applied to time-periodic flows, and requires that trajectories are computed over long
integration time, typically thousands of the periods of the perturbation. On the other hand, it
generally requires only a few parcels to be released at some key locations, rather than releasing a
dense grid of initial positions, to map out the entire phase space. The encounter volume and
FTLEs, on the other hand, are not limited to time-periodic flows, and also work with
significantly shorter segments of trajectories (longest integration time in our simulations in Fig. 2
is only 50 periods of perturbation). They are also better suited for identifying manifolds than the
Poincare sectioning as they do not require any a priori knowledge about the location of the
hyperbolic trajectory. On the other hand, they require many more parcels to be released in order
to map out the phase space. When applied to the same set of trajectories (same initial positions
and integration times), the FTLEs and the encounter volume methods produced similar results
(Fig. 5), with V being arguably better suited for 1) identifying the coherent core regions of
eddies, where FTLEs have spiraling patterns that complicate the analysis, and 2) producing more
continuous segments of manifolds at intermediate integration times, when FTLE-based ridges get
discontinuous near the turning points of a manifold. The advantage of FTLES, on the other hand,
is that they have fewer parameters (T and grid spacing), whereas V also depends on R, and that
they less expensive computationally. The more expensive computational cost of IV compared to
FTLEs is due to two reasons: first, the FTLEs only depend on the initial and final positions of
trajectories, whereas V depends on the entire trajectory history; and second, FTLESs depend on
the relative distance between a trajectory and its closest neighbors, whereas V keeps tracks of
encounters with all trajectories, not just the neighboring trajectories. Thus, the cost of evaluating
FTLE for each particle is independent of the total number of particles released, and the cost of
evaluating V for each particle increases in proportion to the number of particles (since one needs
to keep track of encounters with all particles). The calculation of V is still feasible for realistic
geophysical flows, as is illustrated below. Note also that, depending on the physical question



being studied, the information about the entire trajectory, not just the final and initial position,
might in fact be advantageous.”

7. The above suggests that Poincarje sectioning outperforms the encounter-number method
in periodic flows. Hence, the periodic examples mainly serve to demonstrate the physical
validity of the encounter-number method; its true usefulness seems to be for essentially
aperiodic flows as e.g. the Gulf Stream flow (Sec. IIc). However, the analysis of this flow

is rather superficial and open-ended (lines 209-230). It is recommended to deepen this
analysis so as to convincingly demonstrate the potential of the method (in particular) for
aperiodic flows.

Please see our answer to #6 regarding comparison and relative advantages/disadvantages of
Poincare section vs encounter volume methods.

We agree with the reviewer that the Gulf Stream flow is the most interesting from the
oceanographic point of view, and in the revised paper we have extended this section. However,
in-depth analysis of transport and mixing properties of the Gulf Stream Extension flow, along
with the study of the Lagrangian properties, leakiness and coherence of the Gulf Stream rings, is
out of the scope of this paper, and will be better suited for a separate paper that will be devoted
entirely to this topic.

8. Sec. III: it is recommended to demonstrate validity of expressions (1), (2) and (9) for /by
comparison with /Vfound via actual parcel trajectories of the corresponding simplified flows.

We have performed numerical simulations for the linear strain and linear shear flows to check
the validity of formulas (2) and (9). Numerical simulations and analytical expressions for the
encounter volume are in excellent agreement with each other (see Fig. 4 below). This figure was
also added to the revised paper [Fig. 10 in the revised paper]).
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Figure 4. Comparison between numerically computed encounter volume (blue) and
analytical predictions (egs. (8) and (9)) (red) for the linear strain (left) and linear shear
flows (right). For the linear shear flow alpha=0.1, R=5, dx=dy=R/25; for the linear strain
flow gamma=0.1, R=5; dx=dy=R/25.



The analysis of the diffusive flow appears to be more complicated than we anticipated. Our
analytical expression (1) did not check out against numerical simulations and was removed from
the paper. The difficulty is that our original treatment of the diffusive model as a process where
the distance from the initial position for all trajectories (rather than on average) grows as
square root of time was too simplistic, whereas other available probability laws and trends
based on diffusive model do not account for the fact that we count only first encounters. Our
simulations indicate growth of the encounter number in proportion to some power y of time,
where is in the range .64 to .78. But we are unable to predict the value of yand have instead just
quoted the range yobtained. We have also described some of the initial steps that need to be
taken towards resolution of the problem and we hope that some reader might be able to draw on
this to make further progress. All of this appears in the first several paragraphs of Section IlI.

9. Lines 310-311: “... vector flux of the scalar of interest. This linkage is made explicit by ...”
This same concept of a net scalar flux (and corresponding trajectories) is in fact also adopted in
studies on convective heat transfer and chemically-reacting flows [1, 2, 3, 4, 5]. Please mention
this for a stronger connection with similar research and literature.

We thank the reviewer for pointing out the references on the Lagrangian interpretation of
thermal heat transfer. When we published our paper on the Lagrangian interpretation of scalar
fluxes, we were unaware of this work. We have added the references as requested.

10. Line 324: “Although this lack of uniqueness may seem troublesome ...” This ambiguity is in
fact resolved in [5] by attaching physical validity to such an additional vector instead of treating
it as an arbitrary field (see also remark below).

See our response to #11

11. Lines 347—348: “... it is most convenient to make use of the flexibility in the definition of the
tracer flux ...” This suggests that the method produces arbitrary results and its physical
meaning therefore is questionable. However, this approach can in fact be provided with a sound
physical basis using the approach following [5]. Key to this is that, given linear transport
equations, a scalar field ¢ governed by a transport equation of the form (10) admits expression
as the difference between two other physically-meaningful scalar fields ¢4 and ¢, each governed

by deAdH-Vv Fa= S4,0c80+ Vv Fr= S5, (1)

with #4,7and .54, zthe corresponding fluxes and source terms, respectively. In [5], S4= Sp= 0
and #4and Frare diffusive flux and advective-diffusive flux, respectively, of the same initial
condition c4(z, 0) = cA(&, 0) = g &). In the current manuscript, also S4= .57= 0 yet #F4and
F1now both are the advective flux (i.e. #4,2= wuc4,5) of the dyfferent initial conditions cA4(z, 0)
= woand cAz, 0) = Cb(z). Hence, both problems, though physically different, allow for

treatment by the same concept. Transport of difference ¢/= ¢z /7 c4is governed by o+ Vv FH
=9, F= Fr/] F1, 5= Sr/] 54, (2)
with here .97= 0 and #= wci= w(cz [7 c4) the flux of ¢r(i.e. the anomaly and its flux in line

348). Thus anomaly ¢rin fact concerns the scalar transport relative to a physical reference state
cA instead of some arbitrary state. Here the reference state happens to remain uniform in time
due to the advective transport of a uniform initial condition, i.e. c4(z, 7) = c4(z, 0) = w, yet
the approach holds equally for any non-uniform (evolving) state ¢4 (enabling its employment

also for more complicated problems).1mMoreover, note that # needn't be divergence-free. It is



recommended to modify the discussion in Sec. IV according to the above in order to eliminate
the (incorrect) impression of a conceptual flaw in the method.

We have recast our treatment of the dye flux in the Bickley jet as suggested, following the
Speetjens (2012) arguments. We specifically introduce two scalar flux equations, one for ¢ and
one for the reference value c,, and take the difference. This is indeed a more systematic
approach, but we are not completely convinced that the flux vector so obtained by this
methodology is always unique, or necessarily most desirable. The purely diffusive reference state
that Speetjens favors may not be the only reference state that a reasonable person might choose:
there could be alternatives. And in our problem c, is just a small (but arbitrary) value.

Minor technical issues and corrections

1. Figs. 2—4: specify the spacing of the initial parcel positions.

2. Line 153: pronounces ! pronounced

3. Line 231: the title of Sec. Il is rather long and confusing. Please consider a more compact title.

4. Line 266: reference moving ! reference frame moving

[1] A. Bejan, Convection Heat Transfer, Wiley, New York (1995).

[2] V.A.F. Costa, Bejan’s heatlines and masslines for convection visualization and analysis, Appl. Mech. Rev.
59 (2006), 127.

[3]1 S. Mahmud, R. A. Fraser, Visualizing energy flows through energy streamlines and pathlines, Int. J. Heat
Mass Transfer 50 (2007), 3990.

[4] A. Mukhopadhyay, X. Qin, S. K. Aggarwal, I. K. Puri, On extension of “heatline” and “massline” concepts to
reacting flows through use of conserved scalars, ASME J. Heat Transfer 124 (2002), 791.

[5] M. F. M. Speetjens, A generalised Lagrangian formalism for thermal analysis of laminar convective heat
transfer, Int. J. Therm. Sci. 61 (2012), 79.

1Reference state //7in [5] e.g. corresponds with the non-uniform and unsteady temperature field due to diffusive heat transfer

only; [7F# [[J7[1Jis the contribution to the total advective-diffusive temperature field /7due to the flow [Zfj.e. [7F# O only if
[I0) and thus captures the thermal transport that is effectively induced by the fluid motion.

All the minor technical corrections have been made, and all new references added to the revised
paper.
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In this paper the authors introduce a new Lagrangian descriptor to give a measure of the effectiveness of a flow
to mix over a finite time. The idea is to start with a finite grid of K initial trajectories, and, for each trajectory
compute the number other trajectories that come within a radius R of the given one, thus they compute

N(z<R< T*K) = __ Kk=11( mins¢e[o-T (|| ~s(xk) — ~t(z)||) V R)

where we define the indicator function I to return 1 if true and 0 if false, and the flow—~:(y) = z(t; y) for an
initial point y. (The authors never give such a formula, and ignore the dependence on the gird).

While this is an intriguing idea, it is not clear how to make it mathematically well-defined. It seems to have
some relation to finite time entropy, as introduced in the reference by Froyland as this computes the growth
rate of number of distinguishable trajectories. Would it be better to talk about a growth-rate here too? | feel that
one should not just compute something that is so specific to choices, but first make a consistent mathematical
definition: something that exists in the limit as the grid of initial points becomes infinitely fine, say, and then
compute it, showing that the computations are, to some approximation, giving the desired quantity.

Following the reviewer’s suggestion, we reformulated the mixing potential concept in terms of
the trajectory encounter mass, M, and its simplified approximation — the encounter volume, V,
which we now define in a continuous limit of infinitely many infinitesimally small water parcels
or, equivalently, an infinitely dense grid of initial positions. For an incompressible flow densely
seeded with particles, the encounter volume V can be approximated by V' = N&V, where N is the
encounter number, i.e., the number of trajectories passing through an encounter sphere of radius
R moving with the parcel over time T, and 8V is a parcel volume element. We have also included
a mathematical expression for the encounter number as the reviewer suggested above. The
beginning of Sec I(b) of the revised paper now reads:

“For a given reference trajectory, ¥(%,, to; T), the encounter mass, M (X,, to; T), is defined as the
total mass of fluid that passes within a radius R of reference trajectory over a finite time interval
to <t < to + T. One might imagine a sphere that has radius R and that is centered at and moves
with the reference trajectory. The encounter mass then consists of the mass of the fluid that is
initially located within the sphere along with the mass of all the fluid that passes through the
sphere over the time interval to < t < to + T. Note that it is generally not possible to compute
the latter by simply integrating the mass flux into the sphere over to < t < to + T since some
fluid may leave and then re-enter the sphere and would be counted more than once, so
Lagrangian information is required to keep track of the history of each fluid parcel trajectory
entering the sphere.

To this end, subdivide the entire fluid at t = to into small compact fluid elements with masses
6M; = p;6V;, where p; is the density of a fluid element and 8V is its volume. We wish to follow
the motion of each fluid element over time interval to < t < to + T, and we assume that the
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elements remain compact over such time, so that the motion of each fluid element can be well-
represented by one trajectory. If the fluid elements stretch and deform too much, we can evoke
the continuum hypothesis and make oM sufficiently small that such compactness is assured. In
the limit of infinitesimal fluid elements, 6M; —»dM, we can associate with each infinitesimal fluid
element a unique trajectory. The encounter mass is then

M = limdMl._m Zi dMl

For an incompressible flow, the density and volume of each fluid element, p; and §V;, remain
constant following a trajectory, although different fluid elements are still allowed to have
different densities such as, for example, in stratified 3D geophysical flows. If the flow is
unstratified, the densities of all fluid elements are equal, p; = p, and the encounter mass
becomes

M=pV,
where
V(%o to; T) = dlvi-mo 2 dVv;

is the encounter volume — the total volume of fluid that passes within a radius R of reference
trajectory over a finite time interval to < t < to + T. When all volume elements are equal,
dV; = dV, the encounter volume can be further simplified to

V = lim NdV,
dv-0

where the encounter number, N (X, to; T), is the number of trajectories that come within a radius
R of the reference trajectory over a time interval to < t < to + T. We will refer to ¢t as the
starting time, T as the trajectory integration time, and X, as the trajectory initial position, i.e.,
X(%o, to; T = 0) = X,. For practical applications with geophysical flows, the limit in the
definition of the encounter volume can be dropped and one can simply use the approximation

V = N&V

with the dense grid of initial positionsx,. Mathematically, the encounter number can be written
as N = YX_ I(min(|x; (%o, to; T) — X(Xo, to; T)|) < R) where the indicator function I is 1 if true
and 0 if false, and K is the total number of Lagrangian particles released. The encounter volume
depends on the starting time, integration time, encounter radius, and the number of trajectories
(i.e., grid spacing); all of these parameter dependences will be discussed below. Once the
encounter volume is estimated, regions of space with large/small V would then be associated
with enhanced/inhibited mixing potential.”

11



1. The authors fix the grid size and do not investigate how the number depends on grid size. The do not
even tell the reader what grids are used in the first two examples!

We apologize for not providing the grid size that we used in the first two examples. This info has
been included in the revision.

In the revised paper, we also present a set of new numerical simulations exploring the
dependence of the encounter volume on grid size. The following paragraph discussing this issue
has been added to the revision at the end of Sec Il(a):

“We have carried out numerical simulations (Fig. 6 [Fig. 5 here]) to investigate the dependence
of the encounter volume on the grid size, and to come up with a rule of thumb recommendation
regarding the appropriate grid spacing. Our simulations suggest that the encounter volume values
(approximated by V' = N V) are relatively insensitive to the variations of grid spacing between
1/10 and 1/2 of the encounter radius (with the encounter radius being a fraction of the size of the
feature of interest, as suggested by Fig. 2), and that the major effect of a coarser grid is the
degraded resolution of the resulting VV map, rather than incorrect V values. ”
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Figure 5. Encounter volume, V, for the Duffing Oscillator flow for various grids of initial
positions, from dense grid spacing of 0.02 (left), to intermediate grid spacing of 0.04
(middle), to coarse grid spacing of 0.1 (right). Encounter radius, R=0.2, and integration
time, T=6.67, are the same in all 3 simulations.

2. It seems like it would be better to define something that (like they mention in the conclusions)
represents a “fraction” or “density” of encounters. Mathematically one would probably define something
that uses an —~ — —~ construction: Given trajectories on an —~ grid, how many get closer than —~? Then
take limits. if possible, of a density or growth-rate?

As explained above, we now quantify mixing potential using the encounter volume, V, instead of
the encounter number. The encounter radius, which defines how close to each other two parcels
need to be in order to be counted as an encounter, is kept finite and treated as a parameter. The
dependence of V on R is investigated numerically, and analytical arguments are presented that
relate V, R and grid spacing to the size of the features of interest, all in agreement with
numerical simulations.

3. Another possible quantity, though instead of measuring “mixing” would be one that measures
“ergodicity”: How many grid cells does a given trajectory cover? This might also be an interesting
guantity, and much easier to compute. Note that mixing is equivalent to each trajectory visiting every
grid cell.

The relationship between Lagrangian Coherent Structures and ergodicity has been explored in
our prior work, please see the following paper for the discussion of this topic: Rypina, I. I., S.
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Scott, L. J. Pratt, and M. G. Brown (2011). Investigating the connection between complexity of
isolated trajectories and Lagrangian coherent structures. Nonlin. Proc. Geophys., 18, 977-987,
doi:10.5194. This reference has been added to the revised paper.

4. The authors do not really compare their results with any of the other many possible descriptors like
FTLE, or perhaps more relevantly the finite time entropy.

At the end of Sec ll(a) of the revised paper, we added a comparison between encounter volume V
and FTLEs, along with a discussion of the advantages and limitations of both methods.

“With a variety of dynamical systems techniques available, it is important to understand the
advantages and limitation of the different methods. We compared the encounter volume to two
well-established and commonly-used methods, the Poincare section (Fig. 3) and the FTLEs (Fig.
5 [Fig. 6 here]). Since the Poincare section requires stroboscopic sampling of trajectories in time,
it can only be applied to time-periodic flows, and requires that trajectories are computed over
long integration time, typically thousands of the periods of the perturbation. On the other hand, it
generally requires only a few parcels to be released at some key locations, rather than releasing a
dense grid of initial positions, to map out the entire phase space. The encounter volume and
FTLEs, on the other hand, are not limited to time-periodic flows, and also work with
significantly shorter segments of trajectories (longest integration time in our simulations in Fig. 2
is only 50 periods of perturbation). They are also better suited for identifying manifolds than the
Poincare sectioning as they do not require any a priori knowledge about the location of the
hyperbolic trajectory. On the other hand, they require many more parcels to be released in order
to map out the phase space. When applied to the same set of trajectories (same initial positions
and integration times), the FTLESs and the encounter volume methods produced similar results
(Fig. 5), with V being arguably better suited for 1) identifying the coherent core regions of
eddies, where FTLEs have spiraling patterns that complicate the analysis, and 2) producing more
continuous segments of manifolds at intermediate integration times, when FTLE-based ridges get
discontinuous near the turning points of a manifold. The advantage of FTLES, on the other hand,
is that they have fewer parameters (T and grid spacing), whereas V also depends on R, and that
they less expensive computationally. The more expensive computational cost of IV compared to
FTLESs is due to two reasons: first, the FTLESs only depend on the initial and final positions of
trajectories, whereas V depends on the entire trajectory history; and second, FTLES depend on
the relative distance between a trajectory and its closest neighbors, whereas V keeps tracks of
encounters with all trajectories, not just the neighboring trajectories. Thus, the cost of evaluating
FTLE for each particle is independent of the total number of particles released, and the cost of
evaluating V for each particle increases in proportion to the number of particles (since one needs
to keep track of encounters with all particles). The calculation of V is still feasible for realistic
geophysical flows, as is illustrated below. Note also that, depending on the physical question
being studied, the information about the entire trajectory, not just the final and initial position,
might in fact be advantageous.”
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Figure 6. Comparison between the FTLEs (top) and the encounter volume (bottom; same
as middle row of Fig. 2) for the Duffing Oscillator flow for various integration times, from
T=0.1Tpert= 0.13 (on the left) to T=50Tpert=66.67 (on the right). The same set of
trajectories, deployed on a dense initial grid with 0.02 grid spacing is used in all
simulations. In the bottom panels, R=0.2.
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5. The authors do not discuss the complexity of this computation. It seems to me that it is much more
computationally intensive than, e.g., the FTLE, which does not involve comparing all distances
between all trajectories. It this really a feasible calculation? How does it scale with the number of
trajectories and the time?

We have added a discussion of the complexity of the calculation and scaling with the number of
trajectories. The reviewer is certainly correct that the encounter volume diagnostic is more
computationally expensive than FTLEs. However, the calculation of the encounter volume is
certainly feasible for realistic oceanic flows, as illustrated in our data-based example #3
(satellite-based geostrophic velocities). Please see our answer to comment 4 above.

6. The authors do some basic investigation of how N depends upon R and ¢, but the computations of
N for the simple diffusive and shear cases seem wrong to me: In particular, if we take a planar
diffusive process with diffusion coefficient D, and make the assumption (not clear to me) that one can
transform to a frame moving with one particle (doesn’t this double the diffusivity?), ...

We thank the reviewer for pointing out that the diffusivity is doubled in the reference frame
moving with a particle. This has been corrected in the revised paper.

...then one should compute the probability of a particle finding itself inside a disk of radius R for any time
0 < t < T, given it starts at some point (xzoc yo) in the plane. For example for the process on the line, then
at a FIXED time t this means evaluating the integral
P(&z(t)d < R&x(0) = z0) =12 Dt R-Rexp, ~(x — x0)22Dt  dzifi]

Vv / \

which can be evaluated in terms of error functions. The authors seem to assume a deterministic motion with
the root mean square distance, which seems to me to be wrong.
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We did not assume a deterministic motion, but our treatment of the diffusive motion was indeed
incorrect and our analytical expression (1) disagreed with numerical simulations. We have
removed expression (1) from the revised paper. Also see our response to comment #8 of the first
reviewer.

They also ignore particles that start inside the circle of radius R (not so important if they want a large ¢ limit |
suppose).

The reviewer is correct; we did not include the volume of the encounter sphere (or the area of
the encounter circle in our 2d examples) in our encounter volume calculations/formulas. We
have clarified this in the revised paper, and noted that *“To include the volume of fluid that is
initially located within the encounter sphere (or within the encounter circle in this 2D case), one
needs to add 7 R? to expression (2). The contribution of this term gets negligibly small as

T—> 00.”

Now to compute N you have to sum (or integrate?) this probability over an initial distribution of initial points, say
zoois uniform on a box, perhaps? And you have to somehow compute the probability over all times 0 < ¢ < T.
This calculation seems very different from the one given in the paper.

The formula for the pdf of a particle position that the reviewer wrote above does not take into
account that we are interested in first encounters, not all encounters. In the revised paper, we
have outlined some initial steps towards deriving the connection between V and diffusivity along
the lines suggested by the reviewer, but we have not been able to follow through with this
derivation; this is left for a future study.

The shear flow is easier, but | think not done correctly either. One has to compute the area of the region that
sweeps into the circle of radius R, but also include the particles that start inside the disk.

Again, the reviewer is correct; our expression did not include the area of the encounter
sphere, TR2. We have added a note on this similar to the one for the strain flow.

While this paper has an intriguing idea, | think it needs substantial revision and correction before publication.

We are glad that the reviewer found our ideas intriguing, and we hope that we addressed all of
the reviewer’s concerns in the revised paper.
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Interactive comment on “Trajectory encounter
number as a diagnostic of mixing potential in fluid
flows” by Irina I. Rypina and Larry J. Pratt

Dr Koshel
kvkoshel@poi.dvo.ru
Received and published: 19 January 2017

It is only the short comment, not deep review. We can see many finite time Lagrangian
descriptors suggested last time, maybe 20 or 30 years. For example, the Poincare section is
calculated for finite time. Most descriptors follow from dynamical systems theory constructions.
It well discussed in reviewers comments. | have an analogous question. Is it possible to make
some connection between the encounter number and the Poincare recurrence. In any case, |
think, the most Lagrangian descriptors used, for example, in oceanography have no strong
mathematical foundation, but very useful for data analyze and interpretation. | also think the
descriptor suggested here is more expensive in comparison with FLTE or some other. But it
seems, it has some advantage in physical interpretation. | think the manuscript is suitable for
publication in Nonlinear Processes in Geophysics, after some revision.

A discussion of the differences and similarities between the encounter volume and the Poincare
section methods have been added to the revised manuscript. We also added a discussion of the
computational cost of the calculation, and a comparison with FTLES. The new text at the end of
Sec. ll(a) now reads:

“With a variety of dynamical systems techniques available, it is important to understand the
advantages and limitation of the different methods. We compared the encounter volume to two
well-established and commonly-used methods, the Poincare section (Fig. 3) and the FTLEs (Fig.
5). Since the Poincare section requires stroboscopic sampling of trajectories in time, it can only
be applied to time-periodic flows, and requires that trajectories are computed over long
integration time, typically thousands of the periods of the perturbation. On the other hand, it
generally requires only a few parcels to be released at some key locations, rather than releasing a
dense grid of initial positions, to map out the entire phase space. The encounter volume and
FTLEs, on the other hand, are not limited to time-periodic flows, and also work with
significantly shorter segments of trajectories (longest integration time in our simulations in Fig. 2
is only 50 periods of perturbation). They are also better suited for identifying manifolds than the
Poincare sectioning as they do not require any a priori knowledge about the location of the
hyperbolic trajectory. On the other hand, they require many more parcels to be released in order
to map out the phase space. When applied to the same set of trajectories (same initial positions
and integration times), the FTLESs and the encounter volume methods produced similar results
(Fig. 5), with V being arguably better suited for 1) identifying the coherent core regions of
eddies, where FTLEs have spiraling patterns that complicate the analysis, and 2) producing more
continuous segments of manifolds at intermediate integration times, when FTLE-based ridges get
discontinuous near the turning points of a manifold. The advantage of FTLES, on the other hand,
is that they have fewer parameters (T and grid spacing), whereas V also depends on R, and that
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they less expensive computationally. The more expensive computational cost of IV compared to
FTLEs is due to two reasons: first, the FTLEs only depend on the initial and final positions of
trajectories, whereas V depends on the entire trajectory history; and second, FTLESs depend on
the relative distance between a trajectory and its closest neighbors, whereas V keeps tracks of
encounters with all trajectories, not just the neighboring trajectories. Thus, the cost of evaluating
FTLE for each particle is independent of the total number of particles released, and the cost of
evaluating V for each particle increases in proportion to the number of particles (since one needs
to keep track of encounters with all particles). The calculation of V is still feasible for realistic
geophysical flows, as is illustrated below. Note also that, depending on the physical question
being studied, the information about the entire trajectory, not just the final and initial position,
might in fact be advantageous.”

I can find few misprints in the manuscript which not mentioned by reviewers.
We have carefully checked the revised manuscript for the misprints and typos.

Minor technical issues and correction lines 336,371-373 t0 is used and may be better to use toc
Caption to figure 8: U-star and Nstar are used. Maybe it will be better to use Uvoand Nvo

We have changed t0 to t,, but changed Ustar and Nstar to u ~ and N.”
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Trajectory encounter volume as a diagnostic of mixing potential in fluid flows
Irina 1. Rypina* and Larry J. Pratt*
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Corresponding author email: irypina@whoi.edu
Abstract

Fluid parcels can exchange water properties when coming in contact with each other, leading to
mixing. The trajectory encounter mass and a related simplified quantity, encounter volume, are
introduced as a measure of the mixing potential of a flow. Encounter volume quantifies the
volume of fluid that passes close to a reference trajectory over a finite time interval. Regions
characterized by low encounter volume, such as cores of coherent eddies, have low mixing
potential, whereas turbulent or chaotic regions characterized by large encounter volume have
high mixing potential. The encounter volume diagnostic is used to characterize mixing potential
in 3 flows of increasing complexity: the Duffing Oscillator, the Bickley Jet, and the altimetry-
based velocity in the Gulf Stream Extension region. An additional example is presented in which
the encounter volume is combined with the u* -approach of Pratt et al., 2016 to characterize the
mixing potential for a specific tracer distribution in the Bickley Jet flow. Analytical relationships
are derived connecting encounter volume to shear and strain rates for linear shear and linear
strain flows, respectively. It is shown that in both flows the encounter volume is proportional to
time.

. Encounter volume
a. main idea

Mixing is an irreversible exchange of properties between different water masses. This process is
important for maintaining the oceanic large-scale stratification and general circulation, and it
plays a key role in the redistribution of bio-geo-chemical tracers throughout the world oceans.
Mixing occurs between different water masses when they come in direct contact with each other.
Thus, mixing potential of the flow, i.e., the opportunity for mixing to occur, is generally
enhanced in regions where water parcels meet or encounter many other water parcels and thus
are exposed to a large amount of fluid passing by them as the flow evolves. This would be the
case, for example, for a parcel within a chaotic zone —a region of the flow that is in a state of
chaotic advection. There, the separation between initially nearby water parcels grows
exponentially in time and, in the infinite time limit, each water parcel encounters all the other
water parcels within the same zone and gets in contact with the entire volume of the chaotic
zone. Similarly, high encounter volumes will exist in turbulent regions. In contrast, mixing
potential and encounter volume is expected to be smaller in regions where water parcels do not
experience many encounters with other water parcels and remain close to their initial neighbors
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as the flow evolves. This would be the case, for example, for a water parcel that is located inside
a coherent eddy. If the eddy is in a state of solid body rotation, the water parcel would forever
stay close to its initial neighbors and will not have any new encounters at all. If some amount of
azimuthal shear is present within the eddy, then for a water parcel located at a radius r from the
eddy center, encounters will be limited to those water parcels located within a circular strip
centered at the same r.

Of course, the presence of a mixing potential does not guarantee that the mixing of a tracer will
occur: it is also essential that the tracer distribution is non-uniform, so that irreversible property
exchange can take place between different water parcels during their encounters. This exchange
happens by diffusion and therefore relies on a concentration difference between two parcels.
Thus, the intensity of mixing would depend on both the tracer distribution and the flow, whereas
mixing potential is the property of only the flow field alone. In this work we introduce the
concept of an encounter mass, M, and encounter volume, V, which serves as a simplified
representation of M in incompressible flows, as an objective measures of encounters between
different fluid elements in order to quantify the mixing potential of a fluid flow. There are many
existing trajectory-based measures of fluid stirring; ours has the virtue of having a
straightforward physical interpretation and being easy to implement and immediately applicable
to ocean float and drifter data. Our method does not require sophisticated book keeping as in
braid theory (Allshouse and Thiffeault, 2012) or finite-time entropy (Froyland and Padberg-
Gehle, 2012).

b. definition and numerical implementation

For a given reference trajectory, X(%,, to; T), the encounter mass, M (X,, to; T), is defined as the
total mass of fluid that passes within a radius R of reference trajectory over a finite time interval
to <t < to+ T. One might imagine a sphere that has radius R and that is centered at and moves
with the reference trajectory. The encounter mass then consists of the mass of the fluid that is
initially located within the sphere along with the mass of all the fluid that passes through the
sphere over the time interval to < t < to + T. Note that it is generally not possible to compute
the latter by simply integrating the mass flux into the sphere over to < t < to + T since some
fluid may leave and then re-enter the sphere and would be counted more than once, so
Lagrangian information is required to keep track of the history of each fluid parcel trajectory
entering the sphere.

To this end, subdivide the entire fluid at t = to into small compact fluid elements with masses
6M; = p;6V;, where p; is the density of a fluid element and §V; is its volume. We wish to follow
the motion of each fluid element over time interval to < t < to + T, and we assume that the
elements remain compact over such time, so that the motion of each fluid element can be well-
represented by one trajectory. If the fluid elements stretch and deform too much, we can evoke
the continuum hypothesis and make oM sufficiently small that such compactness is assured. In
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the limit of infinitesimal fluid elements, 6M; »dM, we can associate with each infinitesimal fluid
element a unique trajectory. The encounter mass is then

M = limdMl._>0 Zi dMl

For an incompressible flow, the density and volume of each fluid element, p; and §V;, remain
constant following a trajectory, although different fluid elements are still allowed to have
different densities such as, for example, in stratified 3D geophysical flows. If the flow is
unstratified, the densities of all fluid elements are equal, p; = p, and the encounter mass
becomes

M=pV,
where
V(Xo, to; T) = dl‘}in_}O 2; dV;

is the encounter volume — the total volume of fluid that passes within a radius R of reference
trajectory over a finite time interval to < t < to 4+ T. When all volume elements are equal,
dV; = dV, the encounter volume can be further simplified to

V = lim NdV,

av-0

where the encounter number, N (X,, to; T), is the number of trajectories that come within a radius
R of the reference trajectory over a time interval to < t < to + T. We will refer to ¢, as the
starting time, T as the trajectory integration time, and X, as the trajectory initial position, i.e.,
X(Xo, to; T = 0) = X,. For practical applications with geophysical flows, the limit in the
definition of the encounter volume can be dropped and one can simply use the approximation

V = NV

with the dense grid of initial positionsx,. Mathematically, the encounter number can be written
as N = YX_ I(min(|x; (%o, to; T) — ¥(Xo, to; T)|) < R) where the indicator function I is 1 if true
and 0 if false, and K is the total number of Lagrangian particles released. The encounter volume
depends on the starting time, integration time, encounter radius, and the number of trajectories
(i.e., grid spacing); all of these parameter dependences will be discussed below. Once the
encounter volume is estimated, regions of space with large/small V would then be associated
with enhanced/inhibited mixing potential. For the remainder of this paper, we will focus on
incompressible fluid flows and will be concerned with the encounter volume, rather than
encounter mass.
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We define V (X, to; T) and N (X,, to; T) based on the number of encounters with different
trajectories, not the total number of encounter events, so even if some trajectory first comes close
to the reference trajectory, then moves away and then re-approaches it again later, it is only
counted once. In a flow field with no sources or sinks of tracer variance, where variance is
therefore decaying, it is reasonable to expect that most property exchange between two parcels
will often occur during their first encounter, thus the motive for counting only the first encounter.
Note that this assumption may not hold if the parcels re-acquire different properties after their
first encounter due to encountering and exchanging properties with other parcels. In this case, or
in the case when tracer variance is being continuously introduced, it may be more reasonable to
count the total number of encounters.

For a numerical implementation of the trajectory encounter volume-based mixing
characterization, one would need to start, at some time t,, with a grid of initial positions
spanning the flow domain, and then evolve trajectories under the flow field over the time interval
T. This time interval should be chosen based on the physical properties of the flow and with
specific scientific questions in mind. For example, if the research focus is on ocean submesoscale
dynamics, the time scale T would be on the order of hours to days, whereas the corresponding
time scale for mesoscale dynamics would be on the order of weeks to months.

V (%o, to; T) is a Lagrangian quantity that characterizes mixing potential of a flow over a time
interval from t, to t, + T. As the flow field evolves in time, its mixing characteristics can
change and V (X,, to; T) will reflect this change. For example, if a coherent eddy with weak
mixing potential, embedded in a chaotic zone with enhanced mixing potential, was present in the
flow from time ¢, to time t,, but it dispersed and disappeared afterwards, then V (X, to; T) is
expected to be small at those locations X, that correspond to the interior of an eddy for t, > ¢,
and ty + T < t,, whereas for t, > t,, when the eddy is no longer present, V (¥, to; T) would
increase. Dependences on T and t, are similarly expected to be present within a chaotic zone.

In the infinite time limit, T — oo, when all parcels within a chaotic zone (or turbulent region) of
finite extent encounter all other parcels within the same chaotic zone, the encounter volume

V (%o, to; T — o) approaches a constant equal to the volume (or area in 2d) of the chaotic zone.
For 2D, incompressible flow, the encounter rates over finite T are locally the largest near a
hyperbolic trajectory and along the segments of its associated stable manifolds. The stable
manifolds serve as pathways that bring water parcels from remote regions into the vicinity of the
hyperbolic trajectory, where parcels stay for extended periods of time, and where many
encounters occur. Note that the unstable manifolds, on the other hand, will rapidly remove a
particle from a hyperbolic region, thus limiting its exposure to the high-encounter region near the
hyperbolic trajectory. For this reason, the unstable manifolds are not revealed by encounter
volume calculation performed in forward time and require a backward-time calculation instead.
This exclusive link between forward/backward in time calculation of trajectories and
stable/unstable manifolds, respectively, is not specific to the encounter volume diagnostic, but
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rather is typical for many finite-time methods from the dynamical systems theory, including
finite-time Lyapunov exponents (FTLESs), which in forward time approximate segments of stable
manifold as maximizing ridges (Haller, 2002; Shadden et al., 2005; Lekien and Ross, 2010).

Since locations of hyperbolic trajectories and manifolds generally evolve in time, V (%, ty; T) is
expected to also vary with t,. As the trajectory integration time T increases, water parcels
initially located further from the hyperbolic trajectory will have the opportunity to come into its
vicinity along the stable manifold. Such parcels, as they approach the hyperbolic trajectory, are
expected to have more encounters than their neighbors that are initially located off the manifold
and thus bypass the vicinity of the hyperbolic trajectory where many encounters occur. Thus,

V (%o, to; T) reveals longer segments of stable manifolds for longer integration time T, as will be
illustrated numerically in the next section. In the long integration time limit, when each
manifold, either stable or unstable, densely fills the entire chaotic zone forming a dense
homoclininc or heteroclinic tangle, the whole tangle will be characterized by high encounter
volumes in both forward and backward time. Again, this is similar to how the maximizing ridges
of the forward time FTLEs elongate and sharpen with increasing integration time.

The radius R, which defines how close to a reference trajectory should another trajectory come in
order to be counted as an encounter, is an important parameter for the calculation of the
encounter volume V. Generally, R should be small compared to the spatial scale of the smallest
features of interest. Specifically, for the V field to delineate a flow feature, say, an eddy,
trajectories within the eddy interior should not encounter those on its exterior. The boundary
region near the eddy perimeter, where such encounters can occur, has the width 2R. So, if that
width is comparable to or larger than the eddy size, then the eddy would get completely smeared
out and will not be resolved. From a practical viewpoint, however, using very small R would
require very dense grids of trajectories to be computed, otherwise zero or very small number of
trajectory encounters will occur in the entire flow domain. Numerical examples in the next
section suggest that choosing R to be a fraction, up to about half of the size of the smallest
features of interest work best.

Finally, the approximation V. ~ N &V breaks down for sparse grids of initial positions with the
insufficient number of Lagrangian particles, when N is small and &V is large. It also works
poorly when applied to 2D divergent flows due to 6§V changing following trajectories. Numerical
simulations in the next section suggest that grid spacing < R/2 is sufficient, and that the method
can also be applied to characterize mixing potential in slightly divergent two-dimensional flows.

Once the time scale T is identified, grid of initial positions is chosen, trajectories are computed,
radius R is defined, and the number of encounters, N (¥, to; t), is counted for each trajectory,
then the encounter volume can be estimated as V' ~ N &V and plotted as a function of the
trajectory initial position X,. The resulting V field delineates the flow regions with different
mixing properties as subdomains having different values of V.



180

181
182
183
184
185
186

187

188
189
190
191
192
193
194
195
196
197
198
199

200
201

202
203
204
205
206
207
208
209
210
211
212
213
214
215
216

Il. Examples

We proceed to test the performance of the encounter volume technique in quantifying mixing
potential for several geophysically relevant sample flows of increasing complexity, starting from
a simple analytically prescribed periodically perturbed double-gyre Duffing Oscillator system,
followed by a dynamically consistent solution of the PV conservation equation on a beta-plane
known as the Bickley Jet, and finishing with an observationally based geostrophic velocity field
in the North Atlantic derived from the sea surface height altimetry.

a. Duffing Oscillator

The Duffing Oscillator flow and its figure-eight geometry has become a standard test case for
emerging techniques related to the dynamical systems theory. This flow consists of two gyres
with the same sign of rotation (clockwise in our case), whose elliptic centers oscillate in time
around their mean position. A hyperbolic point is located at the origin between the two gyres,
and a pair of stable and unstable manifolds emanate from it forming a figure eight in the absence
of the time dependent perturbation, or forming a classic homoclinic tangle in the presence of the
perturbation. The velocity field is two-dimensional and incompressible and is given by u = y
and v = (x — ax®)(1 + € cos(wt + ¢p)) witha = 1, w = 31/2, ¢ = m/4 and € = 0.1. With
these parameters, the Poincare section (Fig. 1 bottom) shows the presence of two main regular
elliptic regions with O(1) radius corresponding to the interiors of the gyres, which are embedded
into a figure-eight shaped chaotic zone, within which a number of island chains with smaller
regular islands are present. The winding time for most trajectories in the system is on the order of
2

5Tpert With Tyere = : except for trajectories near the hyperbolic point for which winding time

is much longer (Fig. 1 top).

The encounter volume was computed for a range of trajectory integration times, from T = Tj,,;
(which is significantly shorter than trajectory winding time) to T = 50T, (significantly longer
than trajectory winding time), and for a range of encounter radii, from R = 0.01 < Reqqy
(significantly smaller than the eddy core radius) to R = 1 = R,44, (comparable to the eddy core
radius). The results in Fig. 2 suggest that the encounter volume method works best for
integration times longer than the trajectory winding time and encounter radius about 1/3 to 1/2 of
the gyre radius (right 3 panels of the middle row). For very small encounter radius (top row), V
is noisy because trajectories simply do not encounter many neighbors. Thus, delineating the
domain into regions with different mixing potential, as in the top right panel, requires long
integration time. For T = 50T, good agreement with the Poincare section is observed, and
the use of small encounter radius allows for a precise identification of smaller regular island
chains, such as the chains of 4 islands located just outside of the perimeter of both left and right
eddy cores. Note that the noise in the V field can be suppressed by using a denser initial grid of
trajectories, but at the cost of a more expensive computation. For very short integration times
(left column) when trajectory segments are very short, the encounter volume is not capturing the

6
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difference between the regular and chaotic regions. This is not surprising as velocity shear is
probably a dominating factor over such small times. As the integration time increases, the
difference in encounter volume becomes more pronounced between trajectories that remain
within the eddy cores and trajectories that are free to move around the chaotic zone. Over a time
scale of approximately one winding period (or about 5 periods of the perturbation; second
column), the two regular eddy cores (blue regions with small V) and a segment of the stable
manifold (red curve emanating from the origin with largest V) becomes clearly visible for R=0.2
and R=1. The revealed manifold segment becomes longer, narrower and more tangled,
eventually filling up the whole chaotic zone. At the same time, the shape of the core region
becomes more exact and approaches the “true” core in the Poincare section as the integration
time increases to 50 periods of the perturbation. The agreement with Poincare section is excellent
in the right middle panel, although the smaller island chains are not as visible as in the top right
panel because of the use of a larger encounter radius that is comparable to their size (see Fig. 3).
Finally, for the large encounter radius that is comparable to the size of the eddy (bottom row),

the boundary region near perimeter of an eddy, within which trajectories on the inside of the
eddy can encounter trajectories passing by on the outside, is as wide as the eddy itself, essentially
wiping out all small scales from the V field. All of these trends are in agreement with theoretical
expectations described in Section 1.

In order to more clearly highlight the link between high values of V and stable (rather than
unstable) manifolds, we have computed both stable and unstable manifolds for the Duffing
Oscillator flow using a direct method, where we grew manifolds from a small segment starting at
the hyperbolic trajectory. For the Duffing Oscillator this computation is straightforward since the
the hyperbolic trajectory stays at the origin at all times. Both stable and unstable directly-
computed manifolds were then superimposed on a forward-time encounter volume plot in Fig. 4.
The comparison shows that, as anticipated, the encounter volume diagnostic clearly highlights
stable manifolds as maximizing ridges of V computed in forward time.

With a variety of dynamical systems techniques available, it is important to understand the
advantages and limitation of the different methods. We compared the encounter volume to two
well-established and commonly-used methods, the Poincare section (Fig. 3) and the FTLEs (Fig.
5). Since the Poincare section requires stroboscopic sampling of trajectories in time, it can only
be applied to time-periodic flows, and requires that trajectories are computed over long
integration time, typically thousands of the periods of the perturbation. On the other hand, it
generally requires only a few parcels to be released at some key locations, rather than releasing a
dense grid of initial positions, to map out the entire phase space. The encounter volume and
FTLEs, on the other hand, are not limited to time-periodic flows, and also work with
significantly shorter segments of trajectories (longest integration time in our simulations in Fig. 2
is only 50 periods of perturbation). They are also better suited for identifying manifolds than the
Poincare sectioning as they do not require any a priori knowledge about the location of the
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hyperbolic trajectory. On the other hand, they require many more parcels to be released in order
to map out the phase space. When applied to the same set of trajectories (same initial positions
and integration times), the FTLESs and the encounter volume methods produced similar results
(Fig. 5), with V being arguably better suited for 1) identifying the coherent core regions of
eddies, where FTLEs have spiraling patterns that complicate the analysis, and 2) producing more
continuous segments of manifolds at intermediate integration times, when FTLE-based ridges get
discontinuous near the turning points of a manifold. The advantage of FTLES, on the other hand,
is that they have fewer parameters (T and grid spacing), whereas V also depends on R, and that
they less expensive computationally. The more expensive computational cost of IV compared to
FTLEs is due to two reasons: first, the FTLESs only depend on the initial and final positions of
trajectories, whereas V depends on the entire trajectory history; and second, FTLES depend on
the relative distance between a trajectory and its closest neighbors, whereas V keeps tracks of
encounters with all trajectories, not just the neighboring trajectories. Thus, the cost of evaluating
FTLE for each particle is independent of the total number of particles released, and the cost of
evaluating V for each particle increases in proportion to the number of particles (since one needs
to keep track of encounters with all particles). The calculation of V is still feasible for realistic
geophysical flows, as is illustrated below. Note also that, depending on the physical question
being studied, the information about the entire trajectory, not just the final and initial position,
might in fact be advantageous.

Related to issue of computational cost is the question of a sufficient grid size. We have carried
out numerical simulations (Fig. 6) to investigate the dependence of the encounter volume on the
grid size, and to come up with a rule of thumb recommendation regarding the appropriate grid
spacing. Our simulations suggest that the encounter volume values (approximated by V' =

N dV) are relatively insensitive to the variations of grid spacing between 1/10 and 1/2 of the
encounter radius (with the encounter radius being a fraction of the size of the feature of interest,
as suggested by Fig. 2), and that the major effect of a coarser grid is the degraded resolution of
the resulting V map, rather than incorrect V values.

b. Bickley Jet

The meandering Bickley jet flow is an idealized, but linearly dynamically consistent, model for
the eastward zonal jet in the Earth’s Stratosphere (del-Castillo-Negrete and Morrison, 1993;
Rypina et al., 2007a; Rypinaet al., 2011). This flow consists of a steady eastward zonal jet on
which two eastward propagating Rossby-like waves are superimposed. All flow parameters used
here are identical to those used in our previous 2007 and 2011 papers. In the reference frame
moving at a speed of one of the waves, the flow consists of a steady background velocity subject
to a time periodic perturbation. The background looks like a meandering jet, with three
recirculation gyres to the north and south of the jet core. Between the recirculation gyres, there
are three hyperbolic points with the associated stable and unstable manifolds. Under the
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influence of the time-periodic perturbation imposed by the second wave, heteroclinic tangles are
formed by the manifolds emanating from different hyperbolic regions between the recirculations,
and a chaotic zone emerges on either side of the jet. The manifolds, however, cannot penetrate
through the jet core, which remains regular and acts as a transport barrier separating the northern
and southern chaotic zones. All of these features are clearly visible in the Poincare section shown
in Fig. 4 (top). The bottom subplot shows the V field computed using the encounter radius
R=5*10°, which is about half of the recirculation region radius, and using trajectory integration
time on the order of a few winding times within the recirculations. As expected, the encounter
volume identified 6 recirculation regions and the jet core as zones with small mixing potential
(blue). 6 blue recirculation regions are embedded into two distinct chaotic zones with enhanced
mixing potential (yellow-red) on either side of the jet. Mixing potential is the largest (red) along
the segments of stable manifolds emanating from the hyperbolic trajectories between
recirculations.

c. Altimetry-based velocity in the meandering Gulf Stream region

Past its separation point from the coast at Cape Hatteras, the strong and narrow Gulf Stream
current turns off-shore, where it loses its coherence, broadens and weakens, and starts to
meander. Some of the meanders then grow and eventually detach from the current forming
strong mesoscale eddies known as the Gulf Stream rings. On 11 July, 1997 a number of such
Gulf Stream rings of various strength and size and at different stages of their lifetime were
clearly present both north and south of the Gulf Stream Extension Current (Fig. 7).

The flow in the Gulf Stream Extension region, with a non-steady meandering jet and the Gulf
Stream rings and recirculations to the north and south of the jet core, has a lot in common, at
least qualitatively, with the Bickley Jet example. Unlike the idealized model, however, the real
Gulf Stream rings have finite lifetimes, and the jet is not periodic in the zonal direction.
Nevertheless, many of the qualitative features of the Bickley Jet’s V field hold in this example.
Specifically, trajectories inside coherent eddy cores have smaller encounter volumes than the
eddy peripheries, and the jet centerline has smaller encounter volume than the flanks.

The velocity field that we used was downloaded from the AVISO website
(http://www.aviso.altimetry.fr/en/data/products/sea-surface-height-products/global.html) and
corresponds to their gridded product with ¥ deg spatial resolution and temporal step of 1 day.
This velocity is based on the altimetric sea surface height measurements made from satellites.
The heights were converted into velocities using geostrophic approximation. For the encounter
volume estimation, trajectories were seeded on a regular grid with dx = dy = 0.06 degon 11
July 1997 and were integrated forward in time for 90 days using a fifth-order variable-step
Runge-Kutta integration scheme with bi-linear interpolation between grid points in space and
time. The encounter radius was chosen to be 0.3 deg, which is about a third of the radius of a
typical 200-meter-wide Gulf Stream ring.
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The encounter volume was estimated for three different integration times, T= 30 days, 60 days
and 90 days (Fig. 7). The V field clearly indicates that a number of Gulf Stream rings were
present on both sides of the meandering jet. Among those, two strongest ones can be seen at
54W, 36N and 52W, 41N, with the low-V (blue) core and high-V (red) periphery. As the
integration time increases from 30 days to 90 days, the Gulf Stream rings generally start to leak
fluid, their cores start to lose coherence, and the encounter volume within eddy cores starts to
increase as more and more trajectories escape into the eddy surroundings over time. After a 90
day integration time, only a few Gulf Stream rings still possess coherent cores, whereas others
become leaky throughout. Even for the two strongest rings, the coherent Lagrangian cores
(bluish regions with = 0) shrink down in size and, importantly, become significantly smaller
than what the Eulerian velocity field would suggest. The core of the northern eddy also gets
shifted slightly to the east from the corresponding Eulerian stagnation point, and becomes
deformed into a non-convex sickle-like shape.

The overall leakiness of the Gulf Stream rings and the small extent of their coherent Lagrangian
core regions suggests that the coherent transport by the Gulf stream rings (and maybe by
mesoscale eddies in general) over time intervals of a few months or longer may be significantly
smaller than what is generally anticipated from Eulerian diagnostics based on closed streamlines
or Okubo-Weiss type criteria. Interestingly, the prominent red rings (large V values) around the
eddy cores in Fig. 7 indicate that significant contribution to transport by Lagrangian eddies may
be due to the high-mixing-potential peripheries rather than the coherent cores themselves.

To visualize the Lagrangian evolution of the core regions and to illustrate the eddy leakiness, we
extracted trajectories from the core of the northern eddy in Fig. 7(left) (i.e., trajectories with

V < 6000 km? from the 30-day-long V field), and plotted their subsequent positions after 30
days, 60 days and 90 days. The results in Fig. 8 confirm that the eddy core stays completely
coherent over 30 days (i.e., all trajectories stay together), but starts to deteriorate at 60 days, with
only a small fraction of the initial patch still staying together and the rest of the patch dispersing
and forming long and narrow filaments.

The jet region, although noisy, seems to suggest higher VV near the flanks and smaller V near the
centerline. The center region is not as well-defined as in the Bickley Jet example, possibly
because the Gulf Stream inhibits but does not fully prevent the meridional transport in this
region, and because our encounter radius might have been too large to reveal the central region,
if the true center region was narrower than 2R (0.6 degrees). Finally, the V field suggests that the
mixing potential of the flow is not symmetric with respect to the jet centerline and is higher on
the northern side. It would be interesting to see if this is a general property of the flow in this
region or if this phenomenon is specific to the time interval chosen. This investigation is left for
future study.
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1. Encounter volume for some simple flow regimes

By analogy with molecular diffusion, eddy diffusivity, K, is often used to characterize the eddy-
induced downgradient tracer transfer in realistic geophysical fluid flows (LaCasce 2008; Vallis,
2006; Rypina et al., 2015; Kamenkovich et al., 2016). Because of the simplicity of this approach,
the majority of existing non-eddy-resolving oceanic numerical models are diffusion based,
despite the somewhat questionable assumptions underlying this approach. An analytical
connection between the encounter volume and diffusivity would thus be useful for the
parameterizations in numerical models.

Although we have not been able to find an analytical expression connecting VV and K, we outline
below some steps in that direction that help framing the problem. Let us start by considering a
simple diffusive random walk particle motion in two-dimensions, where particles take steps of
fixed length L in random directions at time intervals At. For such process, the single particle
dispersion,

D =< (x—x0)*+ (y —y0)? >,

which characterizes the mean square displacement from the particle’s initial position (x,, y,),
grows in proportion to the number of steps, n, i.e.,

D = KnAt,

with the proportionality coefficient, K = L?/ At, denoting the diffusivity. The angular brackets
denote ensemble average. We are interested in finding an analytical expression for the encounter
number, i.e., the number of particles that pass within radius R from a reference particle over time
T, as a function of K and T.

It is convenient to move to a reference frame that is tied to a reference particle, which would then
always stay at the origin, while other particles would be involved in a random walk motion. The
problem of finding the encounter number then reduces to counting the number of particles that
come within radius R from the origin over time T in the moving frame. The properties of the
random walk process in the moving reference frame are different from those in the stationary
frame. Specifically, the direction of each step in the moving reference frame still remains random
(since it is a sum of two random variables, each uniformly distributed within an interval [0; 2r]),
but the step size is no longer fixed. Instead, the step size can be written as

L%n = dxrzn + dyr%l = (dx — dxref)2 + (dy - dYTef)z =217 - 2(dx dXrer +dy d:Vref)y

where dx and dy correspond to displacements of a particle in x and y directions at some instance
in time, and subscripts m and ref denote the moving reference frame and the reference trajectory,
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respectively. Denoting the angle in which the step is taken by ¢, the displacements are dx =
Lcos,dy = Lsing,dx,er = L COS Qrer,dYrer = Lsin @, leading to

L,, = 2L sina, where a = w. Since both ¢ and ¢,..; are random variables uniformly
distributed between 0 and 27, a is a random variable with a flat pdf distribution € [0; 7].

This change in the step size between the stationary and moving frames leads to a doubling of the
diffusivity in the moving reference frame. To show this, we write down the dispersion in the
moving frame as

Dy =< (xm - xOm)z + (:Vm - :VOm)Z >=

2 2
=< (x — Xref — Xo — xOref) + (y — Yref — Yo — yOref) > =
=D — 2 Mxyop < DX > —20Yper < Ay > +0x7, 0 + Ayler =
=D —+ Ax,%ef —+ Ayfef'

where Ax = x — x, is the deviation from the initial position in the stationary frame and similarly
for Ay, Ax,.r and Ay,..r. We have used < Ax >=< Ay >= 0 to get the last equality. When

averaged over many reference trajectories, <Ax7,r + Ay7,; >= D since in the stationary

reference frame the reference particle is doing a random walk just like all other particles, so that
< D,, >= 2D, or, equivalently, < K,, >= 2K.

We thus seek an expression for the number of particles that are involved in a random walk
process with diffusivity 2K and that come within an encounter radius R from the origin during
their first n steps (n plays the role of discretized integration time). This quantity is related to the
first passage time density, which characterizes the probability that a particle has first reached an
absorbing boundary (often referred to as a cliff in statistics) at time ¢, and its integral quantity,
called the survival probability, which characterizes the probability that a particle has not come in
contact with absorbing boundary over time ¢t (i.e., it survived after time t without falling off a
cliff). So far, however, we have not been able to complete the derivation and we leave this
development for a future investigation.

Numerical Monte-Carlo simulations of a random walk process suggest that the dependence of
the encounter number (and encounter volume) on the integration time T is not a linear and not a
square-root function. The power-low least square fit of the form V~T“ returns a values between
0.64 and 0.78 for a wide variety of R and K, each spanning an order of magnitude interval of
values. Similarly, the power-low least square fit V~K# and V~R? yield § = 0.664 and y =
0.69.
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The ballistic spreading that is dominated by a local velocity shear is another commonly-
encountered spreading regime. There, the separation between particles grows in proportion to
time. Ballistic spreading can often be observed in nonsteady realistic oceanic flows at time scales
that are much shorter than the onset of diffusive spreading (which develops after a trajectory
samples multiple different eddies or other flow features). To derive a connection between
encounter volume and velocity shear, consider a trajectory that is advected by a flow field with
constant meridional velocity shear, y, of zonal velocity. In a reference frame moving with a
reference trajectory the velocity profile is, u(y) = yy where u denotes the x-component of
velocity, and the encounter volume becomes

V = Ndxdy = ZfOR dy f;”m dx =2 fOR dy fOTu(y)dt = yR*T, (2)

suggesting a linear growth with time for a ballistic regime. Note that expression (2) quantifies the
encounter volume as a volume of fluid that is initially located outside of the encounter sphere
and that passes through the sphere over time T. To include the volume of fluid that is initially
located within the encounter sphere (or within the encounter circle in this 2D case), one needs to
add r R? to expression (2). The contribution of this term gets negligibly small as T—> oo.
Expression (2) has been tested numerically and shows good agreement with the numerically-
estimated encounter volume for a linear shear flow (Fig. 10(right)).

The steady linear saddle flow with a constant strain rate a and velocities
u=ax;v=-—ay. (3)

is another commonly-considered example often used to approximate the vicinity of a hyperbolic
trajectory in more complicated non-steady non-linear situations. A unique property of this flow is
that the velocity profile is unchanged in any reference frame moving with a trajectory. This can
be shown by applying the coordinate transformation, X = x — x,-(t); ¥ = y — y.,-(t), where

(x; y) are coordinates in a stationary frame, (X; ¥) are coordinates in a moving frame, and

(%t (1); v (1)) is the trajectory. The velocity in a moving frame is then

. d d .
i=u—"20= 7= aR tax, — =L = ax
dt dt dt (4)
~ _ dytr Yir _ dyer _ ~
V=V T Ty T T e T T
. a a .
where the last equality holds because % = aX,p; yfr = —ay,,. Thus, without loss of

generality, we can consider a flow in a reference frame moving with a reference trajectory that is
located at the origin. The encounter volume that comes within a radius R of the origin over the
time interval T can be written as
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V = Ndxdy = [, F,(t)dt,

()
where dx and dy denote the grid spacing between neighboring trajectories, and the flux of
trajectories entering the circle is given by
FJ_ = fu_J_dS. (6)

Again, as in our treatment of the linear shear flow, expression (5) does not include the volume of
fluid that is initially located within the encounter sphere (or encounter circle in this 2D case), but
only the volume that was initially located outside but passes through the sphere over time T. The
contribution of that fixed volume (mR?), gets negligibly small as T—> oo. Here u, is the inward-
looking normal component of velocity at a circle of radius R, and ds is an infinitesimal segment
of the circle arc. From symmetry, the flux is the same in each of the 4 quadrants so we will
consider the 1% quadrant only. From geometry (Fig. 11),

u, = —usinf — v cos f = aR(cos? f — sin? B) and ds = Rdp, leading to

Fllst quad _  p2 fon/4(C052,8 — sin2 B) dp = aTRZ (7)
and
ylst quad — fOT F (t)dt = aRzT/Z. (®)

Adding the other 3 quadrants then gives
V = 2aR?T. (9)

Numerical simulations of the encounter volume in a linear strain flow show excellent agreement
with theoretical expression (9) (Fig. 10(left)).

The linear growth of the encounter volume with time in the linear shear and linear strain flows
could be anticipated by noting that both flows are steady in a reference frame moving with a
reference trajectory, and all particles only encounter the origin once and never come back. Thus,
the flux through the encounter circle is constant in time and the encounter volume, which is a
time-integral of flux, is proportional to time. The random walk flow seems to be different
because the particles can encounter the reference trajectory more than once, leading to a non-
steady flux of first encounters and a non- linear time dependence of the encounter volume.

IV.  Mixing potential for a specified tracer: the u*-approach
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The above examples are centered on mixing potential of a flow field, but there may be value in
computing the encounter volume for swarms of trajectories of biological organisms, drifting
sensors, and other non-Lagrangian trajectories. For example, if one is interested in the actual
transport of scalar properties such as heat, salt, or vorticity, then it may be useful to calculate V
using a velocity field that is directly linked to the vector flux of the scalar of interest. This
approach has been used in connection with heat transport in advective/diffusive flow (Bejan,
1995; Costa, 2006; Mahmud and Fraser 2007; Mukhopadhyay et al., 2002, and Speetjens, 2012)
and more recently with the transport of more general scalars in forced and dissipative (and
possibly turbulent) flows (Pratt et al., 2016). The central idea is to a define velocity field u*
based on the (known) flux F of a scalar with concentration C. Here bold quantities denote
vectors. The concentration is assumed to obey a conservation equation of the form

ac
L=-V-F+5, (10)

where S contains the sources and sinks of C. The velocity u* is defined as the velocity of a
hypothetical flow in which the flux of C is purely advective: F = Cu”. Pratt et al., 2016 show
that, in the absence of sources or sinks of C, that the total amount of C contained within any

material boundary advected by this hypothetical flow is conserved: % fV CdV = 0. Thus u* is
linked to scalar property fluxes while u is limited to fluid volume (or area) fluxes.

If indeed F is due entirely to advection by the actual fluid velocity field w, then u*=u, but more
generally F will contain contributions from eddy fluxes, molecular or sub-grid diffusion, and
even forcing and dissipation terms that can be expressed as the divergence of a flux. In addition,
F may be augmented by the addition of any non-divergent vector without altering Eq. (3). As
shown by Speetjens (2012), this lack of uniqueness can be dealt with by defining a physically
relevant reference scalar distribution and then focusing on the flux of the scalar anomaly, an
approach we adapt below. Thus, by estimating the encounter volume V for trajectories of the u*
field, one is quantifying the rate at which different “parcels’ of tracer anomaly are brought into
contact with each other. An example is presented next.

a. Example: encounter volume for a tracer with a specified initial distribution in a
Bickley Jet flow

In this subsection we apply the encounter volume diagnostic to quantify the mixing potential for
a specific tracer in the Bickley Jet flow. Our goal is to describe an example where the u* field for
a given tracer is significantly different from the flow velocity u, and where the corresponding
encounter volume field for a given tracer, V*, is significantly different from the water particle
trajectory-based encounter volume V.

Consider the Bickley Jet flow with the same parameters as in 11(b) and assume that one is
interested in a tracer that, at initial time t0, has uniform value ¢, south of the jet and has a
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constant meridional gradient north of the jet, i.e., C, = ¢, + 0.5y(sign(y — 5 = 10%) + 1) with
co = 1. Ignoring the diffusive terms, the tracer evolution is governed by the advection

equation Z—i = —V(u- C), where u is the Bickley Jet flow velocity. Since the jet core acts as a

transport barrier separating the northern and southern chaotic zones, this tracer will rapidly
filament and develop high property gradients north of the jet, but will remain uniform south of
the jet. So, despite the fact that the mixing potential of the Bickley Jet flow is exactly the same
on both sides of the jet (Fig. 7(bottom)), stirring will not lead to mixing for this particular tracer
distribution south of the jet, where tracer gradient is zero, thus leading to zero mixing potential
for this particular tracer. We seek to capture this effect via applying the encounter volume-based
mixing diagnostic to the corresponding u* field for this tracer.

In the spirit of Speetjens (2016) we regard ¢, as the reference concentration, here constant, and

define F to be the flux of a tracer anomaly: F = u - (C — ¢,). The resulting u* = g = u( — CC—")

is zero south of the jet where C = ¢, and is approximately equal to u north of the jet where
C > c,, leading to the u* -based encounter number V* = 0 south of the jet and V* = V north of
the jet.

This behavior was further validated numerically in Fig. 12, where we first numerically simulated
the evolution of this tracer in the Bickley Jet flow, then estimated u*, counted N* and estimated
V = NdV for trajectories advected by the u* field. The result confirms that mixing potential for
this tracer is zero south of the jet, V* = 0, whereas north of the jet V* is very close to VV from
Fig. 7(bottom). Thus, by combining the u* approach with the encounter volume idea, we were
able to correctly capture the mixing potential for a specific tracer.

V. Summary and discussion

When water parcels come in direct contact with each other, they can exchange water properties,
leading to mixing. The trajectory encounter volume, V, quantifies the volume of fluid that passes
close to a reference trajectory over a time interval t, < t < t, + T. Thus, the encounter volume
is proportional to, and can be used as a measure of, the mixing potential of a flow. For
incompressible flows densely seeded with particles, the encounter volume can be approximated
by V = N&V where N is the encounter number, i.e., the number of trajectories that come come
within radius R from the reference trajectory over time t, < t < t, + T, and 6V is a small
volume element.

The encounter volume diagnostic was tested in 3 flows with increasing complexity, the Duffing
Oscillator, the Bickley Jet, and the altimetry-based velocity in the Gulf Stream Extension region.
In all cases, IV was smaller within cores of coherent eddies and jets, where mixing potential was
low, and VV was larger in chaotic zones near the peripheries of the eddies and at the flanks of the
meandering jets, where the mixing potential of the flow was high.
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Similar to finite-time Lyapunov exponents (FTLES) that are commonly used to delineate regions
with qualitatively different motion (Haller, 2002; Shadden et al., 2005; Lekien and Ross, 2010),
VV depends on the trajectory starting time, t,, allowing tracking the evolution of oceanic features
by repeating the calculation at different t,, and on the trajectory integration time, T, revealing
different structures that impact the mixing potential of the flow from time ¢, to time t, + T.
Specifically, longer segments of stable/unstable manifolds emanating from hyperbolic regions
are revealed for longer T in forward/backward time. In the long-T limit, when both the stable and
unstable manifolds densely fill the entire chaotic zone, V approaches a constant equaling to the
volume of the chaotic zone.

IV also depends on the encounter radius R, which defines how close two trajectories need to be in
order to be counted as an encounter. Analytic arguments and numerical simulations both suggest
that R on the order of a fraction (~1/3) of the radius of the smallest feature of interest should
work well in most cases.

Finally, while VV was initially introduced in the continuous limit of infinitely many infinitely
small fluid elements (i.e., infinitely dense grid of initial positions), its approximation V = N§V
depends on the initial spacing between neighboring trajectories. Numerical simulations suggest
that this approximation works well for grid spacing as large as R /2 (with the appropriately
chosen R as discussed above), and that the major effect of increasing the grid spacing is in the
degraded resolution of the resulting VV-map rather than incorrect V values.

As with FTLEs, complexity measures (Rypina et al., 2011), Lagrangian descriptors (Mendoza et
al., 2014) and other techniques from the dynamical systems theory (Beron-Vera et al., 2013;
Budisic and Mezic, 2012; Froyland et al., 2007; Haller et al., 2016), V can be computed for
forward and backward in time trajectories, with the backward computation revealing unstable
manifolds. Our encounter number could plausibly be related, in a limiting case, to the mixing
geometry of Karrash and Keller, 2017.

For a ballistic spreading regime dominated by the velocity shear y, and for the linear saddle flow
with a constant strain a, V was shown to be proportional to yt and at, respectively. The linear
growth of the encounter number with time for the linear shear and linear strain flows is a
consequence of the steady flux of first encounters through the encounter circle.

An analytical connection between the encounter volume and a widely-used measure of mixing,
the diffusivity K, would be a desirable result for parameterizing the effects of eddies in
numerical models. Some initial developments towards deriving such a formula were outlined for
a diffusive random walk process. It was shown numerically that the dependence of VV on time is
non-linear, but numerical simulations were too inconclusive to make further inferences.

The mixing potential is the property of the flow field and characterizes the intensity of stirring,
whereas the actual tracer mixing depends both on the flow and the tracer. For example, no tracer
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mixing will occur if the tracer gradient is zero, even if the mixing potential of the flow is high.
To address this, we have proposed combining the encounter number diagnostic with the u*-
approach of Pratt et al, 2016 for characterizing the mixing potential for a specific tracer C. u*
depends on, and includes information about, the tracer fluxes. In the absence of sources and sinks
of C, the amount of tracer is conserved within any Lagrangian volume advected by u*, so the
encounter volume V* computed for trajectories advected by u* can be used to quantify the
mixing potential for a specific tracer. An example was presented where VV* for a specified tracer
distribution in the Bickley Jet flow was significantly different from V in a large part of the
domain.

The encounter volume is a frame-independent quantity because it is based on relative distances
between water parcel trajectories, rather than on properties of isolated trajectories. The encounter
volume values do not change under orthogonal transformations of coordinates, i.e., under
rotations and translations of a reference frame. This is a desirable property because the ability of
a flow to mix tracers should not depend on the reference frame.

The encounter volume and, more generally, encounter mass ideas presented in this paper are not
restricted to two dimensions and can be used to quantify mixing potential in three-dimensional
flows. This framework also does not require incompressibility and can work with unstructured
irregular grids. The investigation of the performance of the method in quantifying mixing
potential of a flow in such more complicated cases is left for a future study.
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For the V calculation, trajectories were released on a regular grid spanning the entire
domain with grid spacing of about 10° in both x and y directions.
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